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Abstract

Bcl-x pre-mRNA splicing serves as a typical example to study the impact of alternative splicing in the modulation of
cell death. Dysregulation of Bcl-x apoptotic isoforms caused by precarious equilibrium splicing is implicated in
genesis and development of multiple human diseases, especially cancers. Exploring the mechanism of Bcl-x splicing
and regulation has provided insight into the development of drugs that could contribute to sensitivity of cancer
cells to death. On this basis, we review the multiple splicing patterns and structural characteristics of Bcl-x.
Additionally, we outline the cis-regulatory elements, trans-acting factors as well as epigenetic modifications involved
in the splicing regulation of Bcl-x. Furthermore, this review highlights aberrant splicing of Bcl-x involved in
apoptosis evade, autophagy, metastasis, and therapy resistance of various cancer cells. Last, emphasis is given to
the clinical role of targeting Bcl-x splicing correction in human cancer based on the splice-switching
oligonucleotides, small molecular modulators and BH3 mimetics. Thus, it is highlighting significance of aberrant
splicing isoforms of Bcl-x as targets for cancer therapy.

Keywords: Bcl-x, Alternative splicing, Cell apoptosis, Splicing correction, Splice-switching oligonucleotides, Small
molecular modulators

Background
Apoptosis regulator Bcl-extra (Bcl-x), also named BCL2L
or BCL2L1, is a typical example of apoptotic response
gene impacted by splicing. It is an essential member of B-
cell lymphoma 2 (Bcl-2) apoptosis family that regulates
cell fate [1, 2]. Bcl-x nascent transcripts are alternatively
spliced and mainly encode two antagonistic isoforms. The
long isoform Bcl-xL blocks apoptosis by inhibiting pro-
apoptotic counterparts of Bcl-2 family, whereas the short
isoform Bcl-xS can promote apoptosis [2]. An increasing
body of data suggests that dysregulated expression of Bcl-

x apoptotic isoforms contributes to multiple hallmarks of
human cancers. For example, Bcl-xL level was strongly en-
hanced in cancer cells at the invasive forefront of human
breast carcinomas and simultaneously acquired resistance
to apoptotic stimuli [3, 4]. However, Bcl-xS conferred the
therapeutic sensitivity by decreasing the apoptosis thresh-
old [5]. The ratio of pro-apoptotic Bcl-xS and anti-
apoptotic Bcl-xL proteins plays a vital role in regulating
the switch between cell life and death. Hence, in this re-
view, we summarize the patterns and the splicing regula-
tory network of Bcl-x pre-mRNA splicing. In addition, we
describe how this aberrant splicing impacted apoptosis,
autophagy, invasion and metastasis, immune response, as
well as clinical therapy resistance in cancer. Furthermore,
we outline the emerging strategies that modulate the can-
cerous Bcl-x splicing and restore the balance of Bcl-xL/
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Bcl-xS ratio. Targeting the oncogenic splicing of Bcl-x
is believed to result in sensitized cell death by simul-
taneously blocking Bcl-xL and enhancing Bcl-xS spli-
cing [6].

Splicing isoforms of Bcl-x
Alternative splicing expands the coding capacity of ge-
nomes of eukaryotes significantly through splice site se-
lection (Fig. 1) [7]. Nearly >95% of human multi-exonic
genes could be alternatively spliced into mRNAs iso-
forms [8]. Splicing reaction is orchestrated by a highly
dynamic ribonucleoprotein complex known as spliceo-
some and hundreds of related proteins [9]. The spliceo-
some recognizes and assembles reversibly on pre-mRNA
to catalytic splicing in a stepwise manner. This process
is further modulated by a number of cis-acting elements
and trans-acting factors (splice factors) bound to them
[9]. Indeed, mutations in cis-regulatory sequences and
spliceosomal associated proteins are enriched in cancer.
These mutations always affect the splicing of cancer-
related genes [10, 11]. A growing body of evidence has
revealed aberrant splicing events as contributors of hall-
marks of tumorigenesis, such as proliferation, angiogen-
esis, invasion and apoptosis (Fig. 1) [11, 12].
Bcl-x, a critical apoptotic gene of the Bcl-2 family,

is located in chromosome 20 (20q11.1). It was first

discovered by using Bcl-2 fluorescent probe
hybridization in chickens [2]. Subsequently, two an-
tagonistic isoforms of Bcl-x pre-mRNA in human
body were isolated, which then were identified as Bcl-
xL and Bcl-xS, respectively. Splicing selection closer
to the proximal 5' splice site (5'PSS) of exon 2
resulted in the long anti-apoptosis isoform Bcl-xL
(Fig. 2a), which contained four exons and was com-
posed of 780 bp. The primary structure of Bcl-xL is
composed of 233 aa, which contains C-terminal
hydrophobic transmembrane (TM) domain respon-
sible for the anchoring to membranes and all four BH
domains (BH1-4) (Fig. 2b,c). When the splicing oc-
curred near the cryptic distal 5' splice site (5' DSS) of
exon 2, the short isoform pro-apoptotic Bcl-xS with
591 bp was produced. Stable Bcl-xS expression played
an important role in regulating the ability of pro-
survival genes to inhibit apoptotic cell death [2]. Bcl-
xS protein is encoded by 170 aa containing both
BH3, BH4, and TM domains but lacking BH1 and
BH2 domains, which might lead to alternation of
hydrophobicity. In addition, other splice isoforms
encoded by Bcl-x also had been identified in different
cell types and performed diverse functions (Fig. 2b)
[13–17]. Despite multiple isoforms that Bcl-x could
splice, the pro-apoptotic Bcl-xS and anti-apoptotic

Fig. 1 Alternative splicing and the effect of aberrant alternative splicing on cancer progression. The spliceosome, consists of five small nuclear
ribonucleoproteins particles (U1, U2, U4, U5 and U6) and hundreds of additional proteins, recognizes the consensus sequence of each intron and
assembles reversibly on splice sites to catalytic pre-mRNA splicing. SR proteins and hnRNPs bound to exonic or intronic regulatory elements to
promote or prevent the use of splice sites thus affecting alternative splicing decisions. The figure displays some examples of cancer-specific
splicing events that contribute to distinct hallmarks of cancer. Arrows up and down indicate the corresponding isoforms contributing or
suppressing the hallmark respectively
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Bcl-xL are still the predominant isoforms acting in
cell fate.

