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Simple Summary: Cancer, a major public health issue worldwide, is the second most common
cause of death. Initiatives such as the Human Genome Project (HGP) and Human Proteome Project
(HPP) have greatly advanced the understanding of human health and disease, including cancer,
and are supporting the current trend towards personalized/precision medicine. In this review, we
will overview recent technological achievements, the key hallmarks of cancer, and unmet clinical
needs. We will specifically detail the importance of cancer biomarkers in diagnosis and treatment, the
role of the microbiome in health and disease, the potential of emerging omics technologies and the
goals of personalized/precision medicine. Finally, we will discuss future perspectives, both from the
standpoint of perceived advances in treatment, but also from the hurdles that have to be overcome.

Abstract: As of 2020 the human genome and proteome are both at >90% completion based on high
stringency analyses. This has been largely achieved by major technological advances over the last
20 years and has enlarged our understanding of human health and disease, including cancer, and
is supporting the current trend towards personalized/precision medicine. This is due to improved
screening, novel therapeutic approaches and an increased understanding of underlying cancer
biology. However, cancer is a complex, heterogeneous disease modulated by genetic, molecular,
cellular, tissue, population, environmental and socioeconomic factors, which evolve with time. In
spite of recent advances in treatment that have resulted in improved patient outcomes, prognosis is
still poor for many patients with certain cancers (e.g., mesothelioma, pancreatic and brain cancer)
with a high death rate associated with late diagnosis. In this review we overview key hallmarks of
cancer (e.g., autophagy, the role of redox signaling), current unmet clinical needs, the requirement for
sensitive and specific biomarkers for early detection, surveillance, prognosis and drug monitoring, the
role of the microbiome and the goals of personalized/precision medicine, discussing how emerging
omics technologies can further inform on these areas. Exemplars from recent onco-proteogenomic-
related publications will be given. Finally, we will address future perspectives, not only from the
standpoint of perceived advances in treatment, but also from the hurdles that have to be overcome.
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1. Introduction

Cancer was responsible for almost 10 million deaths in 2020 [1], making it the second
most common cause of death worldwide. Currently 9/10 of the top pharma companies
have a focus on cancer therapeutics, breast cancer (BC) being the leading target. Whilst
there has been success in reducing mortality in some cancers [2], the updated Globocan
2020 report released by the International Agency for Research on Cancer (IARC) indicates
that the global cancer burden has risen to 19.3 million cases and is predicted to rise to
30.3 million cases by 2040. Cancer is a complex, heterogeneous disease modulated by a
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wide spectrum of factors, such as genetic, molecular, cellular, tissue, population, environ-
mental and socioeconomic factors, which evolve with time. Faced with this multifaceted
global health issue, many research efforts have focused on the underlying disease biology
and the development of innovative new treatments. Whilst the traditional “one-size-fits-
all” non-precision approach to patient care using surgery, chemotherapy, radiotherapy
and immunotherapy has achieved some therapeutic efficacy, many problems still have to
be overcome, including recurrence [3], often associated with drug resistance [4], which
facilitates tumor metastasis [5,6] and eventually promotes cancer progression [7].

There is now an emerging paradigm shift in cancer treatment, namely personal-
ized/precision medicine. In this approach the therapeutic regimen is optimized based
on a comprehensive understanding of the patient’s individual systems biology [8] with
respect to both health and disease (Figure 1). This includes the compilation of comprehen-
sive data covering their complete medical history including genetic, phenotypic, lifestyle
and psychosocial characteristics to determine the most suitable therapeutic schedule and
possible prognosis. This has been largely facilitated by the detailed analysis of the human
genome and proteome [9–11], and as predicted, corresponding technological advances [12].
Proteomics is defined as the characteristic analysis of the whole protein complement of a
cell, tissue or organism at a particular condition, including protein interactions, posttrans-
lational modifications and localization [13]. Proteins are the molecules directly responsible
for life, driving the structure, function and regulation of the body’s tissues and organs.
While the genome is relatively static (currently 19,773 predicted proteins [14]), the pro-
teome is extremely dynamic [15]. This is due to splice variants, PTMs (e.g., glycosylation,
phosphorylation, acetylation, methylation, ubiquitination and farnesylation), often with
multiple modifications and for some proteins (e.g., immunoglobulins and T-cell receptors)
somatic recombination that modulate their function or activity. Due to transcriptional
and translational control, not every gene is transcribed and not every RNA is translated.
Additionally, stable proteins can often outlive the transcripts from which they were derived.
Thus, the proteome contains >1000-fold more cellular information than the genome, with
>100,000 transcripts, and potentially millions of protein variants (proteoforms) due to
alternative splicing (AS), single amino acid polymorphisms (SAPs) and extensive post-
translational modifications (PTMs) [16], documenting the alterations at the level of cell,
tissue or organism over time. Proteomics therefore offers a powerful resource for studying
the underlying systems biology associated with health and disease, revealing potential
biomarkers and drug targets. Thus, the combination of precision medicine and proteomics
empowers precision oncology with increased chances for the understanding of the complex
mechanisms of carcinogenesis and therapeutic targets at the molecular level, revealing
potential new biomarkers for detection and surveillance and enabling new means of evalu-
ating therapeutic efficacy and toxicity. An interesting example is that of cancer plasmonic
photothermal therapy (PPTT), where plasmonic nanoparticles take light energy and con-
vert it into localized heat, causing apoptosis in cancer cells. Variations in surface-enhanced
Raman scattering (SERS) spectra, associated with MS-based metabolomics and proteomics,
helping reveal the cell death mechanisms during PPTT [17].

The Proteome Reference Library (HPRL; https://hupo.org/HPP-HPRL/ accessed
on 20 May 2021) [11] developed by the Human Proteomics Project (HPP) as part of the
Human Protein Organisation (HUPO), reveals 24,390 cancer-related publications since
1988 using the search terms (cancer[Title/Abstract] OR oncology[Title/Abstract]) AND
(HUPO[Title/Abstract] OR “human proteome project”[Title/Abstract] OR C-HPP[Title/
Abstract] OR B/D-HPP[Title/Abstract] OR “missing protein”[Title/Abstract] OR pro-
teome[Title/Abstract] OR dark proteome[Title/Abstract] OR proteomic[Title/Abstract] OR
proteogenomic[Title/Abstract] OR “mass spectrometry”[Title/Abstract] OR neXtProt[Title/
Abstract] OR PeptideAtlas[Title/Abstract] OR “mass spectrometric”[Title/Abstract]). These
publications address cancer and proteomics (oncoproteomics) and can inform on biomark-
ers, cancer biology, drug discovery and therapeutic mechanisms. In the following sections
we will highlight some of the key exemplars emanating from the more recent findings.

https://hupo.org/HPP-HPRL/
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Figure 1. Precision medicine. Samples (e.g., serum/tissue/urine/feces) can be analyzed by multiomics technologies. Blood 
informs on the systemic response to the disease, urine includes the host metabolites which are excreted from the body, 
stool samples show what the intestine is exposed to and resected tissue can give information on the response mounted at 
the site of disease. Information from multiomics analyses, clinical reports, lifestyle and psychosocial characteristics can 
identify biomarkers for prevention, diagnosis, prognosis and surveillance, and help to determine the most suitable thera-
peutic schedule for individuals presenting with a given disease. 
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samples show what the intestine is exposed to and resected tissue can give information on the response mounted at the site
of disease. Information from multiomics analyses, clinical reports, lifestyle and psychosocial characteristics can identify
biomarkers for prevention, diagnosis, prognosis and surveillance, and help to determine the most suitable therapeutic
schedule for individuals presenting with a given disease.

2. Proteomics, the Current Status

Since the term proteomics was first coined in 1994 by Mark Williams while a doctor of
philosophy student at Macquarie University in Sydney, Australia [18], the technology has
seen many exciting developments. Immediately coming with the initial announcement of
the Human Genome Project, it was realized that it was essential to populate the human
proteome for a comprehensive cognizance to the pathophysiologic mechanism behind
human health and disease, using that knowledge to advance health treatment [19], with
cancer recognized as a major priority. With this goal, a number of initiatives were developed
including The Human Protein Organization (HUPO), The National Cancer Institute’s
Clinical Proteomic Tumor Analysis Consortium (CPTAC), The Early Detection Research
Network (EDRN) and SEER cancer database, The Applied Proteogenomics Organizational
Learning and Outcomes (APOLLO) network and The International Cancer Proteogenome
Consortium (ICPC: Cancer Moonshot). More recently, companies such as Grail (www.grail.
com: proteomics accessed on 1 March 2021), Freenome (www.freenome.com: multiomics
accessed on 1 March 2021), SomaLogic (www.somalogic.com: aptamer technology accessed
on 1 March 2021) and Olink (www.olink.com: Proximity Extension Assay accessed on 1
March 2021) have been established.

