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Summary
Low grain moisture at harvest is crucial for safe production, transport and storage, but the

genetic architecture of this trait in maize (Zea mays) remains elusive. Here, we measured the

dynamic changes in grain moisture content in an association-mapping panel of 513 diverse

maize inbred lines at five successive stages across five geographical environments. Genome-wide

association study (GWAS) revealed 71 quantitative trait loci (QTLs) that influence grain moisture

in maize. Epistatic effects play vital roles in the variability in moisture levels, even outperforming

main-effect QTLs during the early dry-down stages. Distinct QTL–environment interactions

influence the spatio-temporal variability of maize grain moisture, which is primarily triggered at

specific times. By combining genetic population analysis, transcriptomic profiling and gene

editing, we identified GRMZM5G805627 and GRMZM2G137211 as candidate genes underlying

major QTLs for grain moisture in maize. Our results provide insights into the genetic architecture

of dynamic changes in grain moisture, which should facilitate maize breeding.

Introduction

Maize (Zea mays L.) is an important staple crop worldwide. Total

maize production increased 10-fold over the past century due to

efforts in hybrid breeding and germplasm improvement (Duvick,

2001). However, a critical problem remains unsolved: dry matter

in maize grains spoils easily due to the excessive grain moisture at

harvest. High grain moisture contents at harvest necessitate grain

drying prior to the transport and storage of ears. This dry-down

process hinders mechanized harvesting, which substantially

reduces farmer incomes. Accordingly, low grain moisture at

harvest has become a new breeding aim worldwide, especially in

temperate maize production regions (Chai et al., 2017; Wang and

Li, 2017).

The final grain moisture at harvest is determined by two

factors: the initial moisture content at physiological maturity and

the subsequent dry-down rate in the field environment (Chase,

1964). The grain moisture at maturity in maize is primarily

controlled by genetics (Cross, 1985; De-Jager et al., 2004; Purdy

and Crane, 1967; Zhang et al., 1996), although it is also

influenced by environmental factors (Magari et al., 1997). The

dry-down rate of grain is attributable mainly to temperature

changes if the initial grain moisture exceeds 30%; otherwise, the

dry-down rate is mainly affected by relative humidity (Schmidt

and Hallauer, 1966). In the past decade, biparental population-

based linkage analysis was commonly used to explore the genetic

determinants of grain moisture in maize, and quantitative trait

loci (QTLs) controlling the trait have been detected in various

populations (Austin et al., 2000; Capelle et al., 2010; Li et al.,

2014; Liu et al., 2020; Mihaljevic et al., 2005; Sala et al., 2006;

Wang et al., 2012; Zhang et al., 2020). Due to technical

limitations, however, most experiments have involved indirect

measurements of grain moisture levels at harvest based on

estimated biomass, without considering the effects of the inner

and outer environments on grain moisture. This indirect assess-

ment has made it difficult to decipher the genetic underpinnings

of grain moisture. Notably, no gene underlying a QTL affecting

grain moisture has been cloned, likely due to the low mapping

power of biparental populations and the inherent complexity of

the trait. Thus, it remains quite challenging to elucidate the

genetics of grain moisture levels and perform gene-based

breeding related to moisture levels in maize.

In this era of high-throughput sequencing, genome-wide

association study (GWAS) using diverse natural populations and

historical recombination has become the most popular approach

to exploring quantitative agricultural traits in maize (Xiao et al.,

2017). GWAS has been used to comprehensively evaluate the

genetic architecture of complex traits such as oil content and

flowering time (Buckler et al., 2009; Li et al., 2013) and has

successfully been used to identify functional genes responsible for

significant loci (Hung et al., 2012; Liu et al., 2020a; Wang et al.,

2016; Yang et al., 2013).

Accurate and efficient measurement of grain moisture in maize

is important for both basic research and maize breeding. Breeders

often use the oven-drying method to measure grain moisture

content, but this test is time-consuming and destructive. A

mobile, flexible moisture measuring instrument has emerged as a

simple, reliable tool for measuring this important trait (Austin

et al., 2000; Capelle et al., 2010; Li et al., 2014; Liu et al., 2020;

Liu et al., 2020; Mihaljevic et al., 2005; Sala et al., 2006; Wang

et al., 2012; Zhang et al., 2020). Here, we used GE’s BLD5604, a

digital timber-moisture meter (Yang et al., 2010), to efficiently
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measure the moisture content of maize kernels in the field in real

time to assess the dynamics of moisture content across kernel

development (Figure 1a). Using this method, we carried out more

than 750,000 measurements using 513 diverse maize inbred lines

in five different environments at five developmental stages.

Analysis of this dataset provided us with a comprehensive

understanding of the dehydration process of maize kernels. We

determined that this trait is mainly controlled by genetics and a

major gene controlling grain moisture was cloned, laying the

foundation for further research.

