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SNX10 and PTGDS are associated with the @
progression and prognosis of cervical
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Abstract

Background: Cervical cancer (CC) is the primary cause of death in women. This study sought to investigate the
potential mechanism and prognostic genes of CC.

Methods: We downloaded four gene expression profiles from GEO. The RRA method was used to integrate and
screen differentially expressed genes (DEGs) between CC and normal samples. Functional analysis was performed
by clusterprofiler. We built PPI network by Search Tool for the Retrieval of Interacting Genes Database (STRING) and
selected hub modules via Molecular COmplex Detection (MCODE). CMap database was used to find molecules with
therapeutic potential for CC. The hub genes were validated in GEO datasets, Gene Expession Profiling Interactive
Analysis (GEPIA), immunohistochemistry, Cox regression analysis, TCGA methylation analysis and ONCOMINE were
carried out. ROC curve analysis and GSEA were also performed to describe the prognostic significance of hub
genes.

Results: Functional analysis revealed that 147 DEGs were significantly enriched in binding, cell proliferation,
transcriptional activity and cell cycle regulation. PPl network screened 30 hub genes, with CDK1 having the
strongest connectivity with CC. Cmap showed that apigenin, thioguanine and trichostatin A might be used to treat
CC(P < 0.05). Eight genes (APOD, CXCL8, MMP1, MMP3, PLOD2, PTGDS, SNX10 and SPP1) were screened out
through GEPIA. Of them, only PTGDS and SNX10 had not appeared in previous studies about CC. The validation in
GEO showed that PTGDS showed low expression while SNX10 presented high expression in tumor tissues. Their
expression profiles were consistent with the results in immunohistochemistry. ROC curve analysis indicated that the
model had a good diagnostic efficiency (AUC =0.738). GSEA analysis demonstrated that the two genes were
correlated with the chemokine signaling pathway (P < 0.05). TCGA methylation analysis showed that patients with
lowly-expressed and highly-methylated PTGDS had a worse prognosis than those with highly-expressed and lowly-
methylated PTGDS (p = 0.037). Cox regression analysis showed that SNX10 and PTGDS were independent
prognostic indicators for OS among CC patients (P=0.007 and 0.003).

Conclusions: PTGDS and SNX10 showed abnormal expression and methylation in CC. Both genes might have high
prognostic value of CC patients.
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Background

An annual death toll of 265,700 makes cervical cancer
(CC) the second deadliest malignancy in females [1].
Despite pre-cancerous screening and emerging treat-
ments, CC remains the primary cause of death in
women in developing countries [2]. When CC metasta-
sizes and recurs, the prognosis gets even worse. There-
fore, it is of great significance to create new treatments
of CC based on its to-be-clarified molecular mechanism.

Gene expression microarray, as an efficient means of ac-
quiring large-scale genetic data, is being widely used to
study gene expression profiling in many human cancers.
Upon microarray and databases, effective analytic tools
have been designed to explore tumor-associated genes,
molecular mechanisms and target therapies. The integra-
tion of databases containing gene expression chips allows
in-depth study of molecular mechanisms [3, 4].

Thousands of differentially expressed genes (DEGs) in
CC have been discovered [5-7]. However, the results on
some mRNAs are inconsistent. Here we use an unbiased
approach to solve this problem.

In our study, we screened DEGs from four profiles down-
loaded from GEO. PPI network was built by STRING Data-
base and hub modules selected via plug-in MCODE. CMap
was used to find potential genes associated with CC. We
also validated hub genes with GEO, GEPIA, immunohisto-
chemistry and ONCOMINE. ROC curve analysis and GESA
were also done to tease out the significance of hub genes.
The flow chart of this research was displayed in Fig. 1.