Regulation of Bcl-x pre-mRNA splicing
Cis-regulatory elements
Cis-regulatory elements are short nucleotide motifs
within pre-mRNA transcripts that providing binding
sites for specific trans-acting factors. It can be catego-
rized into exonic splicing enhancers (ESEs), exonic spli-
cing silencers (ESSs), intronic splicing enhancers (ISEs)
and intronic splicing silencers (ISSs) depending on their
position and impact on the use of splice site [18] Bcl-x
pre-mRNA contains several cis-elements acting as spli-
cing activators or repressors by interacting with related
splicing factors (Fig. 2a). For example, SB1 (361bp), lo-
cated in the first half of exon 2, was defined as an ESE
because splicing to Bcl-xS was even stronger in the ab-
sence of SB1. Similarly, DNA damage-induced Bcl-xS
splicing only increased in the presence of SB1 [19]. In
addition, B1 was a composite element located upstream

of 5' DSS of Bcl-x pre-mRNA. The 5' portion of B1 dis-
played ESE activity, whereas the 3' portion was occupied
with ESS element. hnRNP K bound to the silencer por-
tion of B1 to repress the production of Bcl-xS [20].
Moreover, B2G module was a 30-nucleotides G-rich
element located immediately downstream of the 5'
DSS. Combination of hnRNP F/H to B2G enhanced
Bcl-xS splicing. B3 located up-stream of 5'PSS to
favor the production of Bcl-xL. The two elements
ML2 and AM2 within B3 were identified to enhance
Bcl-xL splicing through interacting with SRp30c [21].
Deleting B2G and B3 regions completely abrogated
production of Bcl-xS and Bcl-xL respectively [22].
Another two cis-elements CRCE1 and CRCE2 within
exon 2 were essential for ceramide-responsive Bcl-x
expression. Mutation of CRCE1 or CRCE2 induced a
decreased ratio of Bcl-xL/Bcl-xS [23]. In addition to
exonic elements, the intron region downstream from
Bcl-xL 5'PSS also had been identified to mediate sig-
nals from extracellular factors such as interleukin-6

Fig. 2 Bcl-X pre-mRNA splicing and structures of splicing isoforms. a. Alternative splicing mode and splicing regulation. Splicing occurred closer
to the 5'PSS of exon 2 produces the long isoform Bcl-xL. Alternative splicing occurred near the 5' DSS of exon 2 produces the short isoform Bcl-
xS. In addition, distinct cis-elements and splice factors bind to cis-elements to influence the alternative 5' splice site selection of Bcl-x pre-mRNA.
b. General characteristics of isoforms spliced from Bcl-x pre-mRNA. c. The protein structures of Bcl-xL. The secondary structure of Bcl-xL and the
position in the space of BH domains (up). Tertiary structure of Bcl-xL and the BH domain and hydrophobic groove are showed (down)
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and granulocyte-macrophage colony-stimulating fac-
tor (GM-CSF) to repress Bcl-xL splicing [24].

Trans-acting factors
A variety of trans-acting factors are involved in the
formation of splicing regulatory network, including SR
proteins, hnRNPs as well as some transcription factors
(Fig. 2a) [25]. Posttranslational modifications of splicing
factors would also change their binding state to cis-
elements. For example, Sam68 bound to Bcl-x pre-
mRNA specifically and recruited hnRNP A1 to a
particular region, which caused the selection of Bcl-xS in
a dose-dependent manner. This favor could be inverted
by tyrosine phosphorylation of Sam68 [26]. In addition,
SRSF1 was known to compete with hnRNPA1 to pro-
mote Bcl-xL splicing. However, the activity of SRSF1 it-
self was antagonized by splicing factors RBM4 and
PTBP1 [27, 28]. Moreover, a multicomponent regulatory
hub consisting of SRSF10, hnRNP A1/A2, and Sam68
was reported to activate the 5'DSS of Bcl-x in response
to DNA damage [29]. Because alternative splicing is
coupled to transcription, a large number of transcription
factors were found to influence splicing selection. For in-
stance, E2EF1 was suggested to increase Bcl-xS isoform
through upregulating SRSF2 [30]. FBI -1 could interact
with the full length or C-terminal domain of Sam68 to
counteract Sam68-mediated apoptosis [31]. Moreover,
TCERG1 [32], FOXP3 [33], ETS [34] as well as cellular
signal pathways and other regulatory modes such as
exon junction complex, G-rich sequences were all in-
volved in Bcl-x splicing and had been summarized in
Table 1 (Table 1).

Epigenetic modifications
Epigenetic modifications had been suggested to interplay
intricately with alternative splicing [49]. It had been re-
ported that DNA methylation at exons and splicing sites
were involved in over 20% splicing modulation by
regulating the elongation rate of RNA polymerase II pri-
marily [50]. In other studies, the dynamic histone acetyl-
ation mark of H3K4me3 nucleosome played a critical
role in Mcl-1 pre-mRNA splicing [51]. Moreover, N6-
methyladenosine modification was indicated to regulate
splicing by co-localization with splice sites and reshaping
the structure of pre-mRNA [52]. However, there were
poor reports about whether and how the epigenetic
modifications mentioned above affected the splicing de-
cision of Bcl-x pre-mRNA. To date, ncRNA was the
most common epigenetic regulation identified to influ-
ence Bcl-x splicing that functions as 'interactors' or 'hi-
jackers' of splicing factors [49]. LncRNA BC200,
LINC00162 as well as LncRNA-HEIH had been shown
to modulate Bcl-x pre-mRNA splicing effectively [53–

55]. To investigate the splicing mechanism regulated by
ncRNA in-depth is necessary.