HUPO was created in 2001 with the goal of “Translating the code of life” for a deep
understanding of biology by boosting the evolution of proteomics through enhanced
international cooperation, facilitating the development of advanced technologies. In 2010,
the HPP was launched ensuring quality guarantee, data sharing, global cooperation and
high stringency annotation of the genome-encoded proteome. The HPP has two separate

www.grail.com
www.grail.com
www.freenome.com
www.somalogic.com
www.olink.com
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approaches: chromosome based (C-HPP) and biology and disease based (BD-HPP) backed
up by four pillars: mass spectrometry resources, antibody technologies, knowledgebase
(bioinformatics) and, more recently (2018), pathology. The human proteome is currently at
>90% completion [11].

Mass spectrometry remains the key platform currently used for proteomics analysis,
with shotgun proteomics or bottom-up the most frequently utilized mode. MS-based
proteomics relies on success in three main areas: sample pretreatment and analysis and
data analysis. Two-dimensional gel electrophoresis (2-DE) and sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) were the original mainstays for sample
separation before MS analysis, with the ability to separate over 10,000 proteoforms [13], and
indeed these systems are still in use [20]. In this example, proteome information of tumor
tissues and normal tissues was obtained by SDS-PAGE for a comparative proteomic analysis
of different stages of BC. A gel-eluted liquid fractionation entrapment electrophoresis
(GELFREE) system was used to separate and fractionate extracted proteins.

More recently chromatographic methods have been well recognized as methodologies
worthy of consideration with particular advantages, especially in the areas of sample
manipulation, recovery and automation. Multidimensional purification has been found to
be particularly efficacious, giving high purification factors and reducing sample complexity
prior to MS analysis, enabling deeper mining of the proteome [13,21–24]. As exemplars,
Kaur et al. have designed a simple fractionation workflow to extend the coverage of
the plasma proteome [25]. In a similar approach, Ahn et al. [26] used a combination of
high abundance protein ultradepletion (Agilent MARS-14) and an in-house IgY depletion
column, multidimensional peptide fractionation (SCX, SAX, high pH and SEC) and se-
quential window acquisition of all theoretical mass spectra (SWATH-MS) to screen and
identify biomarkers that showed expression alterations in colorectal cancer (CRC) tissues
to healthy controls.

There have been many instrumental advances over recent years, with improvements
in mass accuracy, speed and resolution. More powerful MS instruments such as the Q-TOF,
TOF/TOF and the Orbitrap have been developed allowing deep mining of the proteome in
time frames from tens of minutes to a few hours [27]. In particular techniques for sensitive
quantitative analysis have matured. In data dependent analysis (DDA) the sample is
digested into peptides, ionized and analyzed by MS. In targeted proteomics (selective
reaction monitoring (SRM), multiple reaction monitoring (MRM) and parallel reaction
monitoring (PRM)), proteotypic peptides representing proteins of interest are used to
develop rapid and sensitive assays for proteins, or panels of proteins, of interest [28]. This
is particularly suited for biomarker analysis, and a compendium has been developed [29],
which describes protocols for quantitation of over 99% of the annotated human proteins.
However, the current method of choice is becoming data independent analysis (DIA) [30],
in particular SWATH-MS [31]. In this approach, peptides within a defined mass to-charge
(m/z) window are fragmented. As the mass spectrometer covers the full m/z range, re-
peated analysis is able to be realized, collecting the total proteome content. Additionally,
much experimental evidence supports its excellent inter- and intra-laboratory reproducibil-
ity [32]. The characteristics of these approaches, including their strengths and limitations,
are summarized in Table 1 and further examples related to oncoproteomics are given below.
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Table 1. Proteomics toolbox.

Proteomics Toolbox Technical Process Strengths Limitations Reference

Targeted
Approaches

MRM, SRM

(1) Primary mass spectrometry scans
to screen out parent ions that are

consistent with the specificity of the
target molecule. (2) Collision and
fragmentation of parent ions to

remove interfering ions. (3) Mass
spectrometry signals collected from

selected specific ions

(1) High sensitivity
(2) Good accuracy

(3) Good
reproducibility

(4) High-throughput

(1) Only preselected
proteins can be detected

(2) No screening
analysis

[33,34]

PRM

(1) Select targeted peptides. (2)
Define acquisition method. (3)

Preliminary experiment to adjust the
parameters and target peptide

fragment. (4) Perform PRM analysis.
(5) Analyze data

(1) Simpler and
cheaper. (2) Wider

linear detection range.
(3) Higher selectivity,
better sensitivity and
better reproducibility

(1) Only preselected
proteins can be detected

(2) No screening
analysis

(3) When the number of
peptides to be analyzed
is large it is necessary to

fine-tune the MS
collection parameters

[35,36]

Untargeted
Approaches

DDA

iTRAQ/TMT

(1) Enzymatic or chemical
fragmentation. (2) Differential

labeling using iTRAQ/TMT reagent.
(3) Mixed labeled protein samples

analyzed by tandem mass
spectrometry. (4) Data analysis

(1) Good repeatability.
(2) Mature method.
(3) Wide range of
sample sources

(1) Easily contaminated
by other proteins in the

sample
(2) Maximum 12

channels at a time

[37]

Label-free
(1) Protein extraction. (2) Protein

digestion. (3) LC–MS/MS analysis.
(4) Data analysis

(1) Low cost
(2) Not limited by the

number of samples.
(3) Wide range of

application

(1) Highly dependent
on machine stability. (2)
Quantitative results can

be unreliable

[38]

DIA SWATH

(1) Sample digestion
(2) Consecutive, adjacent precursor
ion windows (SWATHs) scanned

using a Triple TOF MS
(3) Data analyzed using

bioinformatics and a relevant
reference spectral library

(1) Good
reproducibility. (2)

Less affected by
high-abundance

proteins

Quality of spectral
library for data analysis [32,39–41]

2.1. iTRAQ and Other Labelling Strategies

iTRAQ enables the relative and absolute quantitation of proteins and peptides by
labelling samples with isotope encoded reporter ions, allowing differential expression of
proteins of interest between samples to be determined. Using iTRAQ, hundreds of proteins
can be quantified and identified concurrently in a single experiment where samples labeled
with 8-plex iTRAQ reagents is possible [42]. iTRAQ-based proteomics has been widely
used in cancer proteomics for the analysis of complex samples like plasma [43]. For exam-
ple, Serada et al. applied iTRAQ-based proteomics to study inflammatory autoimmune
disorders using a comparative screen and found a novel serum biomarker, leucine-rich α-2
glycoprotein (LRG) by comparing sera samples from rheumatoid arthritis (RA) patients
before and after anti-TNF therapy. Interestingly, serum levels of LRG were also related
to Crohn’s disease (CD) [44]. LRG1 has been found to be highly expressed in CRC, act-
ing as a tumor promoter [45]. The ability to detect indolent prostate cancers from those
likely to progress is an important unmet clinical need. In a recent example, using a PTEN
gene-knockout mouse model of prostate cancer and 8-plex iTRAQ analysis combined with
transcriptomics profiling, Zhang et al. [46] found remarkable macromolecular signatures
and revealed key pathway nodes, which shed light on the pathological mechanism behind
prostate cancer driven by PTEN-loss, hinting at a potential valuable study direction for
prostate cancer intervention.

In a similar approach, tandem mass tag (TMT) technology enabled multiplexing
capabilities for quantitative proteomics analysis by labelling isobaric chemical tags on up to
10 groups of samples. Combining LC and MS, Lin et al. [47] analyzed the protein profiles of
biopsy samples from patients with thyroid papillary microcarcinoma. Using quantitative
analysis, important biological pathways and functional characteristics were revealed. A
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novel mass-defect-based carbonyl activated tag (mdCAT) enabling DIA quantification of
eight samples in parallel in a single injection has recently been reported [48]. This was
applied to the analysis of serum to assay the expression difference of proteins from healthy
individuals and hepatocellular carcinoma (HCC) patients. An integrated proteomics
workflow, combining iTRAQ, TMT and targeted approaches (MRM and PRM) for the
identification and validation of potential biomarkers was reported by Kumar et al. [49].