Methods

Screening DEGs

Keywords “cervical cancer geo accession” were put in
the GEO database (https://www.ncbi.nlm.nih.gov/geo/)
and the mRNA expression profiles of GSE6791,
GSE63514, GSE39001 and GSE9750 were downloaded.
The dataset details were shown in Table 1. We proc-
essed unqualified data by R package. The data is cali-
brated, standardized and log2-transformed. Gene
expression analysis was performed using the “limma” R
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package [8] in the Bioconductor package. Relevant codes
were placed into R. we selected four microarray datasets
and analyzed them with limma. The |log2fold change
(FC)| > 2 and adjusted p < 0.05 were set as cutoffs. RRA
package was download (http://cran.r-project.org/) [9]
and R software was used for running the instruction
code.

Functional analysis based on DEGs

The biological function of DEGs was analyzed with
DAVID (https://david.ncifcrf.gov/) database and cluster-
profiler [10] (a package visualizing the biological profiles
of genes). P<0.05 was considered to be statistically
significant.

PPI network integration

Search Tool for the Retrieval of Interacting Genes Data-
base (STRING) [11] (http://www.string-db.org/) was
used to assess PPI complex between identified and pre-
dicted proteins. In addition, the plug-in MCODE [12] of
Cytoscape was conducted to select and visualize hub
modules in PPI complex.

Identification of potential drugs

CMap [13] is a computer simulation method for predict-
ing the potential drug that may induce or reverse a bio-
logical state encoded by the gene expression signature.
The different probe components commonly between CC
and normal samples were screened out with CMap data-
base and divided into the up- and down-regulated
groups. An enrichment score representing similarity was
calculated. The positive score illustrated that the drug
could induce cancer in human; the negative score illus-
trated the drug function oppositely and had potential
therapeutic value.

Construction of a prognostic signature

Univariate Cox regression analysis was performed based
on DEGs. The genes associated with prognosis were de-
fined using the cutoff value of p<0.05. Next, a
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Table 1 Details for GEO cervical cancer data

Reference Sample GEO Platform Normal Tumor
Pyeon D.et al. (2007) [56] Cervix GSE6791 GPL570 8 20
Scotto L,et al. (2007) [57] Cervix GSE9750 GPL9% 24 33
Espinosa AM.et al. (2012) [58] Cervix GSE39001 GPL201 12 43

GPL6244
den Boon JAet al. (2014) [59] Cervix GSE63514 GPL570 24 28

multivariate Cox regression model was constructed
with genes of p < 0.01. Cox regression with p < 0.05 was
constructed to estimate the risk score of each patient
on the expression of the DEGs. To further screen out
prognosis-related genes of CC, we constructed a linear
risk model. The prognostic score=expRNAI x
BRNAT + expRNA2 x BRNA2 + expRNA3 x PRNA3 +
...expRNAnxBRNAn (expRNA is the expression level of
each methylation-driven gene, and PRNA is the regres-
sion coefficient calculated by the multivariate Cox re-
gression analysis). The prognostic risk value of each
sample was calculated according to the formula, and
then the median of the index value was cut off. Patients
were separated into a low- and high-risk group accord-
ing to their mean scores of prognostic risks. Kaplan-
Meier survival analysis was conducted based on the
low- and high-risk group. We also performed ROC
curve analysis using 5 years as the predicted time to as-
sess the predictive value of the outcome. The areas
under the ROC curve, sensitivity and specificity were
used to describe predictive values.

Validation of key genes

We used GEPIA [14] (Gene Expression Profiling Inter-
active Analysis) to analyze the expression and prognostic
significance of DEGs. After reviewing literature, we
screened real hub genes from DEGs. Subsequently the
real hub genes were validated into GEO datasets, includ-
ing GSE7803 and GSE29576, and ONCOMINE database
(www.oncomine.org). GSE7803 included 21 cervical can-
cer samples and 10 normal cervix tissue samples.
GSE29576 included 45 CC samples and 17 normal cer-
vix tissue samples. ONCOMINE [15] dataset is a public
online cancer microarray database that enables online

Table 2 Screening DEGs in cervical cancer by integrated microarray

analysis on relations between certain gene and various
tumors according to DNA and RNA sequence data. The
Human Protein Atlas (HPA) (http://www.proteinatlas.
org/) was also used to measure the expressing level of
the real hub genes. ROC curve analysis was performed
to distinguish normal and cancer tissues.