The function of aberrant Bcl-x splicing in cancer
Apoptosis
Apoptosis, characterized by a series of morphological al-
ternations including cell shrinkage, pyknosis and karyor-
rhexis, plasma membrane blebbing and apoptotic body
formation, is a mechanism for all multicellular organ-
isms to modulate cell life development [56]. Abnormal-
ities in apoptosis play a crucial role in the progression of
various human disease like cancer [57]. Therefore, tar-
geting apoptotic pathways has been a mainstay for the
cancer drug discovery and development. There are two
commonly established apoptotic pathways in mammals:
the extrinsic pathway of apoptosis mediated by the death
receptor and the intrinsic pathway of apoptosis mediated
by mitochondria [58]. The extrinsic apoptotic signal be-
gins when extracellular death-inducing factors bind to
its receptors (TNFR, TRAIL, FasL), recruiting adapter
proteins (TRADD, FADD, caspase 8 and/or caspase 10)
to form the death inducing signaling complex [59]. The
intrinsic apoptotic pathway is closely regulated by the
Bcl-2 family proteins. Bcl-2 proteins mainly were divided
into three subgroups up to their BH domain: BH3 only
proteins to initiate apoptosis (Bim, Bad, Bid, Noxa, Bmf,
Hrk, Bik, Puma), pro-apoptotic proteins act as apoptotic
executioner (Bax, Bak, Bok) and anti-apoptotic subfamily
(Bcl-2, Bcl-xL, Bcl-W, A1, Bcl-B, Mcl-1) [60]. Initiated
by internal stimuli such as DNA damage, hypoxia and
oxidative stress, activated-BH3 only proteins inhibit the
anti-apoptotic Bcl-2 proteins. Subsequently, activated
and oligomerized Bax/Bak located in the mitochondrial
outer membrane, promoting mitochondrial outer mem-
brane permeability (MOMP), the release of cytochrome
C and caspase activation [61]. Disruption in the balance
of pro-apoptotic and anti-apoptotic members of the Bcl-
2 family proteins promotes carcinogenesis and cancer
cell survival [62]. More importantly, anti-apoptotic Bcl-2
proteins are widely over-expressed in cancers and have
been established to contribute to therapy resistance, re-
currence and poor prognosis [63, 64].
Alternative splicing of Bcl-x pre-mRNA is one of the

earliest oncogenic splicing events critical for apoptotic
responses of cancer cells. The elevated level of Bcl-xL
caused by aberrant splicing has been revealed in a multi-
tude of human cancers and is considered to be a power-
ful driving force for cell apoptotic resistance (Table 2)
[1, 78]. Instead, cells with highly expressed Bcl-xS were
more sensitive to apoptosis stimuli [25]. Structural fea-
tures enabled Bcl-xL to bind to its natural ligands, such
as pro-apoptotic Bcl-2 family members that respond to a
variety of cellular stimuli [64]. This process had been
well documented by the tertiary structure of Bcl-xL/BH3
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peptides, that pro-apoptotic BH3 peptide bound to the
hydrophobic groove of Bcl-xL via hydrophobic and elec-
trostatic interactions [88]. In general, Bcl-xL distributed
on the intracellular membrane appeared to regulate
apoptosis mainly by three modes. In mode 0, Bcl-xL
could prevent the binding of apoptotic effectors Bax to
mitochondrial outer membrane through retrotranslocat-
ing Bax from the mitochondria into cytosol constantly
(Fig. 2a) [89]. In mode 1, Bcl-xL could sequester BH3-
only activators (For example Bid truncated in the death
receptor-mediated pathways (Fig. 3b)) to prevent them
from binding to and activating Bax (Fig. 3a). In mode 2,
Bcl-xL was suggested to directly bind to activated Bax to
prevent its oligomerization and pore formation, which
prevented the release of caspase activator from mito-
chondrial outer membrane (Fig. 3a) [90]. However, Bcl-

xL sequestration could be derepressed by sensitizer BH3
only proteins (For example Bad), which then induced ac-
tivation of Bax and MOMP (Fig. 3b) [90]. Bogner et al.
suggested that the allosteric regulation by Bcl-xL com-
plexes might play an important role in this process [91].
Moreover, Bcl-xL was suggested to inhibit a weak Bax
activation and apoptotic signal via directly sequestrating
active cytosolic p53 induced by damage stimuli (Fig. 3b)
[92]. The above demonstrated that apoptosis decision of
cells was dependent on the relative abundance of Bcl-xL
and its pro-apoptotic counterparts [64, 90]. In addition
to the already established roles in mitochondrial apop-
totic pathways, Bcl-xL was proved to function as an in-
hibitor of VDAC1 to prevent apoptosis induced by
excessive Ca2+ transferred from endoplasmic reticulum
to mitochondria (Fig. 3b) [93]. Thus it is imperative to

Table 1 Trans-acting factors involved in Bcl-x splicing regulation

Regulation methods Mechanism Selection Ref

RNA binding proteins Sam68 Recruit hnRNP A1 to certain regions. Bcl-xS [26]

SRSF1 (ASF/SF2) Compete with hnRNP A1. Bcl-xL [26, 35]

SRSF10 Collaborate with hnRNP A1/A2 and Sam68. Bcl-xS [29]

SRSF2 (SC35) As a direct transcriptional target of E2F1. Bcl-xS [30]

SRSF3 Favor the selection of the 5' DSS. Bcl-xS [28]

SRSF7 Favor the selection of the 5' DSS. Bcl-xL [28]

SRSF9 (SRp30c) Bind to ML2 and AM2. Bcl-xL [21]

TRA2β Favored selection of the 5' DSS. Bcl-xS [28]

hnRNP F/H Bind to B2G region. Bcl-xS [22, 36]

PTBP1 (hnRNP I) Bind to polypyrimidine to promote 5' DSS selection Bcl-xS [28]

hnRNP A1 Interact with Sam68. Bcl-xS [25, 26]

hnRNP A2/B1 Regulated by Fyn activity. Bcl-xL [37]

hnRNP K Bind to silencer element of the 5' DSS. Bcl-xL [20]

RBM4 Antagonize oncogenic SRSF1. Bcl-xS [38]

RBM10 (S1-1) Block the GGGUAAG of exon 2. Bcl-xS [39]

RBM11 Antagonize SRSF1. Bcl-xS [40]

RBM25 Bind to CGGGCA sequence within exon 2. Bcl-xS [41]

Transcription factors E2F1 Upregulate SC35 protein expression. Bcl-xS [30]

FBI-1 Interact with Sam68 and affects its binding. Bcl-xL [31]

TCERG1 Increase the elongation rate of RNAPII. Bcl-xS [32]

FOXP3 Repress hnRNPF binding to 5'DSS. Bcl-xL [33]

SAP155 (SF3B1) Bind to CRCE 1 region. Bcl-xL [42]

Signal pathway PKC signal Through SB1 to repress the 5'DSS splicing. Bcl-xL [43]

PI3K/PKCι signal Regulate SAP155-CRCE1 complex formation. Bcl-xL [44]

LPS/PRMT2 or TNF-α pathway Interact with Sam68 and regulate its subcellular
localization via its SH3 domain.