Metabolic labeling is another alternative to chemical approaches for in vitro studies.
Adding amino acids with isotope labels into cell culture, it is possible to detect proteome al-
terations in different states (e.g., changes in protein level during cell differentiation, protein
turnover, dynamic changes of protein PTMs and interactomics) [50]. Stable isotope labeling
by/with amino acids in cell culture (SILAC) detects differences in protein abundance
between samples using non-radioactive isotopic labeling. To improve quantitation, Super
SILAC was developed in which a mixture of SILAC-labeled cells is added as a spike-in
standard for accurate quantification of unlabeled samples, thereby enabling quantification
of human tissue samples, increasing its application to clinical diagnostics [51]. Cuomo et al.
revealed novel biomarkers associated with tumor classification in BC by applying Super
SILAC to enable multiple analysis of histone posttranslational modifications [52].

2.2. Targeted Approaches

Targeted proteomics approaches facilitate the development of high throughput sensi-
tive, reproducible and quantitative assays for the measurement and validation of potential
biomarkers and biomarker panels. Targeted approaches have been reported to be 5 - 10
fold more sensitive than DDA [53] and sensitivity can be further increased using immuno-
enrichment [54,55]. It is worth noting that for immuno-MS the specificity requirements for
the antibodies used are less stringent than for ELISA as the ultimate specificity is obtained
from the fragmentation patterns of the proteotypic peptides used. The clinical potential of
targeted proteomics has recently been reviewed [56,57]. It is perhaps not surprising that
such assays have been used extensively. The following examples illustrate the use of differ-
ent biological samples. An MRM assay, measuring the expression levels of HER2 in about
200 tissue samples, has been developed to differentiate HER2 status in BC, which is related
to a worse prognosis. This assay performed better than current immunohistochemistry
(IHC) methods [58]. MRM has also been used for multiplex analysis of CRC-associated pro-
teins in human feces [59]. Using fecal samples from CRC patients and healthy volunteers,
the small-scale MRM assay showed great potential for multiplex analysis in CRC. The
assay was sufficiently sensitive to measure CEACAM 5, which is well known to be related
to CRC, at the ng/mg feces level. The use of fecal samples for gut-related pathologies offers
several advantages over other clinical biospecimens (e.g., plasma or serum) as a source of
CRC biomarkers as collection is noninvasive, the test can be performed at home, one is not
sample limited, and the stool effectively samples the entire length of the inner bowel wall
(including any tumors or polyps present) as it passes down the gastrointestinal tract. MRM
has also been used to validate seven potential urinary protein biomarkers for HCC [60].

2.3. Label Free Approaches

There are several benefits to label free approaches. In label-free experiments any
sample can be directly compared with any other, whereas in labelled experiments it
is typically only possible to directly compare samples that were physically mixed and
measured in one run. Additionally, there is evidence that label-free methods achieve high
coverage of the proteome as they have a higher dynamic range of quantification, allowing
the exploration of low abundance proteins [61]. Some examples of the success of label free
approaches are given below.

Tan et al. from the University of Hong Kong, revealed a novel mechanism of immune
escape in HCC cells using label free proteomics. This showed that the immunosuppres-
sive function of lysyl oxidase-like 4 (LOXL4) on macrophages relied primarily on PD-L1
activation. Elevated levels of LOXL4 were found to correlate with poor survival of HCC
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patients. Thus, in this study, proteomics shed light on the molecular mechanism of LOXL4
during the development of HCC, and also provided new ideas for possible therapeutic
intervention [62].

A number of SWATH-MS papers warrant mention. Guo et al. [63] presented a SWATH-
MS method for acquiring detailed proteome data from small clinical specimens such as
tissue biopsies using a combination of pressure cycling technology (PCT) for efficient
sample extraction [64] followed by SWATH-MS. Importantly the resulting spectral maps
can be archived and reanalyzed ad infinitum using alternative search functions. In another
example, Hallal et al. [65] addressed improving outcomes for diffuse glioma patients,
another unmet clinical need, through the proteomics analysis of extracellular vesicles (EV)
which showed that that EVs are nanoparticles with the ability to carry oncogenic molecules
into the circulation against the blood–brain-barrier. SWATH was used to analyze plasma
EVs isolated from preoperative glioma grade II–IV patients or controls. An 8662-protein
custom library was used for data extraction. Importantly, plasma-EV protein profiles were
found to cluster in line with glioma histological-subtype and grade. Analysis of EVs from
patient’s plasma with recurrent tumor progression was related to more aggressive glioma
samples.

The prevalence of pancreatic ductal adenocarcinoma (PDAC) is increasing globally
and PDAC has the lowest survival rate of all major cancers [66]. An unmet clinical need is
the ability to identify patients who do not benefit from highly morbid surgical resection,
which is currently the only curative intent option. These patients could then be offered
palliative chemotherapy instead. Sanhi et al. [66] used SWATH-MS to identify a plasma
biomarker associated with PDAC prognosis.

Currently there are no targeted therapeutic modalities for triple negative breast cancer
(TNBC), which is associated with a poor prognosis and clinical outcome. Identification of
novel specific TNBC biomarkers for screening and therapeutic purposes is therefore an
urgent clinical need. A recent publication [67] used silver, gold and magnetic nanoparticles
to form a protein corona [68] from patient sera. The retained proteins were then separated
by SDS-PAGE and analyzed by LC–MS/MS. Potential biomarkers were validated by
SWATH analysis using total serum samples from TNBC patients and disease-free controls.
For further examples of DIA/SWATH, and an assessment tool for the quality control of
spectral libraries, readers are directed to the following excellent articles [31,69,70].

In summary, the emerging proteomics toolbox provides an excellent framework to
probe cancer-related proteomes, providing the unrivalled potential to quantitatively ana-
lyze interacting proteins and their modifications, providing a blue print for understanding
cancer biology. Such studies are expected to empower initiatives such as the Cancer
Moonshot [71,72] and a protein equivalent to the cancer dependency map [73].

2.4. Proteogenomics

Proteogenomics probes the interface between proteomics and genomics [74]. The
information-flow from genome to proteome involves merging the significant combination
from proteomics with other omics platforms (e.g., genomics, epigenomics, transcriptomics,
proteomics, lipidomics, glycomics, metabolomics and microbiomics) (Figure 2). This can
provide comprehensive information on health and disease, advancing our understanding
of pathophysiology, providing potential biomarkers for disease detection and surveillance,
and facilitating basic and clinical cancer research for precision oncology [72].
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CPTAC has invested substantial resources in proteogenomics, greatly accelerating the
understanding of the molecular basis of cancer and accelerating the pace of proteogenomic
research and precision oncology, with a number of publications addressing a range of
cancers [11,75,76]. For example, a recent proteomic analysis of 122 treatment-naive primary
breast cancers carried out by researchers from organizations including Baylor College of
Medicine, Massachusetts Institute of Technology, Harvard University and CPTAC has
provided one of the largest studies to date profiling the biological complexity of breast
cancer. TMT-based proteomics including acetylproteome and phosphoproteome profiles
combined with next-generation DNA and RNA sequencing was used to analyze primary
breast cancers samples, shedding light on cell cycle progression, immunogenicity of tu-
mors, abnormal metabolism and heterogeneity of therapeutic targets [77]. These data
challenged conventional breast cancer diagnosis and provided new insights into preci-
sion/personalized medicine. In another study, using a similar workflow, proteogenomic
characterization revealed therapeutic vulnerabilities during the treatment of lung adeno-
carcinoma and allowed the identification of differentially expressed proteins with potential
diagnostic and therapeutic utility [75].