Survival analysis and mapping of methylation level
Survival analysis on gene methylation and expression
was conducted through R package to identify key
prognosis-associated genes in CC. To explore the rela-
tion between aberrant methylation and expression of
genes, we extracted key genes with methylated expres-
sion from the downloaded data on TCGA CESC methy-
lation. Then we evaluated the association between the
methylated expression and the gene expression.

Gene set enrichment analysis (GSEA)

According to the hub gene expression level, the samples
were then separated into two different groups. To ex-
plore the potential function of the DEGs, GSEA [16]
(http://software broadinstitute.org/gsea/index.jsp) ~ was
used to research a series of biological pathways that
might be enriched in the gene rank derived from hub
gene among the two groups. Annotated gene set of
c2.cp.kegg.v6.0.symbols.gmt in Molecular Signatures
Database (MSigDB, http://software.broadinstitute.org/
gsea/msigdb/index.jsp) was selected as the reference.
Additionally, we used “Clusterprofiler” package in R to
handle the datasets, and the “Enrichplot” package to
tease out the enriched pathways of the key genes. The
adjusted-P < 0.05 was set as significant.

DEGs Gene name

Upregulated

MMP1 IFI44L MMP12 PLOD2 CXCL11 RFC4 HOXC6 TOP2A ISG15 SPP1 PRCT RAD51AP1T SYCP2 DTL APOBEC3B MLF1 TTK CDKN2A

INHBA NDC80 EZH2 CXCL8 KIF23 CTHRCT MCM2 KIF20A KIF4A CDK1 MICB CENPE LAMP3 IFI44 CXCL13 CDC25B TOPBP1 CDC7
LMNB1 RRM2 CDC6 HLTF SYNGR3 NCAPG RYRT ENO2 SMC4 NEK2 CXCLT MCM3 C1QB SNX10 PPAP2C KIF11 MCM5 AIM2 AURKA
MAD2L1 PBK CENPF KIF15 KNTC1 NTS FBXOS5 STIL SPAG5 TRIP13 EPCAM MELK MMP3 KIF14 GZMB CDC20 CEP55 BUB1B NEFH

Downregulated

CRNN MAL CRISP3 CRCT1 SPINK5 ALOX12 KRT13 SPRR3 PPP1R3C KRT1 SPRR1B APOD SPRRTA CFD IVL CXCL14 RHCG SPRR2B

ENDOU EDN3 CRYAB TMPRSS11D CLIC3 HPGD UPKTA TST KLK11 BBOX1 EMP1 CLCA4 KLK12 SCNN1B NSG1 SLURP1 SOSTDC1 IL1R2
KRT4 KLF4 DSG1 PPL DEFB1 SULT2B1 GPX3 TGM3 ALOX12B ECM1 NDN ISL1 CRABP2 FCGBP PTGDS TMPRSS11B CCND1 FOSB GYS2
TGFBR3 LDOCT ST100A7 KRT2 FGFBP1 PRSS3 ID4 ADRB2 VAT1 SLIT2 CLDN8 KLK10 PTK6 SPINK2 AR PDGFD AKR1B10 EREG
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Fig. 2 LogFC heatmap of the image data of each expression microarray. Notes: The abscissa is the geo ID, and the ordinate is the gene name.
Red represents logFC>0, green represents logFC<0, and the values in the box represent the logFC values
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Results