Bcl-xL [45]

G4s and G4s ligands G-quadruplexes (G4s) Close to the two alternative 5'SS to compete with
other RNA structures or proteins

Bcl-xS or Bcl-xL [46, 47]

G-quadruplex ligands (GQC05) Stabilize G-quadruplexes. Bcl-xS [46]

EJC Exon junction complex ( EJC ) RNPS1 and core EJC proteins control Bcl-x splicing
through cis-acting elements SB1.

Bcl-xL [48]
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investigate the in-depth mechanism that Bcl-xL used to
coordinate apoptotic signals from multiple pathways and
ultimately, form an integrated perspective. Compared to
Bcl-xL, the short isoform Bcl-xS was reported as a nega-
tive regulator of survival because it could inhibit the
function of Bcl-xL by forming heterodimers with Bcl-xL
through the BH3 domain, or disrupting the VDAC2-Bak
complex to cause the release of Bak and activation of
MOMP (Fig. 3b) [94, 95]. Furthermore, Bcl-xS induced
activation of Bak and promoted apoptosis through
apoptosome-dependent and independent pathways [96].
Therefore, the antagonistic roles played by Bcl-x iso-
forms were critical for cell fate decision. Alternative spli-
cing regulation of Bcl-x to promote Bcl-xS but inhibit
Bcl-xL splicing could act as a tumour suppression strat-
egy. For instance, Src family kinase Fyn was found to de-
crease the phosphorylation of Sam68 but regulate
hnRNPA2/B1 expression, which synergistically pro-
moted the splicing of Bcl-xL and inhibited apoptosis of
pancreatic cancer cells. Fyn inhibition down-regulated
hnRNPA2/B1 expression and increased Bcl-xS splicing
[37]. In addition, study on human liver fibrosis suggested
that Bcl-xL was preferentially spliced in human hepatic

stellate cells and consistent with apoptosis resistance of
HSCs. Antisense oligonucleotides inhibiting Bcl-xL spli-
cing induced HSC cell apoptosis [97]. Interestingly, the
IE86 gene of human cytomegalovirus was found to in-
hibit apoptosis and promote proliferation of glioma cells
by enhancing the favor splicing of Bcl-xL mediated by
hnRNPA2/B1 [98]. Thus, the favored use of 5’PSS splice
site in Bcl-x pre-mRNA contributes to the escape of can-
cer cells from intrinsic programmed apoptosis.

Autophagy
In addition to apoptosis, the long isoform Bcl-xL also
had been suggested to be involved in autophagy, which
was an evolutionarily conserved pathway and played a
double-edged role in tumour progression [84]. A recent
study explored that Bcl-xL could inhibit PINK1/Parkin-
dependent mitophagy through directly interacting with
Parkin and PINK1 to inhibit the translocation of Parkin
from cytoplasm into mitochondria (Fig. 4) [99]. More
importantly, Bcl-xL was identified to hinder macro-
autophagy mediated by class III PI3K pathway through
direct interactions with Beclin-1, a new BH-3 only pro-
tein that is essential to regulate the initial of autophagy

Table 2 Aberrant Bcl-x splicing in cancers and its clinical application

Cancer type Bcl-xL/S Function Ref

Apoptosis Hepatocellular Carcinomas Bcl-xL↑ Inhibit apoptosis initiated by cellular stimuli [65]

Colorectal cancer (CRC) Bcl-xL↑ Drive tumourigenesis and progression. [66]

Breast cancer Bcl-xL↑ Suppress BETi-induced apoptosis. [67]

Meningioma Bcl-xL↑ Contribute to apoptosis induced by Dovitinib. [68]

Malignancy Gastric cancer Bcl-xL↑ Associated with high Beclin1 expression. [69]

Tongue Carcinoma Bcl-xL↑ Related to the degree of differentiation. [70]

Hodgkin lymphoma Bcl-xL↑ Consistent with the severity of patients. [71]

Myeloproliferative neoplasms Bcl-xL↑ Progressively over-expressed. [72]

Lymphomas Bcl-XS/L↓ Expressed by malignant cells. [73]

Wilms' tumours Bcl-XS/L↓ Negatively correlated with tumour stage. [74]

Endometrial carcinoma Bcl-XS/L↓ Correlated with pathological grading. [75]

Metastasis Pancreatic cancer Bcl-xL↑ Promote metastasis [76]

Glioblastoma Bcl-xL↑ Promote cell migration, invasion, angiogenesis and stemness. [77]

Melanoma Bcl-xL↑ [77]

Drug-resistance Chondrosarcoma Bcl-xL↑ Confer resistance to chemotherapy. [78]

Ewing sarcoma Bcl-xL↑ Resistant to olaparib. [79]

Ovarian carcinoma (OC) Bcl-xL↑ Confer resistance to chemotherapy. [80]

Hepatocellular carcinoma Bcl-xL↑ Chemoresistance and poor prognosis. [81]

Urothelial Carcinoma Bcl-xL↑ Effectively inhibited cisplatin-resistant UCs. [82]

Radiation laryngeal cancer Bcl-xL↑ Associated with radioresistant. [83]

Non-small cell lung cancer Bcl-xL↑ Enhance irradiation resistance. [84]

Prostate cancer Bcl-xL↑ Enhance survival to cells exposured to IR. [85]

Osteosarcoma Bcl-xL↑ Enhance irradiation resistance. [86]