CPTAC has also made significant contributions to the establishment of CPTAC Data
Portal, a Proteogenomic Cancer Atlas, which serves as the NCI’s largest public repository
of proteogenomic comprehensive sequence datasets [78]. Another noteworthy database is
LinkedOmics [79], which is freely available. By integrating MS-based global proteomics
data generated by CPTAC on selected TCGA tumor samples (32 cancer types and a total
of 11,158 patients), LinkedOmics is a very practical database for human cancer studies.
By "sharing and reusing", these databases should accelerate scientific discovery and its
clinical translation to patient care [79]. In what can only be described as a technological
“tour de force”, Xu et al. [80] performed a comprehensive multiomics analysis (proteomics,
phosphoproteomics, transcriptomics and whole-exome sequencing analysis) on 103 pa-
tients with lung adenocarcinoma (LUAD). Integrative data analysis revealed a number of
cancer-associated characteristics, including protooncogene EGFR mutations, differences of
proteins PTM, tumor-associated protein variants and clinical outcomes. Proteome-based
classification of LUAD uncovered three subtypes (S-I~III) with distinct molecular features
and a clinical phenotype.

With the ability to capture both transcript and protein information, proteogenomic
profiling of healthy and tumor-derived organoids, which captures the in vivo character-
istics of the original tissue in a three-dimensional in vitro culture system, can inform on
the mechanisms underlying the physiopathology of tumorigenesis leading to the devel-
opment of novel translational medicine strategies for cancer treatment. As an exemplar,
a recent study has presented a proteogenomics analysis of human colorectal tumors and
healthy organoids derived from seven patients [81]. The results show distinct signatures
between organoids from different patients with patient-specific features that correlate with
clinical diagnosis facilitating the development of personalized therapies [82]. A perceived
limitation in the proteomics analysis of organoids has been the use of Matrigel as a scaf-
fold material, which causes severe ion suppression due to contaminants present in the
preparation. However, this was overcome in a recent study by introducing a precipitation
step [83].

2.5. Bioinformatics

Bioinformatics plays a central role in the downstream analysis of the large body of
proteomics data that is currently being generated, and as such it is one of the 4 HUPO
resource pillars [11]. A number of iterative bioinformatic tools and web servers have
been developed to assist in this analysis [84,85], some targeted specifically for cancer (e.g.,
Perseus [86] and the Cancer Genome Atlas (TCGA) [87]).

As exemplars, Dunn et al. used Perseus, the ingenuity pathway analysis (IPA®)
and the Database for Annotation, Visualization and Integrated Discovery (DAVID) to
annotate the expression and function of proteins and identified potential biomarkers and
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therapeutic targets of meningiomas [88]. Da et al. used bioinformatics-assisted proteomics
to screen and identify the potential prognostic biomarker calcium/calmodulin-dependent
serine protein kinase (CASK) in primary cholangiocarcinoma (CCA) tissues and paired
precancerous tissues from surgery. Patients with negative CASK expression were found
to have worse overall survival (OS) and recurrence-free survival (RFS) than those with
positive CASK expression. Univariate and multivariate analyses showed that negative
CASK expression was an independent risk factor for OS and RFS in CCA patients [89].

3. The Hallmarks of Cancer
3.1. Ten Hallmarks of Cancer

As recognized by Hanahan and Weinberg, understanding the intricate processes that
drive normal human cells to transform into highly malignant derivatives is essential to win
the "battle" against cancer [12]. They have proposed that there are a number of acquired
capabilities that are shared by most, if not all, of the more than 100 types of human ma-
lignancy: the important concept of “Hallmarks of Cancer” (HoC) [90]. These hallmarks
comprise: sustaining proliferative signaling, evading growth suppressors, resisting cell
death, enabling replicative immortality, inducing angiogenesis, activating invasion and
metastasis, reprogramming of energy metabolism and evading immune destruction [90]
(Figure 3), resulting in the activation of proto-oncogenes or the silencing of tumor suppres-
sor genes. Recent advances in proteomics and other omics technologies (speed, sensitivity,
sample processing, microfabrication and automation) mean there is now an effective and
efficient toolbox with which to address in depth the biology behind the HoC [91,92]. Two
approaches in particular have been particularly effective in this approach: the identification
of signaling pathways (interactomics) involved in disease initiation and progression, often
leading to novel drug targets and the identification of potential disease related biomarkers
and biomarker panels.
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Methionine adenosyltransferase 2a (MAT2A) is a key metabolic enzyme in metabolism.
It was reported that the deletion of MAT2A will result in proliferation inhibition in cancer
cells. Thus, the team at Agios Pharmaceuticals in the US demonstrated the mechanism
by which MAT2A inhibition induces DNA damage and mitotic defects in MTAP-deleted
cancers using RNA sequencing and proteomics. These data shed light on the way cells
evade apoptosis and sustain proliferative signaling, and provided a schema for the use of
MAT2A inhibitors combined with antimitotic taxanes [93]. Activation of the telomere main-
tenance mechanism and instability of the nuclear genome are two key hallmarks of cancer.
However, the underlying oncogenic mechanisms are still not fully understood [104]. Liu
and his colleagues revealed the mechanism by which human telomerase reverse transcrip-
tase (hTERT) upregulates and promotes cancer progression using a proteomics approach
and provides a novel rational therapeutic target for HCC. In this study, a novel hTERT
promoter-binding protein RBFOX3 (RNA binding protein fox-1 homolog 3) was identified
using MS analysis of hTERT promoter binding protein pulldowns, which also interacted
with AP-2β to regulate the expression of hTERT, exhibiting a “moonlighting function” [94].
Another proteomics study elucidated the oncogenic mechanism from the perspective of
genomic integrity. Multidimensional protein identification technology (MudPIT) showed
that human MMS19, the key component of the CIA targeting complex, could interact
specifically with proteins related to methionine biosynthesis, DNA replication, DNA repair
and telomere maintenance. These proteomics studies lay a theoretical foundation for the
discovery of suitable drug targets for further pharmacological research [95].

A key control on the development of malignant tumors, which typically have poor
prognosis, is the activation of invasion and metastasis, which acts in conjunction with
three other hallmarks (sustained angiogenesis, evading immune response and tumor-
promoting inflammation). It is now realized that the acquisition of these hallmarks is
further controlled by contributions from the tumor microenvironment, consisting of the
extracellular matrix [90], stromal cells and immune cells, but the precise dynamics between
the nontumor microenvironment (NTME), tumor microenvironment (TME) [105] and the
systemic immune system remains abstruse. A high-dimensional proteomic and transcrip-
tomic approach was used to examine this in HCC. The data confirmed the presence of an
immunosuppressive gradient in the peripheral blood, NTME and TME in primary HCC,
which can regulate the activation status of tumor infiltrating leukocytes and make them
immunocompromised against tumor cells [106]. The impact of the microenvironment has
also been noted for brain cancer. Proteomic analysis showed cell migration-inducing and
hyaluronan-binding protein (CEMIP) was increased in exosomes from metastatic brain
cells and predicted metastatic progression and patient survival [96].

Previous studies have provided evidence for the role of the phosphoproteome on
prognostic survival in ovarian cancer [107], but the dynamic changes in the proteome
involved in tumor metastasis have not been investigated in detail. Eckert et al. used
ultra-high-sensitivity mass-spectrometry-based proteomics to explore high-grade serous
ovarian carcinoma (HGSC) metastasis and revealed the integrated role of the tumor stroma.
Tumor and stromal compartments from surgical samples were microdissected and pro-
teins were extracted and analyzed using an optimized proteomic workflow. Nicotinamide
N-methyltransferase (NNMT) in the stroma was found to be the key molecule regulating
HGSC metastasis by mediating the differentiation of cancer-associated fibroblasts (CAF).
NNMT, the key metabolic enzyme regulating the differentiation of CAF and cancer progres-
sion, is a potential therapeutic target for HGSC metastasis [108]. Induction of angiogenesis
is another HoC. A recent proteomics study has revealed the potential of fatty acid syn-
thase (FASN) blockade to not only induce ovarian cancer cell death, but also exert an
antiangiogenic effect [97].

The cell surface urokinase plasminogen activator receptor (uPAR) is increased in many
cancers, especially in non-small cell lung cancer (NSCLC) and CRC. Levels correlate with
poor prognosis and early invasion and metastasis, and currently there are several BC and
prostate cancer clinical trials underway targeting either uPAR or suPAR (soluble uPAR) [98].
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Integrating with the cancer hallmarks analytics tool (CHAT) analysis, a comprehensive
global and plasma membrane approach (whole cell lysis with two membrane protein
enrichments) using HCT116 cells (derived from Dukes’ stage D CRC) and engineered
mutants with reduced uPAR expression followed by IPA analysis demonstrated that uPAR
resists most pathways related with HoCs, including sustaining proliferation, evading
apoptosis and metastasis [98].