Identification of DEGs in CC

The CC expression microarray datasets (GSE6791,
GSE9750, GSE39001 and GSE63514) were firstly stan-
dardized (Figure S1). With limma package, 256 DEGs

were filtered from GSE6791 (60 downregulated and 196
upregulated), 236 DEGs from GSE9750 (136 downregu-
lated and 100 upregulated), 98 DEGs from GSE39001
(38 upregulated and 60 downregulated), 489 DEGs from
GSE63514 (177 upregulated and 312 downregulated).
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DEGs from the 4 microarray datasets were exhibited in
volcano maps (Figure S2A-D) and heatmaps (Figure
S3A-D). We analyzed the four microarray datasets via
the limma package and then with RRA method
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according to their log-folding variation values ((|log2fold
change (FC)| >1 and adj. p<0.05). The RRA method
was based on the theory that genes in each experiment
were randomly ordered. For the genes ranking higher in
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Table 3 Results of CMap analysis

Rank  CMap name Mean N Enrichment P-value
1 apigenin —-0.848 4 -0973 0

2 thioguanosine —-0.799 4 -0.96 0

3 trichostatin A —-0.386 182 —-0.261 0

4 viomycin 0.751 4 0.924 0.00004
5 adiphenine 0.779 5 0.907 0.00004
6 atractyloside 0.651 5 0.839 0.00024
7 chrysin —-0.745 3 -0.939 0.00032
8 isoflupredone 0.768 3 0937 0.00044
9 nadolol 0.649 4 0.866 0.00044

the experiment, the possibility of differential expression
is inversely proportional to the value of P. Through ana-
lytic hierarchy analysis, we sorted out 74 up-regulated
and 73 down-regulated genes (Table 2). Finally, the R-
heatmap software was performed to plot the top 40 up-
and down-regulated genes (Fig. 2).

Functional analysis of DEGs

The biological annotations of DEGs in CC were obtained
with an online analysis tool named DAVID, which had
GO analysis of up- and down-regulated genes (P<0.05).
The GO analysis of DEGs covered three aspects: bio-
logical processes, molecular function and cellular com-
position (Figure S4A). The upregulated genes were
significantly enriched in microtubule binding, tubulin
binding and ATPase activity (Fig. 3a), and the down-
regulated genes in serine-type peptidase activity, serine-
type endopeptidase and serine hydrolase activity (Fig.
3b). These results indicated that most DEGs were prom-
inently enriched in structural molecule activity, mid-
body, kinesin complex and microtubule motor activity.
(Figure S4 B-C and Figure S5A). Clusterprofile was per-
formed to analyze the DEGs. The result showed that the
upregulated genes were mostly enriched in DNA replica-
tion, Oocyte meiosis and Cell cycle. (Fig. 3c), and the
down-regulated genes in Arachidonic acid metabolism,
prostate cancer and signaling pathways regulating pluri-
potency of stem cells (Fig. 3d). The pathway-gene
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network (Figure S5B) suggested that the cell cycle was
the most important term in the biological processes of
CC.

PPI network construction and modules selection

The PPI network of DEGs was constructed, including
147 nodes (74 up-regulated and 73 down-regulated
genes) and 562 edges (Fig. 4a). Degrees =30 was set as
the cutoff. A total of 16 genes, such as CDK1, TOP2A,
NCAPG, and KIF11, were showed the most significant
difference in expression (Fig. 4b). A significant module
was selected with plug-in MCODE, including 27 nodes
and 343 edges (Figure S6A). GO and KEGG analysis in-
dicated that the genes in the module were related to
microtubule binding, tubulin binding, cell cycle and oo-
cyte mitosis (Figure S6B and C).

Small molecule drugs screening

CMap network was used to analyze 147 DEGs into two
groups (74 in up-regulated group and 73 in down-
regulated group). After the signature query, the three
compounds with the highest negative enrichment score
(apigenin, thioguanine, and trichostatin A) were identi-
fied as potential therapeutic agents for CC (Table 3).
The three-dimensional chemical structure of these three
compounds is shown in Fig. 5.