Malignant pleural mesothelioma Bcl-xL↑ Negatively associated with radiosensitivity. [87]
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[100, 101]. Low expressed Beclin-1 but highly expressed
Bcl-xL is consistent with malignant phenotype and poor
prognosis of cancer [69, 102]. Bcl-xL physically interacted
with BH3 domain of Beclin-1 and disrupted hVps34–
Beclin-1 complex which stimulated autophagosomes

formation (Fig. 4) [103, 104]. BH3 mimetics and overex-
pressed BH3-only proteins could displace Beclin-1 from
Bcl-xL and stimulate autophagy. Intriguingly, Beclin-1 was
reported to induce apoptosis of glioblastoma cells through
binding to Bcl-xL [105], whereas another research

Fig. 3 Cell apoptosis regulated by Bcl-x isoforms. a. Three modes that had been proposed to explain how Bcl-xL regulate MOMP. Mode 0: Bcl-xL
prevented the binding of apoptotic effectors Bax to mitochondrial outer membrane through retrotranslocating Bax from the mitochondria into
cytosol constantly. Mode 1: Bcl-xL sequestered BH3-only activators (tBid) to prevent them from binding to and activating Bax. Mode 2: Bcl-xL
directly bound to activated Bax to prevent its oligomerization and MOMP. b. Cell apoptosis pathways regulated by Bcl-xL and Bcl-xS

Fig. 4 Cell autophagy mediated by Bcl-xL. Bcl-xL inhibited initial steps of autophagy by interacting with the core regulators of autophagy Beclin-
1, which disrupted the hVps34–Beclin-1 complex and limited its ability to stimulate autophagosome formation. Bcl-xL also could inhibit PINK1/
Parkin-dependent mitophagy through directly interacting with PINK1 and Parkin to inhibit the translocation of Parkin from cytoplasm
into mitochondria
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suggested that heterooligomers formed by Bcl-xL and
Beclin-1 could maintain full anti-apoptotic function in
HeLa cells induced by staurosporine [106]. These results
support the model that direct interactions between Bcl-xL
and Beclin-1. However, Lindqvist LM et al. suggested that
Bcl-xL had no measurable effect on autophagy in the ab-
sence of Bax/Bak [107]. When Bax/Bak were present, inhi-
biting the pro-survival Bcl-2 family members stimulated
autophagy and correlated with increased cell death, sug-
gesting that inhibition of Bcl-xL on autophagy was an in-
direct effect generated from apoptosis inhibition by a yet
unknow mechanism. In summary, the possible relevance
between apoptosis and autophagy in the process of cell
death mediated by Bcl-xL includes:(1) Bcl-xL physically
interacts with Beclin-1 to regulate apoptosis and autoph-
agy synergistically or antagonisticly; (2) Bcl-xL does not
bind to Beclin 1 but instead regulate autophagy by inhibit-
ing Bax/Bak mediated apoptosis [3]. Thus, further re-
search is required to determin the crosstalk between
apoptosis and autophagy mediated by Bcl-xL and other
Bcl-2 family proteins, which is of great significance for
maintaining the overall cell fates.

Invasion and metastasis
Bcl-xL had been suggested to contribute to invasion and
metastasis in multiple cancer types. After knocking Bcl-
xL, the invasive and metastatic phenotype of CRC cells
were reduced but did not cause spontaneous cell death
[108, 109]. Studies of oral tongue cancer and breast can-
cer found that Bcl-xL expression was significantly high
in metastasis tissue [4, 70] . In transformed human
mammary epithelial cells, Bcl-xL directly interacted with
RAS to modulate RAS signaling through BH4 domain,
which was critical for RAS induced stemness and cancer
initiating cell phenotype [110]. In addition, overex-
pressed Bcl-xL in human melanoma was found to pro-
mote vasculogenic structures through CXCL8/CXCR2
pathway. Meanwhile, the increased cancer stem cell
markers associated with stemness and aggression of
tumour cells ( for example HIF-1α, NANOG, OCT4,
BMI1, and SOX2) were also observed [111]. Notably, a
recent study of Bcl-xL with defection in apoptosis sug-
gested that anti-apoptotic function of Bcl-xL might be
separated from its roles in the motility of cancer cells.
For example, Choi et al. [76] showed that Bcl-xL
defected in anti-apoptotic function promoted epithelial-
mesenchymal transition (EMT), migration, invasion, as
well as stemness of panNET and breast cancer cells.
Additionally, Bessou et al. [112] suggested that the com-
plex formed by BH4 domain of Bcl-xL and VDAC1
acted on MOMP to increase ROS in mitochondrial elec-
tron transport chain and inhibit the absorption of Ca2+,
thereby promoting migration and metastasis of breast
cancer cells independently of apoptotic activity. How

Bcl-xL regulates the invasion and metastasis of cancer
cells independently of apoptosis still needs further
exploration.

Anti-tumor immunity
Anti-apoptotic Bcl-xL has been demonstrated to play a
key role in the survival of immune cells and immune re-
sponses. Grillot et al. has reported that Bcl-xL is highly
expressed in CD4+ CD8+ thymocytes which exhibited
increased viability in vitro [113]. Enforced Bcl-xL expres-
sion could also restore the development of splenic B
Lymphocyte [114]. In addition, Bcl-xL was proved to
promote survival of effector T cells and antigen-bearing
dendritic cells [115, 116]. Regulatory T cells showed en-
hanced suppressive capacity through increasing Bcl-xL
expression, which provide a new strategy for treatment
of tumours through remodelling regulatory T cells [117].
Surprisingly, Bcl-xL was demonstrated to protect
tumour cells from Natural Killer cells-mediated suppres-
sion and therefore exerted tumour-progressive activity
[118, 119]. However, Andersen et al. suggested highly
expressed Bcl-xL of cancer cells were the common target
recognized by specific T cells [120]. They also speculated
that immune responses against apoptosis inhibitors like
Bcl-xL might represent a general feature in cancer [120].
Taken together, there is a complex effect of Bcl-xL ex-
pression on anti-tumour immune response. It is of great
significance to identify the role of overexpressed Bcl-xL
in immune escape of tumor cells.