Inappropriate localization of proteins is another factor responsible for oncogenesis and
development by destroying normal cell function. Comparison of the nuclear proteome and
transcriptome of acute myeloid leukemia (AML) blast cells with CD34+ cells from healthy
human identified eleven transcription factors with abnormal expression, and remarkably
affected transcription regulation. Among them, S100A4 was proposed as a therapeutic
target in acute myeloid leukemia [109].

3.2. Emerging Hallmarks of Cancer

Redox signaling and autophagy are two emerging hallmarks of cancer. Metabolic
reprogramming causes increased accumulation of reactive oxygen species (ROS), thus
inducing oxidative stress, which can drive the entire process of tumorigenesis and trans-
formation from a normal cell to a tumor [110,111]. ROS within a certain threshold range
can play an important second messenger function and contribute to the fine regulation of
important signaling pathways, including autophagy and apoptosis. Excessive oxidative
stress can cause oxidative damage of macromolecules, leading to lipid peroxidation, DNA
damage and alterations in the structure and function of proteins, which are profoundly
associated with cancer initiation and progression [112,113]. Not surprisingly, some on-
cologists put forward the view that cancer is a redox disease, caused by an imbalance
of electrons [114]. Based on the important regulation of redox in tumorigenesis, redox
proteomics approaches have been well-developed to not only contribute to revealing the
function and redox-modifications of important redox proteins but also provide clues for
directed cancer therapy [113,115].

A sensitive and efficient proteomics technology (OxiodoTMT) has been established,
which revealed a key virus-induced tumorigenesis-related redox protein, SOCS3, in HCC.
These data showed that HBV-induced mitochondrial ROS production leads to episilenc-
ing of SOCS3 gene expression through snail-mediated epigenetic silencing, leading to
sustained activation of the IL-6/STAT3 pathway, which ultimately contributes to hepato-
carcinogenesis and indicates that SOCS3 is a potential biomarker for clinical prognosis for
HCC [99]. A redox proteomics method (Oximouse) has also been developed to analyze and
characterize cysteine oxidation data in mice, leading to the deepest quantitative analysis of
the redox-regulated cysteine proteome to date, and generating a disease- and tissue-specific
map for guiding the analysis of ROS in human diseases, especially cancer [100].

Although redox mechanisms are associated with disease, capturing much attention
from researchers, the importance of another HoC, autophagy, cannot be underestimated.
Autophagy exerts a dual role in tumorigenesis, which is determined by the type, stage and
genetic background of the cancer [116]. To date, there have been a number of proteomics
reports that shed light on the implicated relationship between autophagy and tumorigene-
sis, indicating potential cancer therapeutics by targeting autophagy [117]. Recently Bryant
et al. proposed a promising effective dual blockade treatment for PDAC, which has a
5-year survival rate of only 9% and is characterized by autophagy-dependent growth. They
concluded that blocking both the ERK/MAPK pathway and the responsive autophagic
processes is effective in PDAC therapy [101]. This was supported by data generated using
reverse-phase protein microarray (RPPA).

4. Cancer Biomarkers: Detection, Surveillance and Drug Efficacy

A biomarker may be defined as a specific characteristic that can be measured as an
indicator of normal biological processes, pathogenic processes or responses to an exposure
or intervention [118]. Biomarkers can be used as screening or diagnostic tools, for staging
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and classifying the extent of disease, defining prognosis, stratifying treatment regimens
or monitoring the clinical response (e.g., drug resistance) to an intervention. Effective
cancer biomarkers are therefore of great significance for cancer diagnosis and treatment,
and the discovery and translational application of cancer biomarkers/biomarker panels
has therefore been the main focus of many proteomics studies and the subject of numerous
publications. We will illustrate this with examples relating to some of the most common
and aggressive cancers.

Cancers of the pancreas have the lowest survival rate [2] and over 50% the patients
present with distant metastases at diagnosis, for which the 5-year survival rate is only
9% [119]. If sensitive and specific diagnostic biomarkers for early pancreatic cancer could
be found and applied, it would have a significant impact in reducing the mortality of the
disease. As early as 2004, several proteins identified by 2D-PAGE and MS (e.g., S100A8,
cyclophilin A, 14-3-3ζ, galectin-1, annexin A4, TM2 and peroxiredoxin I) were found to
be modulated in pancreatitis tissues [120]. Later, Honda et al. compared the plasma pro-
tein profiles of pancreatic cancer patients with those of healthy volunteer through QTOF
(quadrupole time-of-flight) MS, and suggested the use of apolipoprotein-AII (APOAII)
isoforms (especially APOAII-2) for pancreatic cancer surveillance [121]. In a further study,
they developed an ELISA for measuring the level of APOAII-2, and performed multi-
institutional validation of the usefulness of APOAII-2 as a screening biomarker for pancre-
atic cancer [122].

CRC is one of the most common cancers in the world, and is a leading cause of
cancer-related death. If detected early, it can essentially be cured by simple surgical
resection (5-year survival >90%). However, by the time metastasis has occurred (20–25%
of CRC cases are diagnosed at this stage) prognosis is poor with an estimated 5-year
survival of only 8% [123]. Mori et al. using iTRAQ in a comparative proteomics approach,
demonstrated that high expression of ezrin is related to lymph node metastasis in CRC [124].
A meta-analysis of ezrin function showed that ezrin participates in tumor metastasis and
invasion, and tumorigenesis by manipulating cellular activities (e.g., adhesion, motility
and proliferation) [125,126]. Recent research has confirmed the pivotal role of ezrin in
regulating cell migration and invasion, and indicated this protein as a novel potential target
for anticancer therapeutic approaches [127].

Lung cancer causes more deaths annually than any other cancer [2]. Using LC/MS-MS
analysis, Sung et al. found that expression levels of quiescin sulfhydryl oxidase 1 (QSOX1)
in lung cancer tissue were significantly higher than that in neighboring normal tissues.
They also found that Lewis lung cancer cells where QSOX1 had been knocked out had
reduced survival, migration and invasion capabilities under oxidative stress. In addition,
QSOX1 has been proved to promote tumor metastasis in mouse models. QSOX1 could
therefore be a useful lung cancer biomarker as well as a potential therapeutic target for
lung cancer [128].

Obtaining effective treatment for cancer is the most important clinical endpoint. How-
ever, the clinical response to anticancer agents is frequently heterogeneous, posing a major
barrier to effective cancer care. If it was possible to more accurately predict response before
decisions on treatment, response rates would be improved, unnecessary ineffective treat-
ments reduced, and global health budgets reduced. However, predicting patient response
to drugs is not reliable for most cancers, owing to a lack of predictive biomarkers and an
incomplete understanding of the mechanisms underlying response heterogeneity [129].

In precision medicine, resistance to chemotherapy and targeted cancer therapy can
be a significant problem [129,130]. The concept of multitarget therapeutics or network
therapeutics was proposed to mitigate the risk of drug resistance, and could also prove
valuable in prospective drug repositioning [131]. Coscia et al. found CT45 was a promising
chemosensitivity mediator and immunotherapy target using phospho- and interaction
proteomics, revealing the long-term survival mechanism in HGSOC. This study showed
CT45-derived HLA class I peptides had great potential for tumor treatment by activating
the patient’s immune system [132].
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Zhao et al. compiled a large-scale compendium (Cancer Perturbed Proteomics Atlas)
of perturbed protein expression profiles by profiling proteomics alterations in response to
clinically antineoplastic drugs using reverse-phase protein arrays (RPPAs). This has made
up for many of the major shortcomings in the interpretation of drug antitumor mechanisms
and provides a resource to investigate the dependencies of treatment responses [133].

In summary, cancer biomarkers are important tools for detecting, diagnosing, treating
and monitoring tumors and judging tumor prognosis (Table 2). The rapid development
of proteomics research has injected new vitality into tumor marker research. By mapping
human cancer proteomes, proteomics has found differentially expressed proteins in many
cancer types, which are expected to become effective cancer biomarkers. Discovering new
and effective cancer biomarkers through proteomics will surely promote the further devel-
opment of precision medicine and provide sick patients, high-risk groups and clinicians
with more precise prevention, diagnosis and personalized treatment options.