Validation of hub genes

We validated DEGs at GEPIA website, including survival
analysis and tissue sample expression analysis (Figure S7
and Figure S8). Eight genes (APOD, CXCL8, MMPI,
MMP3, PLOD2, PTGDS, SNX10 and SPP1) had the
same trend in both the above analysis. We literature-
reviewed these eight genes, finding that only PTGDS
and SNX10 had not been reported to be associated with
CC. Therefore, we used GSE7803 and GSE29576 to val-
idate PTGDS and SNX10 (Figure S9). The results
showed that PTGDS had high expression levels in nor-
mal tissues and low expression levels in tumor tissues,
while SNX10 showed an opposite profile. We further
validated the two genes using immunohistochemistry
(Fig. 6a-b) and ONCOMINE, obtaining the results

A B
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Fig. 5 Three-dimensional diagram of the three most significant drugs. a Apigenin b Thioguanosine ¢ Trichostatin A
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consistent with those from the GEO database (Fig. 6¢-d).
The area under the curve of PTGDS was 0.919 and that
of PTGDS was 0.905, suggesting that both can distin-
guish CC and normal tissue and have a good diagnostic
efficiency (Fig. 7a). GSEA was performed to search
KEGG pathways enriched in the TCGA samples. The
top ten most enriched pathways included “hematopoietic
cell lineage”, “adhesion molecules cams”, “vascular
smooth muscle contraction”, “systemic lupus erythema-
tosus”, “chemokine signaling pathway”, “t cell receptor
signaling pathway”, “cytokine cytokine receptor inter-
action”, “calcium signaling pathway”, “neuroactive ligand
receptor interaction” and “leukocyte transendothelial mi-
gration” (Fig. 7b) (adj.p < 0.05). In addition, the univari-
ate and multivariate Cox regression analyses showed
that SNX10 and PTGDS were independent prognostic
indicators for OS among CESC patients (P =0.007 and
0.003) (Table 4).

To find out the mechanism of abnormal gene expres-
sion, we analyzed the gene expression level and methyla-
tion level from the Illumina Human Methylation 450
platform based on TCGA data. The association between
the methylated expression and the gene expression of
the two key driving genes were shown in Fig. 7c-d. The

survival analysis showed that the patients with low-
expressed and hyper-methylated PTGDS had a worse
prognosis than those with high-expressed and hypo-
methylated PTGDS (P=0.037) (Fig. 7e). However,
SNX10 methylation has no statistical significance in sur-
vival analysis.

Establishment of cox regression model

Univariate cox regression analysis screened out seven
genes, including APOD, CXCL8, MMP1l, MMP3,
PLOD2, PTGDS and SPP1 (Figure S10). Multivariate
Cox regression analysis screened five genes, including
SPP1, CXCL8, PTGDS, PLOD2 and MMP3 (Figure S11).
The score for overall survival risk prediction was calcu-
lated as followed: Risk score=0.143* SPP1 +0.136*
CXCL8-0.093* PTGDS+ 0.206* PLOD2 + 0.067* MMP3.
Based on the risk score, CC patients were divided into
low- and high-risk groups. Kaplan-Meier analysis sug-
gested that low-risk patients had better outcomes than
high-risk patients in the TCGA cohort (Fig. 8a). ROC
curve analysis was also completed according to the 5-
year survival of the area under the receiver operating
characteristic curve (AUC) value. The specificity and
sensitivity were both highest when the risk score was
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(See figure on previous page.)

Fig. 7 Validation of PTGDS and SNX10. a ROC curve analysis of the two genes. b GSEA of PTGDS and SNX10. ¢ The methylated expression and
gene expression of PTGDS. d The methylated expression and gene expression of SNX10. e Survival analysis of patients with methylated

PTGDS expression

0.738 (Fig. 8b). The distribution of risk score, survival
status, and the expression levels of five genes was also
presented (Fig. 8c-f). The expression levels of five genes
in low- and high-risk groups were shown in Figure
S12A. The univariate and multivariate Cox regression
analyses showed that only the risk score based on five
genes was independent prognostic indictor of CC (Fig-
ure S12B-C).

The Heatmap showed the expression levels of the five
genes in two subgroup patients in the TCGA dataset.
We observed significant difference in survival state (P <
0.001) and stage (P < 0.05) (Figure S12D).