Clinical impaction of Bcl-x splicing in cancer
Chemotherapy
Tolerability generated during chemotherapy such as
apoptosis escape and Epithelial mesenchymal transform-
ation (EMT), results in poor prognosis and is currently
impeding the success of targeted therapies in cancer
treatment [121, 122]. Plenty of evidence suggested that
Bcl-xL-dependent apoptotic inhibition was the main rea-
son that promoted chemotherapy resistance in tumours
in vitro and vivo (Table 2) [123, 124]. A study on breast
cancer showed that cells passed through EMT obtained
therapeutic resistance by upregulating Bcl-xL transcripts.
However, apparent apoptotic resistance was removed
after deleting Bcl-xL [4]. Bcl-xL was also found to medi-
ate doxorubicin resistance of breast cancer through the
Ring finger protein 6/Estrogen receptor α/Bcl-xL path-
way [125]. Inhibiting Bcl-xL expression in breast cancer
cells enhanced the cytotoxicity and apoptosis induced by
T-DM1 [126]. Additionally, increased CXCR4 expression
in ovarian cancer induced cisplatin resistance through
promoting Bcl-xL/S [123]. Upregulated Bcl-xL expres-
sion was also found to be involved in resistance to ther-
apy targeting Bcl-2 in mantle-cell lymphoma and Acute
Myelocytic Leukemia [57, 127]. Regarding melanoma, it

Dou et al. Journal of Experimental & Clinical Cancer Research          (2021) 40:194 Page 8 of 18



has been demonstrated that forced expression of ectopic
Bcl-xL converted drug-sensitive cell lines into drug-
resistant ones [128]. However, vivo-Morpholino (vMO)
antisense oligomers that used to upregulate Bcl-xS ex-
pression but decrease Bcl-xL in chronic myeloid
leukemia (CML) increased growth inhibition and apop-
totic sensitivity of imatinib mesylate-resistant CML cells
[5]. Similarly, overexpressed Bcl-xS in human breast car-
cinoma cells induced a remarkable increase in sensitivity
to chemotherapy agents, but did not affect cell viability
by itself [129].

Radiotherapy
The splicing favor of Bcl-xL contributed to long-term
radiotherapy resistance (Table 2). Clinical data showed
that Bcl-xL was expressed by about 91% of laryngeal
cancer patients resistant to radiotherapy, suggesting a
critical function of Bcl-xL in radiotherapy [83]. Streffer
et al. [130, 131] found that glioma cell lines with high
Bcl-xL expression had higher ED50 (2.9 ± 0.8Gy) than
cell lines with lower Bcl-xL. However, no association
with radiosensitivity was observed for the expression
levels of Bcl-xS. Highly expressed Bcl-xL was also found
to cause radiation resistance of osteosarcoma cells with
both low and high metastasis level, and Bcl-xL downreg-
ulation could significantly enhance radiation cytotoxicity
of osteosarcoma cells [86]. Moreover, inhibiting the ex-
pression level of Bcl-xL were suggested to reverse radio-
resistance and regulate radiation-induced apoptosis of
mesothelioma, breast cancer, prostate cancer, colorectal
cancer as well as non-small cell lung cancer [84, 87, 132,
133]. In addition to therapeutic effects, irradiation was
well known to induce increased invasiveness and metas-
tasis of cancer cells. Ho et al. demonstrated that the ex-
pression of Bcl-x was elevated after irradiation, which
promoted the malignant actions of lung cancer cells
[134]. A recent study also suggested that upregulated
Bcl-xL induced invasion of cancer cells that underwent
sublethal doses of irradiation by stimulating respiratory
complex I and increasing additional ROS production,
which might be involved in the local recurrence or distal
metastasis of somne patients after radiotherapy [135].
Interestingly, the expression of Bcl-xL could enhance en-
ergy metabolism and prevent oxidative stress, which
might be involved in the alleviation of mitochondrial
oxidative stress induced by radiation [136]. In addition,
inhibition targeting Bcl-xL/2 had been found to reverse
the pulmonary fibrosis induced by ionizing radiation
[137]. These results provided a wealth of evidence that
inhibition the endogenous expression of Bcl-xL might
promote both radiation sensitization and radiation pro-
tection. However, combination of γ-irradiation and gen-
etic loss but not pharmacological inhibition of Bcl-xL
was found to cause fatal kidney damage and secondary

anemia in adult mice, and the underlying mechanism
remained unclear [138]. This finding demonstrated the
protective role of Bcl-xL in adult kidney, which also rep-
resents challenges for the radio-sensitization targeting
Bcl-xL.

Strategies modulating Bcl-x splicing in cancer
Splice-switching oligonucleotides
SSOs, typically 15-30 nucleotides, is a kind of syn-
thetic, modified, steric block antisense oligonucleo-
tides which have been widely used to disrupt the
splicing mode of pre-mRNA through Watson-Crick
base pairing. The generated steric hindrance but not
degradation of targeted transcripts affected accessibil-
ity of splicing factors and visibility of spliceosome,
which led to splicing isoforms switching ultimately
[139]. Notably, natural oligonucleotides had been
proved to be quite ineffective due to their defects
such as easy to be degraded, lower affinity, and
higher off-target effect. Therefore, various chemical
modifications on phosphate backbone or ribose rings
of SSOs had been developed to allow for improved
stability and binding affinity, meanwhile, reduced
cytotoxicity and immunogenicity [139]. Common
types of oligonucleotides chemistry have been shown
in Fig. 5. Notably, the third generation of antisense
oligonucleotides was featured by furanose ring modi-
fications of nucleotides including phosphorodiamidate
morpholinos (PMOs), locked nucleic acid and peptide
nucleic acid. PMOs was a type of neutrally charged
nucleic acid, in which the furanose ring was
substituted by a morpholine ring while each unit was
bridged with a phosphorodiamidate linkage. PMOs
usually needed to be conjugated to cell-penetrating
peptides or covalently linked to an octaguanidine
dendrimer for efficient delivery due to their rapid
renal clearance. To date, PMOs modified SSOs drugs
eteplirsen and golodirsen had been approved by the
FDA for clinical therapy of Duchenne muscular dys-
trophy and spinal muscular atrophy, respectively
[140, 141]. In addition, for effective SSOs of target
genes, the optimized length, sequence constitution,
secondary structures, accessibility, as well as thermo-
dynamic properties were all critical factors [92]. Gen-
erally, SSOs base-paired to the alternative splice
siteof Bcl-x pre-mRNA could block arrival of spliceo-
some and binding of splicing factors to their target
motif, which led to the redirection of splicing favor
(Fig. 6a). Bcl-xSSOs could promote apoptosis and
drug sensitivity of cancer cells by correcting Bcl-xL
splicing to Bcl-xS efficiently [142]. Some Bcl-xSSOs
sequences used in preclinical had been summarized
in Table 3. Mercatante et al. proved that endogenous
highly expressed Bcl-xL was positively correlated with
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cellular response to Bcl-xSSOs induced splice shift
[147], which indicated that normal cells with low
expressed Bcl-xL might be more resistant to Bcl-
xSSOs therapy. 2'-OMe-PS modified Bcl-xSSOs
caused a splice shift from Bcl-xL to Bcl-xS and in-
creased apoptosis of prostate cancer, breast cancer,
and hepatic stellate cells [97, 147]. In addition, splice
redirection of Bcl-x pre-mRNA induced by 2'-MOE
modified Bcl-xSSOs in glioma cells and melanoma