Table 2. Examples of cancer biomarkers: discovered by proteomics and their applications in precision medicine.

Cancer Biomarkers Cancer Type Use Proteomic Technology Reference

APOAII-2 Pancreatic cancer

Detection of early-stage
pancreatic cancer and risk

factors for pancreatic
malignancy

2D-PAGE, QTOF MS system
and ELISA [121,122]

Ezrin Colorectal cancer Predicting lymph node
metastasis in colorectal cancer

iTRAQ in a comparative
proteomics approach [124,126,127]

QSOX1 Lung cancer A potential therapeutic target LC/MS-MS analysis [128]

Serine/threonine kinase 4 Colorectal cancer An early detection biomarker MALDI-TOF-MS [134]

αB-crystallin Breast cancer A potential prognostic
biomarker

Quantitative iTRAQ
proteomics [135]

ENO1 Lung cancer

A Potential Sputum
Biomarker for Early-Stage

Lung Cancer and a potential
therapeutic target

Shotgun proteomics; liquid
chromatography–tandem

mass spectrometry technology
[136–139]

CT45 High-grade serous
ovarian cancer

A Chemosensitivity Mediator
and Immunotherapy Target

Liquid Chromatography–MS
analysis; Phosphatase activity
assay and phosphoproteomics;

Immunofluorescence

[132]

FoxO3a Breast cancer
A Positive Prognostic Marker
and a Therapeutic Target in

Tamoxifen-Resistant

Label-Free Semiquantitative
Proteomic Analysis and

ingenuity pathway analysis
(IPA)

[140]

HSP 90β Lung adenocarcinoma A potential prognostic
biomarker

Nano-LC–MS/MS analysis;
ELISA; label-free

quantification
[80]

SAA2, APCS, APOA4, F2
and AMBP Colorectal cancer Potential early diagnosis

biomarkers SWATH-MS and ELISA [26]

5. The Microbiome and Cancer

The human microbiome is an extremely large and intricate complex set of microorgan-
isms, composed of archaea, bacteria, viruses and eukaryotes [141]. There are approximately
100 trillion microorganisms residing in humans that are present in various locations in the
body, including the gastrointestinal tract, skin, nose, mouth and, in females, the vagina.
They have a biomass of up to 2 kg. Recent advances in proteomics have the potential for
elaborately deciphering the function and structure of microbiome proteins and shedding
light on the symbiotic relationship between humans and these microorganisms, which
coevolve under normal circumstances to form a superorganism [141]. However, unex-
pected and uncontrolled circumstances can disrupt the body’s homeostasis, inducing the
initiation and development of many diseases, including cancer (Figure 4) [142]. Although
cancer is a multifactorial disease, accumulating data illuminate the powerful role of mi-
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crobiota in promoting tumor growth. Recently scientists at The Weizmann Institute in
Israel analyzed the microbiome from 1526 tumors and paired adjacent healthy samples
from seven cancer types, namely brain, breast, ovary, melanoma, lung, pancreas and bone,
shedding light on cancer progression from a microbiome perspective [143]. Increasing
evidence is showing that microbes, especially intestinal microorganisms, can be both di-
rectly and indirectly implicated in cancer progression (Table 3). Exchange of nutrients
with intestinal epithelial cells of the host modulates signal transduction with an impact
on host metabolism, immune status and health/disease balance. Recent studies have
found that a Gram-negative oral anaerobe, Fusobacterium nucleatum (Fn), is a significant
contributor to cancer metastasis in CRC, esophageal cancer, pancreatic cancer and possibly
breast cancer [144,145]. Interestingly, this observation was supported by another study,
which showed that Fn, which invades the colon, stimulates tumor growth and metastatic
progression in CRC by promoting cytokine secretion [146]. Another critical observation
was that Fn promotes tumor metastasis through exosome secretion in CRC cells. MiRNA
sequencing and proteome analysis showed Fn infection may stimulate tumor cells to gen-
erate miR-1246/92b-3p/27a-3p-rich and CXCL16/RhoA/IL-8 exosomes that are delivered
to uninfected cells to promote a prometastatic behavior [147]. This research provides new
insights into the molecular mechanism of the interaction between carcinogenic bacteria and
the host, highlighting the importance of eliminating Fn during oncotherapy, and guiding
possible clinical therapeutic approaches.
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Figure 4. The microbiome plays a dual role in human health and disease. Microbiota and their metabolites can act as
either tumor promotors or tumor inhibitors. As tumor promotors they can secrete antigens or cytokines to induce adaptive
autophagy, inflammation and tumor proliferation promoting tumor progression. Microbes, especially some Gram-negative
bacteria, can be directly or indirectly involved in cancer progression and regulation. For example, local microbiota can
provoke inflammation associated with lung adenocarcinoma by activating lung-resident γδ T cells and promoting tumor cell
proliferation by secreting IL-22 and Areg [148]. The secreted antigen, HP0175, of Helicobacter pylori links the unfolded protein
response (UPR) to autophagy in gastric epithelial cells. Helicobacter pylori secrete HP0175, inducing adaptive autophagy
to promote tumor cell survival [149]. As examples of tumor inhibitors, ferrichrome, secreted from Lactobacillus casei, can
induce colon cancer apoptosis [150]. Some probiotic proteins and metabolites have antineoplastic activity. For example,
butyrate shows great anti-cancer potential by inhibiting angiogenesis and proliferation and inducing apoptosis [151].

Perhaps surprisingly, rapid, accurate and cost-effective clinical methods for the routine
analysis of a wide range of microorganisms in the human microbiome using MALDI-TOF
were among the first MS methods to receive FDA approval for clinical use [152]: several
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thousand instruments have now been placed in clinical laboratories worldwide. Novel MS
clinical diagnostic applications are currently being developed (e.g., antibiotic resistance
(ART) and antibiotic susceptibility testing (AST) [153]).

Table 3. The microbiome: cancer friend or foe.

Function Microorganism Type of Cancer Mechanism References

Cancer Therapy

Mycobacterium bovis
BCG Bladder

Stimulating the immune system
and increasing the

proinflammatory cytokines
activation of cancer cells

phagocytosis

[154–158]

Streptococcus pyogenes
OK-432

Lymphangioma
Intraoral Ranula

Immune activation by increasing
cytokine levels [159–162]

Clostridium novyi Leiomyoma Targeting and destroying tumor
cells [154,163–165]

Salmonella Typhimurium
VNP20009 Melanoma, Pancreatic Helping antitumor drugs target

cancer [166,167]

Magnetococcus marinus - Targeted transport vector [168,169]

Bifidobacterium Longum Colorectal

Enhancing the body’s immune
function and regulating the

expression of tumor-related genes
and cytokines

[170–174]

Listeria Monocytogenes
LADD strain

Cervical,
Oropharyngeal,

Pancreatic, Lung and
Mesothelioma

Targeted transport vector [175–177]

Escherichia Coli - Targeted transport vector [178,179]

Tumor
Promoters

Gram-Negative
Bacteria

Liver
Colorectal

TLR2 and TLR4 mediated
upregulation of Innate

inflammation; Induction of
IL-17/23 pathway cytokines

[180–182]

Helicobacter Pylori Gastric Inducing inflammation [149,183,184]

Clostridium species HCC
Production of deoxycholic acid

from bile and inducing
inflammation

[185]

Enterotoxigenic
Bacteroides Fragilis Colon Inducing inflammation [186]

Fusobacterium Colorectal
Inducing inflammation and
protecting tumors from an

immune cell attack
[187–189]

Escherichia Coli Colorectal PKS inducing DNA breaks [190]

Chlamydia Pneumoniae Lung C. pneumoniae protein interfering
with host cell behavior [191]

Chlamydia Trachomatis Cervical,
Ovarian

Promotes host cell DNA
double-strand breaks, induces host
cell genome instability and even

transformation

[192]