Discussion

CC brings on more than 265,700 deaths per year, mak-
ing it the second deadlist malignancy in women. Now-
adays, microarray and high-throughput sequencing
technology are used to identify the potential targets in
CC treatment. Previous studies often establish a single
group or have a small-size, which restricts their
reliability.

This study analyzed the expression profiles of four
genes using R software and bioinformatics tools. A total
of 147 differential genes were identified using RRA ana-
lysis, including 73 downregulated and 74 upregulated.
GO analysis indicated that upregulated DEGs were asso-
ciated with microtubule binding and downregulated
DEGs with serine-type peptidase activity. KEGG analysis
showed that these DEGs were primarily enriched in the
cell cycle pathway.

Our findings echo with the previous studies. It has
been reported that microtubule binding and cell cycle
have an effect on CC [17]. Other studies showed that
microtubule binding played a role in the biology of acute
myeloid leukemia cells and colorectal cancer cells [18,
19]. Cell cycle also decides the abnormal proliferation of
many tumor cells [20, 21].

PPI network displayed 30 hub genes associated with
CC associated proteins. Next, we found CDK1 was in

the center of PPI network of CESC. CDK1 was harbored
by top module 1, suggesting that the top module 1 plays
a crucial role in CC pathogenesis. Functional analysis in-
dicated that the genes in this module were mainly
enriched in microtubule binding, tubulin binding and
cell cycle. Cyclin-dependent kinase 1 (CDK1) is a serine/
threonine kinases that interacted with specific cyclins to
regulate the cell cycle [22]. It has been reported that
CDK1 regulated the development of CC and many other
tumors [23]. Y. Zeng et al. found that the mitotic phos-
phorylation level of the transcriptional co-repressor
Vgll4 was mediated by CDKI1 to its tumor-suppressing
activity. K. Bednarek et al. found that CDK1 was in-
volved in the processes of laryngeal squamous cell car-
cinoma [24, 25].

Cmap showed that apigenin, thioguanine and trichos-
tatin A could be used to treat CC. Apigenin and trichos-
tatin A can inhibit breast cancer growth [26, 27]. 6-
thioguanine has also potential therapeutic effects on tu-
mors [28]. Our findings may help create the appropriate
drugs for CC treatment.

Eight genes (APOD, CXCL8, MMP1, MMP3, PLOD2,
PTGDS, SNX10 and SPP1) were screened out of DEGs
through GEPIA. Of them, only PTGDS and SNX10 had
not been reported in CC research. According to GEO
validation results, PTGDS was lowly expressed and
SNX10 highly expressed in tumor tissues, which was
consistent with the results from immunohistochemistry.
TCGA methylation analysis showed that the patients
with lowly-expressed and highly-methylated PTGDS had
a worse prognosis than those with highly-expressed and
lowly-methylated PTGDS. Cox regression analysis
showed that SNX10 and PTGDS were independent
prognostic indicators for OS among CC patients. GSEA
showed that the two genes were associated with the che-
mokine signaling pathway. Zhong G et al. suggested that
chemokine signaling is involved in the invasion and mi-
gration of lung cancer cells [29]. Chemokine signaling
has also been reported to maneuver the progression of

Table 4 Univariate analysis and multivariate analysis of SNX10 and PTGDS expression among cervical cancer patients

Variables Univariate analysis Multivariate analysis

HR 95%(Cl p HR 95%Cl p
Stage (I & II) vs Stage (Il & IV) 2338 1.364-4.004 0.002 3.078 1.329-7.129 0.009
Grade(G1 & G2) vs Grade(G3) 1.221 0.947-1.574 0.124 0.837 0.565-1.240 0.375
Age(=50) vs Age(> 50) 1.263 0.755-2.112 0373 1.197 0.711-2.011 0498
SNX10 (high expression) vs SNX10 (low expression) 1.202 0.957-1.509 0.113 1424 1.103-1.838 0.007
PTGDS (high expression) vs PTGDS (low expression) 0.838 0.729-0.962 0.012 0.802 0.693-0.928 0.003
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breast and hepatobiliary cancer [30, 31]. In addition, the
prognostic signature was constructed based on the eight
hub genes. Of them, five genes (SPP1, CXCL8, PTGDS,
PLOD2, and MMP3) exhibited significant prognostic
value. The Cox regression analysis showed that only the
risk score of the five genes was an independent prognos-
tic indicator of CC.