xenograft models showed pro-apoptotic effect and re-
duced tumour load respectively [142, 143]. Moreover,
vMO modified Bcl-xSSOs was found to correct aber-
rant splicing of Bcl-x in CML cells and improve
therapeutic sensitivity to imatinib mesylate signifi-
cantly [5, 148]. Therefore, highly expressed Bcl-xL
could be reversed by modified Bcl-xSSOs, which
allowed the redirection of aberrant splicing and reba-
lanced the ratio of Bcl-xL/Bcl-xS [6].

Fig. 5 Chemical modifications of splice switching oligonucleotides. a. Chemical modifications on phosphate backbone and ribose ring of SSOs.
Unmodified RNA is shown for reference. PS, one of the phosphate backbone oxygen atom is replaced by a sulphur atom; 2′-MOE and 2′-OMe,
PS-SSOs are often combined with ribose modifications including 2′-O-(2-methoxyethyl) or 2′O-methyl; PMO, charge-neutral nucleic acid, in which
the six-membered morpholine ring replaces the five-membered ribose heterocycle; PPMO, positively charged peptides in PPMO dramatically
improve intracellular uptake of PMO. VPMO, covalently linking MO to an octaguanidine dendrimer to improve delivery efficacy. LNA, the second
and fourth of ribose form a rigid structure by shrinkage. PNA, a pseudo peptide polymer backbone substitutes for the phosphate backbone of
RNA. b. Properties comparison of the common chemistries of antisense oligonucleotides
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Small molecular modulators redirect Bcl-x splicing
A class of natural or synthetic small molecular modula-
tors had been identified to perform anti-tumour activity
through inhibiting the activity of targeted splicing factors
(Fig. 6b) [149, 150]. These compounds modulated RNA
splicing in two ways generally. One way was to directly

target pre-mRNA splicing factors. For example, the
crude extract of the South African Medicinal Plant
(Cotyledon orbiculata) could induce a splicing shift from
Bcl-xL to Bcl-xS and apoptosis of cancer cells [151].
However, it was interesting that Bcl-x exhibited resist-
ance to splicing perturbation induced by SF3B1

Fig. 6 Strategies modulating Bcl-x splicing in cancer. a. An SSO that binds to the proximal 5' splice site (5'PSS) prevents binding of spliceosome,
leading to a splicing shift to the short isoform Bcl-xS. b. a. The small molecular modulators that bind to spliceosomal components affect splice-
site accessibility, leading to an inhibition of Bcl-xL splicing. c. At the protein level, BH3-mimetics could occupy the hydrophobic pockets of Bcl-Xl,
thus blocking their anti-apoptotic activity and resulting in the ignition of apoptosis

Table 3 Splice switching oligonucleotids used to modulate Bcl-x pre-mRNA splicing

Cells types Sequence Length Chemistry Ref

K562 5'-GCTTGGTTCTTACCCAGCCGCCGTT-3' 25 mer vMO [5]

Primary HSCs 5'-TGGTTCTTACCCAGCCGCCG-3' 20 mer 2'-OMe-PS [97]

U87, U251 5'-TGGTTCTTACCCAGCCGCCG-3' 20 mer 2'-MOE-PS [142]

B16F10 5'-TGGTTCTTACCCAGCCGCCG-3' 20 mer 2'-MOE-PS [143]

Human RPE 5'-TGGTTCTTACCCAGCCGCCG-3' 20 mer 2'-MOE [144]

A549 5'-CTGGATCCAAGGCTCTAGGT-3' 20 mer 2'-MOE [145]

PC-3 5'-ACCCAGCCGCCGUUCUCC-3' 18 mer 2'-OMe-PS [146]

MCF-7 5'-ACCCAGCCGCCGUUCUCC-3' 18 mer 2'-OMe-PS [146]

Hela 5'-ACCCAGCCGCCGUUCUCC-3' 18 mer 2'-OMe-PS [146]
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inhibitors E7107. Splicing modulation of E7107 was
sensitized after Bcl-xL knockdown, which suggested
that Bcl-xL could function as a sensitizing gene or as
a biomarker for splicing modulator treatment [152].
The other way was to target kinases that were in-
volved in post-translation modulation of splicing fac-
tors. For example, potent protein synthesis inhibitor
emetine had been proved to enhance Bcl-xS splicing
in a time and dose-dependent manner in multiple
cancers, however, this effect could be hindered by
protein phosphatase 1 (PP1 )[153]. Alkaloid Homo-
harringtonine approved for CML treatment by the
FDA as well as antihypertensive agent amiloride and
its derivatives BS008 were all proved to normalize

oncogenic splicing pattern of Bcl-x in cancer cells de-
pending on PP1 activation [154–156]. Intriguingly,
Moore et al. found that inhibitors of cell cycle factors
aurora kinase A (for example ZM447439 and VX-680)
could induce endogenous Bcl-xS splicing significantly,
revealing a complex alternative splicing network co-
ordinating cell cycle and apoptosis [157]. In general
terms, studying the mechanism of splice switch in-
duced by small molecular modulators is essential for
splicing therapies and antitumour agent discovery
based on splicing correction. Notably, although the ef-
fectiveness that small molecules showed in splicing
modulation, they usually lacked specificity and caused
off-targeted or on-targeted cytotoxicity.