Several microbial proteomics studies have shown that microorganisms promote tumor
growth and metastatic progression and there is increasing data indicating that the micro-
biome is partly responsible for the initiation of intestinal tumors. Verberkmoes et al. [193]
used a non-targeted, shotgun mass spectrometry-based metaproteomics approach for the
first deep proteome measurements of the human distal gut microbiota and proteomics
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studies on patients with CRC also identified a number of microbial proteins in their fecal
samples [59]. Bosch et al. have identified new potential biomarkers for CRC screening
through MS analysis of stool samples. A four protein biomarker panel had sensitivities
of 80% and 45% for detecting CRC and advanced adenomas, respectively, at 95% speci-
ficity [194]. A quantitative metaproteomic study characterized the abundance differences
of microbial proteins between fecal samples from CRC patients and healthy controls, illus-
trating the pathogenesis of CRC and showed the promising potential of metaproteomics in
clinical diagnostics in the future [195]. The lung is also colonized by hundreds of bacterial
species, which can impact on the progression of lung cancer. A recent proteogenomic
approach uncovered the mechanism by which local microbiota provoke inflammation
and promote cell proliferation in lung cancer. Superfluous commensal bacteria stimulate
γδT cells to duplicate and secrete inflammatory cytokines like IL-17 and IL-2 (Figure 4),
which will provide a suitable environment for tumor proliferation and survival [148]. It has
been suggested the genera Veillonella and Megasphaera may act as lung cancer biomarkers
with good sensitivity and specificity [196]. Increased understanding of the carcinogenic
mechanism of microorganisms has encouraged researchers to consider how to utilize them
for cancer treatment. Emerging data has shown antitumor activity of microbial proteins
and metabolites derived from microbial activity such as microbial-derived short-chain fatty
acids (SCFAs) [197] and bacterial lipopolysaccharide (LPS) [198]. Interestingly, it has been
found that microbiota can act as tumor-suppressor agents. For example, probiotic-derived
ferrichrome secreted from Lactobacillus casei was identified as an effective tumor suppressor
in colon cancer by MS [150]. This study suggests that ferrichrome can activate the JNK
signaling pathway triggering apoptosis (Figure 4), and is more effective with reduced
adverse effects than the clinical drugs cisplatin and 5-fluorouracil. Further studies have
found that ferrichrome can also restrain proliferation and induce apoptosis in other cancers,
such as gastric cancer [199], HCC [200] and pancreatic cancer [201]. Fecal microbiota trans-
plantation (FMT) is the reconstruction of the gut microbiota by transplanting fecal material
from healthy donors to sick patients. It has been used as an effective mode of treatment for
intestinal and extraintestinal diseases [202]. Thus, FMT has been demonstrated to be an
effective therapy for human diseases including inflammatory bowel disease (IBD) [203],
Clostridium difficile infection (CDI) [204] and major depressive disorder (MDD) [205].The
first-in-human FMT cancer clinical trials were reported by Baruch et al. [206] and Davar
et al. [207], who demonstrated that FMT has great potential in cancer immunotherapy
in combination with anti-PD-1. However, although FMT has been approved for clinical
application by the FDA, there are still many hurdles to be overcome for its safe and ef-
fective routine use. Indeed, the FDA has recently acknowledged that more careful donor
testing must be undertaken following the death of a patient due to the presence of a rare
drug-resistant form of E. coli in a fecal transplant. Proteomics can clearly play an important
role in supporting FMT. It can help in the analysis of donor transplant material while
metaproteomics can help identify optimal donors by comparative recipients/donor studies.
It can also inform on the method of administration by analysis of the structure, function and
composition of microbiota in fecal samples and can monitor the efficacy of the procedure.
Moreover, proteomics coupled with genomic methods, such as DNA sequencing, can be
used to survey changes in microbiota diversity, function and structure before and after
FMT in order to evaluate the therapeutic effect.

The microbial ‘Dark Matter’ [208] represents the 30–40% of the microbes in the GI
tract that currently cannot be cultivated or identified. This niche could contain interesting
enzymes, new antimicrobials and other potential therapeutics. Microbial culturomics [209],
in which MS is used in conjunction with extensive sequencing to explore the suitability of
a wide range of known and novel culture methods, can help unravel this.

In conclusion, the human microbiome is a promising emerging target for both cancer
development and therapeutics. It may be directly oncogenic, through promotion of mu-
cosal inflammation or systemic dysregulation, or may affect anticancer immunity/therapy.
Analysis of the microbiome may play a role in both the diagnosis and treatment of tu-
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mors [210]. As a revolutionary tool in biochemical research, proteomics can perform
detailed protein profiling of the microbiota, thereby discovering potential biomarkers and
uncovering altered disease related protein levels and biological pathways. Fecal proteomics,
a non-invasive test, has many significant advantages for the discovery and validation of
biomarkers for screening CRC.

6. Future Directions/Perspectives

Proteomics has made remarkable progress over the last decade, and that trend is set
to continue with further advances expected in terms of speed, sensitivity, reproducibility,
automation and throughput [11,211]. Developing clinically useful diagnostic and prognostic
biomarkers to identify individuals needing treatment and developing predictive biomarkers
that identify and select individuals who will benefit most from these therapies to support
personalized/precision medicine will be a priority. Large, multidisciplinary, multinational
teams will be commonplace, and rare diseases will receive more attention and increased fund-
ing. Industrial scale laboratories for large scale cancer proteome initiatives (e.g., ProCan [212],
Stoller Biomarker Discovery Centre (http://www.biomarkers.manchester.ac.uk/about/sbdc/
accessed on 12 March 2021), The Chinese Pilot Hub Of Encyclopedic Proteomix (PHOENIX))
will continue to be developed (PHOENIX, using the Tianhe 2 Super Computer, can generate
up to 40 proteomes in a day). Large scale health projects (e.g., Cancer Moonshot, The Stan-
ford/HUPO http://med.stanford.edu/hpop.html hPOP Study accessed on 12 March 2021)
will be undertaken. However, it is anticipated that there will be a shift away from MS-based
approaches for clinical applications (e.g., microarrays, aptamer technologies and proximity
assays). This will be assisted by improved antibody validation to ensure specificity [213], and
the increased use of resources such as the Human Protein Atlas [214] and Antibodypedia [215].
Some of these emerging technologies are discussed below.

6.1. Top-Down MS

To date most of the publications on the characterization and identification of pro-
teins have used an enzymatic or chemical digestion approach in which the proteins are
fragmented into small (bottom up) or medium size (middle up) peptide fragments. How-
ever, top-down methods, in which the full-length protein is analyzed are now coming of
age. Importantly this technology has the potential to analyze proteoforms that arise from
alternative splicing events and/or PTMs for basic and clinical research without loss of
information often observed with the digestion of proteins [216]. However, it is currently
approximately 100-fold less sensitive than bottom up MS and has been reported to have
reduced proteomic coverage and throughput [217].

6.2. Differential Ion Mobility MS (DMS)

Proteomic analyses can benefit from additional techniques to improve protein or
peptide separation and achieve increased protein identification allowing deeper mining
of the proteome. DMS separates ions in the gas phase based upon subtle differences in
their chemical structures (e.g., mass, shape, center of mass and dipole moment), giving
separative power that is orthogonal to both MS and HPLC [218]. A current limitation is
that the method is relatively time consuming and data intensive [219].

6.3. Imaging Mass Cytometry

Multiplexed imaging methods are becoming increasingly important [220] and have
been applied to oncology. As an example of this, the Bodenmillar laboratory [221] used
CyTOF coupled with genomics approach to define the phenogenomic profile of BC. CyTOF
combines flow cytometry with elemental mass spectrometry. In this technology, antibodies
coupled to purified isotopes from rare-earth metals are used to label cells. Cell samples are
exposed to an inductively coupled argon plasma (ICP) torch for vaporization, atomization
and ionization. The atomic ion cloud can then be introduced into a hybrid quadrupole-TOF
MS for quantitation. The current CyTOF instrumentation allows simultaneous measure-
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ment of over 40 cellular parameters with more than 100 detection channels at single-cell
resolution. It is being used extensively in single cell proteomics applications [222].