Interestingly, all of the above genes are associated with
cervical cancer. Yan R et al. found that CXCL8 had
prognostic value in cervical carcinoma patients [32].
Tian R et al. identified the function of MMP1 in cervical
cancer [33]. Xie B et al. defined that genetic polymor-
phisms in MMP 3 connected with the clinical outcome
of cervical cancer in a Chinese Han population [34]. Xu
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F et al. found that increased PLOD2 expression facilitated
epithelial-to-mesenchymal transition (EMT) and focal ad-
hesion formation, thus promoting the migration and inva-
sion of cervical cancer cells [35]. Chen X et al. found SPP1
inhibition enhanced the chemosensitivity of cervical cancer
cell lines to cisplatin [36]. Using microarray analysis, Song
JY et al. found that APOD played in the invasion of cervical
cancer [37]. These genes play different roles in other tu-
mors. For example, Allina DO et al. demonstrated the diag-
nostic significance of APOD for prostatic neoplasms [38].
Shen T et al. held that CXCL8 induced EMT in colon can-
cer [39]. Wang Y et al. found that CXCL8 regulated the de-
velopment of breast cancer [40]. Ha H et al. found that
CXCL8 was also involved in inflammatory diseases in
addition to tumors [41]. Liu M et al. argued that MMP1
promoted the growth and metastasis of esophageal squa-
mous cell carcinoma [42]. MMP1 also participated in breast
and ovarian cancer [43, 44]. Banik D et al. demonstrated
that MMP3 regulated tumor progression [45]. Ji Y et al.
demonstrated that C/EBP} promoted tumor cell invasion
and metastasis of colorectal cancer [46]. PLOD?2 is impli-
cated in cervical cancer [35] and renal cell carcinoma [47].
SPP1 linked with lung adenocarcinoma, gastric cancer and
colorectal cancer [48—50].

Sorting nexin 10 (SNX10) can suppress the progres-
sion of colorectal cancer, liver cancer and stomach can-
cer [51, 52]. Cervantes-Anaya N et al. demonstrated
SNX10/V-ATPase pathway regulated ciliogenesis
in vitro and in vivo [52]. Prostaglandin D synthase
(PTGDS) has also been intensely studied [53]. Omori K
et al. demonstrated that PTGDS attenuated the malig-
nance of tumor endothelial cells and regulated the pro-
cesses in non-small cell lung cancer and gastric cancer
[54, 55]. The present study is the first to report the ex-
pression and prognostic calue of these two genes in CC.
Their methylation is associated with CC prognosis, a
finding that has never been reported before.

This study has some limitations. First, the analysis is
entirely based on open databases, so its results should be
validated with functional experiments. Second, the five
genetic profiles are based on a single cohort with rela-
tively small sample size. Further studies should involve
larger independent cohorts.

Conclusion

Our study indicated that two novel genes PTGDS and
SNX10 showed abnormal expression and methylation
associated with CC development and explored their
prognostic value. However, biofunctions of two genes
remained to be unveiled with more in-depth research.
The two genes might serve as potential prognostic bio-
markers and therapeutic targets in the treatment of CC.
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Additional file 9: Figure S9. Gene expression in GSE7803 and
GSE29570. (A) PTGDS in GSE7803. (B) SNX10 in GSE7803. (C) PTGDS in
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Additional file 10: Figure S10. Seven genes were screened by
Univariate cox regression analysis.
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Additional file 12: Figure S12. Regression analysis of the 5 genes
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