Table 4 Clinical application of BH3-mimetics targeting anti-apoptotic Bcl-2 family proteins. (clinicaltrials.gov)

Multiple targets Compounds Origin Stage Ref

Bcl-xL A-1155463 Structure-based design. Preclinical [159]

A-1331852 Structure-based design. Preclinical [160]

WEHI-539 Structure- based design Preclinical [161]

DT2216 Proteolysis targeting chimera Preclinical [162]

XZ424 Proteolysis targeting chimera Preclinical [163]

ABBV-155 Structure-based design Phase I NCT03595059

Bcl-xL
Bcl-2

AZD4320 Structure-based design Preclinical [164]

BM-957 Structure-based design Preclinical [165]

BM-1197 Structure-based design Preclinical [166]

S44563 Structure-based design Preclinical [167]

APG-1252 Structure-based design Phase I/II [168]

Bcl-xL
Bcl-2
Bcl-w

Ch282-5 Gossypol derivative Preclinical [169]

ABT-737 Synthetic, acylsulfonamide-based Phase I/II [170]

ABT-263 (Navitoclax) Derivant of ABT-737 Phase I/II/III [171]

Bcl-xL, Bcl-2, Mcl-1 BH3-M6 Synthetic terphenyl scaffold Preclinical [172]

Bcl-xL, Bcl-2,
Bcl-w, Mcl-1

TW-37 Benzenesulfonyl derivative of gossypol Preclinical [173]

BI-97C1 (Sabutoclax) Diastereoisomer of Apogossypol Preclinical [174]

BIM-SAHB Stapled Bim peptide Preclinical [175]

GX15-070 (Obatoclax) Synthetic indolyl-dipyrromethene Phase I/II/III [176]

AT-101 (−)-gossypol enantiomer Phase I/II/III [177]

Bcl-2 S55746 Structure-based design Phase I [178]

ABT-199 (Venetoclax) Derivant of ABT-263 Phase I/II/III [127]

Mcl-1 A-1210477 Structure-based design Preclinical [179]

UMI-77 Structure-based design Preclinical [180]

VU661013 Fragment-based lead generation Preclinical [181]

S63845 Structure-based design Preclinical [182]

AMG176, Structure-based design Phase I [183]

AZD5991 Structure-based design Phase I [184]

S64315 Fragment-based lead generation Phase I/II [182]

Bcl-2, Mcl-1 S1-6 Structure-based design Preclinical [185]

Nap-1 Derivant of S1-6 Preclinical [186]
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BH3 mimetics inhibit Bcl-xL isoform
Selective or multi-targeted BH3 mimetics had been de-
veloped to antagonize anti-apoptotic proteins of Bcl-2
family through competitively occupying the hydrophobic
pockets and thus blocking their anti-apoptotic activity
(Fig. 6c) [158]. Table 4 listed BH3-mimetics targeting
anti-apoptotic Bcl-2 family proteins selectively. A-
1331852 and WEHI-539 selectively targeted to Bcl-xL
were all proved to enhance death signals of cancer cells
synergistically with radiation or chemotherapy agents
[158, 187]. In addition, compounds DT2216 and XZ424
converted from BH3 mimetics by proteolysis-targeting
chimera showed improved anticancer potency and
reduced cytotoxicity based on E3 ligase mediated deg-
radation of Bcl-xL [162, 163]. However, use of BH3-
mimetics in chronic lymphocytic leukaemia and other
solid tumours exhibited on-target and off-target effects
of Bcl-xL dependent cells and pathways [158, 188–190].
In addition, efficacy of BH3 mimetics was intensely
dependent on the membrane localization of Bcl-xL and
the nature of interactions between Bcl-xL and pro-
apoptotic proteins, which might contribute to a chemo-
therapeutic resistance of BH3 mimetics [191]. These are
still the obstacles for clinical application of BH3 mi-
metics. Consequently, optimizing the pharmacological
effect and concurrent targets of BH3 mimetics to make
them promising therapeutic regimens of cancer has been
challenging.

Conclusions
The inactivation or dysfunction of essential genes caused
by defective splicing is emerging as a potential driver of
cancer development. Therefore, controlling splicing is of
great therapeutic benefit. Dysregulated Bcl-x splicing
plays a key role in promoting malignant phenotypes of
cancers and weakening the toxicity of treatment. Bcl-xL
contributed to the invasion, metastasis, and angiogenesis
of cancers. On the contrary, Bcl-xS overexpression was
suggested to sensitize apoptosis induced by drugs [129].
Bcl-x splicing correction by SSOs and small molecular
modulators showed efficiency in apoptosis regulation of
cancer cells. However, the on-targeted toxicity to Bcl-
xL-dependent cell types posed challenges to the exploit-
ation and delivery of splicing modulation drugs, which
was expected to be addressed by the breakthrough of
drug chemistry and carrier system [6]. In addition, the
inhibitors of specific splicing factors for Bcl-x splicing
correction are needed to be identified. Generally, induc-
tion of the balanced ratio of Bcl-xL/Bcl-xS has been
shown anti-tumour activity by targeting multiple hall-
marks of tumour, but it is still imperative that we under-
stood this biomolecule. It is still unknown what is the
intracellular mechanism that induced the preferred spli-
cing of long isoform Bcl-xL. In addition, to discover the

interplay of apoptosis and autophagy regulated by Bcl-xL
means great significance to Bcl-xL targeted therapy.
Moreover, whether the diverse domains of Bcl-xL exe-
cute biological functions independently and how does
membrane localization affect its biological function
in vivo remains unknown. Little is known about the bio-
logical function of Bcl-xS beyond its canonical function
of lowering apoptosis threshold. In addition to Bcl-x, the
anti-apoptotic family members including Bcl-2, Mcl-1
and Bcl-w also have a variety of splice isoforms, how-
ever, the elaborate coordination of biological roles
played by multiple splice isoforms of Bcl-2 family mem-
bers is unclear. Thus, much more remains to be
researched about this gene in the future.
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