6.4. Microarrays

Protein microarrays are being seen as versatile tools for protein–macromolecule inter-
action analysis and drug target identification in a rapid, reproducible and cost-effective
manner. This has been facilitated by improved surface chemistry and advances in minia-
turization and microfluidics [223] and is being used to support clinical applications [224].
Currently three types of microarrays are in routine use: analytical microarrays (library of an-
tibodies, aptamers or affibodies on the surface), functional microarrays (arrays containing
full-length functional proteins or protein domains) and reverse phase microarrays (RPMA:
cell or tissue lysates). As exemplars, as part of an integrated genomic, transcriptomic
and proteomic profiling of 150 PDAC specimens, RPMAs were used to help character-
ize pancreatic ductal adenocarcinoma [225]. Researchers from the MD Anderson Cancer
Center have used RPMSs to characterize human cancer cell lines and analyze functional
cancer proteomic data using the Cancer Proteome Atlas. A total of 8000 patient samples
involving 32 types of cancer and more than 650 cell lines were addressed [226]. RPMAs
have also been used to generate and compile perturbed expression profiles in the large-
scale characterization of drug responses of clinically relevant proteins in the cancer cell
lines [133].

6.5. Big Data, Artificial Intelligence (AI), Machine and Deep Learning

Data analysis is rapidly becoming the rate limiting step in proteogenomics, as large-
scale proteomics projects are capable of generating terabytes of high volume, velocity,
variety and veracity data on a daily basis, the analysis of which is becoming overwhelming
(the big data problem) [227]. Such data are typically highly dimensional and nonlinear,
making them difficult to analyze using conventional statistical methods. Integration of
proteomics with artificial intelligence methods like machine and deep learning clearly
represents the future trend for proteomics research and personalized/precision medicine
and a number of platforms are being developed. Recent examples include applications
for HCC [228], renal cell carcinoma [229] and lung cancer [230]. Researchers from the
Technical University of Munich successfully used proteomic data to train a neural network,
termed Prosit, facilitating the rapid and accurate error free mass analysis of proteins [231].
Another important use of AI has been in protein-structure-prediction systems, which
could significantly assist drug discovery [232]. Many of the structures generated were
indistinguishable from those determined by X-ray crystallography and/or CryoEM.

6.6. Single-Cell Proteomics

The ability to measure proteins at the single cell level offers the potential to investi-
gate cancer heterogeneity and signal transduction and will realize many transformative
opportunities [233]. A number of techniques are currently being investigated including
high-resolution imaging using genetically encoded fluorescent antibody-based strategies
coupled with flow cytometry, mass cytometry or microfluidics and MS [234]. Applications
include mechanisms of drug resistance [235], cancer recurrence [236] and an understanding
of tumor immunity [237]. Fluorescence-based systems have been extensively used due to
their sensitivity, selectivity and direct readout [238–240]. Bioinformatics will play a key
role in data analysis [241,242].

Commercial companies are now supporting single cell proteomics. For example,
Isoplexus is offering single cell secretome, metabolome and intracellular proteome pack-
ages (www.isoplexus.com/ accessed on 12 March 2021) while Erisyon has been launched
to commercialize a single-molecule protein sequencer based on Edman chemistry with
fluorescent tags (www.erisyon.com/ accessed on 12 March 2021).

Single cell proteomics is rapidly coming of age and will give novel insights into the
HoC and new therapies with the potential to transform oncology. However, at present
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we are just at “the tip of the iceberg”, and a number of challenges remain [243]. Foremost
amongst these is perhaps finding patterns in spatially resolved measurements and the inte-
gration of single-cell data across multiple samples, experiments and types of measurement.

7. Conclusions

Translational studies are leading to new and improved clinical assays, which will
continue to facilitate the roll out of precision medicine, guiding oncologists to find the
optimum treatment for individual patients. There will almost certainly be a need for
new clinical trial designs, addressing in particular tumor and patient heterogeneity in a
personalized/precision medicine approach. Increased understanding of the underlying
tumor biology has led to an expanding number of potential therapeutic targets leading to
the development of new drugs. The use of individually tailored combinations of precision
targeted drugs identified by proteogenomics will require sophisticated optimization based
on new strategies (e.g., optimum delivery regimes) to ensure maximum efficacy (reviewed
in [244,245]).

Novel sensitive and specific biomarkers and biomarker panels will be discovered,
and new drug targets and drugs identified. It is perhaps the uptake of precision medicine
that now poses the major hurdles, in particular the big data problem mentioned above,
and concerns in some areas of the community about privacy, ethical responsibilities and
equity, with a growing gap in health system parity some between high and low-income
countries, and in some cases even different ethnic groups [246]. To address this, the role of
informed precision medicine alliances and coalitions bringing together multidisciplinary
international groups of thought leaders, researchers and oncologists from academia and
industry (e.g., The Oncology Think Tank (TOTT), WR Worldwide Innovative Networking
In Personalized Cancer Medicine and The European Personalized Medicine Association) is
critical, facilitating true globalization. In this respect, the current COVID-19 pandemic has
shown how rapidly medical breakthroughs can be achieved, and traditional barriers (e.g.,
data sharing between big pharma) broken down.
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Abbreviations

2-DE Two-dimensional gel electrophoresis
AI Artificial Intelligence
AML Acute myeloid leukemia
APOAII Apolipoprotein-AII
APOLLO Applied Proteogenomics Organizational Learning and Outcomes
ART Antibiotic resistance
AS Alternative splicing
AST Antibiotic susceptibility testing
CAF Cancer-associated fibroblasts
CASK Calcium/calmodulin-dependent serine protein kinase
CCA Cholangiocarcinoma
CD Crohn’s disease
CDI Clostridium difficile infection
CEMIP Cell migration-inducing and hyaluronan-binding protein
CHAT Cancer Hallmarks Analytics Tool
CPTAC Clinical Proteomic Tumor Analysis Consortium
CRC Colorectal cancer
DAVID The Database for Annotation, Visualization and Integrated Discovery
DDA Data dependent analysis
DIA Data independent analysis
DMS Differential ion mobility MS
EDRN Early Detection Research Network
EV Extracellular vesicles
FASN Fatty acid synthase
FFPE Formalin-fixed paraffin-embedded
FMT Fecal microbiota transplantation
Fn Fusobacterium nucleatum
GELFREE Gel-eluted liquid fractionation entrapment electrophoresis
HCC Hepatocellular carcinoma
HGSC High-grade serous ovarian carcinoma
HoC Hallmarks of Cancer
hPOP Human Personal Omics Profiling
HPP Human Proteomics Project
HPRL Proteome Reference Library
hTERT Human telomerase reverse transcriptase
HUPO Human Protein Organisation
IARC International Agency for Research on Cancer
IBD Inflammatory bowel disease
ICP Inductively coupled argon plasma
ICPC International Cancer Proteogenome Consortium
IHC Immunohistochemistry
IPA Ingenuity pathway analysis
iTRAQ Isobaric tagging for multiplexed relative and absolute protein quantitation
LOXL-4 Lysyl oxidase-like 4
LPS Lipopolysaccharide
LRG Leucine-rich α-2 glycoprotein
LUAD Lung adenocarcinoma
MAT2A Methionine adenosyltransferase 2a
mdCAT Mass-defect-based carbonyl activated tag
MDD Major depressive disorder
MRM Multiple reaction monitoring
MudPIT Multidimensional protein identification technology
NNMT Nicotinamide N-methyltransferase
NSCLC Non-small cell lung cancer
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NTME Nontumor microenvironment
OS Overall survival
PCT Pressure cycling technology
PDAC Pancreatic ductal adenocarcinoma
PHOENIX The Chinese Pilot Hub Of Encyclopedic Proteomix
PPTT Plasmonic photothermal therapy
PRM Parallel reaction monitoring
PTMs Posttranslational modifications
QSOX1 Quiescin sulfhydryl oxidase 1
QTOF Quadrupole time-of-flight
RA Rheumatoid arthritis
RBFOX3 RNA binding protein fox-1 homolog 3
ROS Reactive oxygen species
RPMAs Reverse phase microarrays
RPPA Reverse-phase protein microarray
RFS Recurrence-free survival
SAPs Single amino acid polymorphisms
SCFAs short-chain fatty acids
SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis
SERS Surface-enhanced Raman scattering
SILAC Stable isotope labeling by/with amino acids in cell culture
SRM Selective reaction monitoring
suPAR Soluble urokinase-type plasminogen activator receptor
SWATH-MS Sequential window acquisition of all theoretical mass spectra
TCGA The Cancer Genome Atlas
TME Tumor microenvironment
TMT Tandem mass tag
TNBC Triple negative breast cancer
TOTT The Oncology Think Tank
uPAR Urokinase plasminogen activator receptor
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