Results

Maize grain moisture has strong spatio-temporal
variability

To comprehensively quantify the variability in grain moisture, we

performed two measurements. First, we collected transient

moisture content (MC) data at five successive stages, from 34

DAP (days after pollination) to 58 DAP. Second, we transformed

the time-series moisture data to area under the dry-down curve

(AUDDC) values; this statistical index was previously used to

measure transient moisture content and dehydration rate simul-

taneously (Yang et al., 2010). For details about phenotypic data

collection, see the Methods.

The MC data basically followed normal distribution (Figure S1),

but there was variability across times series and geographical

environments (Figure 1b and Table S2). In a specific environment,

the average MC continuously declined from the early to late

stages, but the variation in MC displayed distinct trends. For

example, in the 14JL environment, the average MC kept

decreasing, from 44.38% at 34 DAP to 29.27% at 58 DAP,

while the variation in MC increased nearly twofold in the opposite

manner. By contrast, in the 14WH environment, the average MC

and variation in MC both decreased over time. These results

indicate that the variability in MC in the population was

simultaneously influenced by time point, growing environment

and genotype–environment interaction (G × E). Three-way anal-

ysis of variance (ANOVA) suggested that the variation in moisture

was primarily affected by time point (48.53%), followed by

growing environment (28.57%), indicating that moisture is highly

sensitive to developmental stage and climate conditions. By

contrast, genotypic effect and G × E accounted for only ~6% of

overall moisture variance, followed by additional interaction

effects (Figure 1c). At each time point, the broad-sense heritabil-

ity (H2) of grain moisture was high, ranging from 0.66 to 0.82 for

MC data and from 0.66 to 0.82 for AUDDC data, respectively

(Table S2). We estimated the best linear unbiased prediction

(BLUP) value of each line across environments at each time point

for MC and AUDDC data. We detected nearly consistent variation

across five time points, perhaps due to reduced environmental

noise (Figure 1b).

GWAS decodes significant loci underlying grain
moisture in maize

To explore the genetic basis of grain moisture, we performed

GWAS for MC and AUDDC traits at each time point, including all

environmental and BLUP data. For 24 MC traits, we detected 58

significant influential loci (P < 2.0 × 10−6), with 1–7 loci per trait,

whereas 6 MC traits had no significant loci (Figure S2 and

Table S3). For 87 AUDDC traits, 130 significant loci were

detected (P < 2.0 × 10−6), with 1–7 loci per trait, whereas 3

AUDDC traits had no significant loci (Figure S3 and Table S3).

Each MC-associated locus explained 1.62–17.76% of the vari-

ance, a value slightly lower than the variance (2.39–21.39%)

explained by AUDDC-associated loci (Figure S4). This result is

reasonable given that AUDDC generally exhibited larger pheno-

typic variance than MC. Based on their physical positions, the 188

significant loci for MC and AUDDC traits were integrated into 71

unique loci (hereafter referred to as QTLs) associated with the

variability in grain moisture in maize. The 71 QTLs appeared to be

Figure 1 Dynamic variation in grain moisture in different stages and environments. (a) The measurement procedure using GE’s BLD5604 moisture meter.

(b) Phenotypic distribution of moisture content measured for each developmental stage and environment. The different graphs show the five successive

measurement stages. For each stage, the boxplots of moisture content and BLUP values were sorted by the latitude of the five geographic environments. (c)

Proportion of variance in moisture content due to different components. The variance due to genotype (G), environment (E), measurement time (T) and

pairwise interactions was estimated by three-way analysis of variance (ANOVA).
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distributed unevenly across the whole genome (Figure 2a and

Table S4). Of the 71 QTLs, 24 and 26 were uniquely detected

based on MC and AUDDC traits, respectively (Figure S5),

indicating that the variability in transient moisture content and

dehydration rate in maize may be due to distinct genetic

architectures.

Dynamics of the genetic effect is responsible for the
variability in grain moisture

To explore the contribution of QTLs and environmental factors to

the variability in grain moisture, we used a linear model

encompassing all QTLs, environment and QTL–environment

(Q × E) effects. The variability in grain moisture was strongly

affected by environmental factors (43.88–72.71%) at a single

time point, with minor contributions by QTL (6.83–12.41%) and

Q × E (3.82–8.39%) effects (Figure S6). Overall, the Q × E

tended to progressively increase over time. When we divided

the five developmental time points into the early stage (34 and 40

DAP) and late stage (46, 52 and 58 DAP), we found that 8 QTLs

interacted with the environment during the early stage, whereas

28 QTLs interacted with the environment during the late stage,

and 13 QTLs consistently interacted with the environment

throughout the dehydration process (Figure 2b). At any develop-

mental stage, the variance due to each Q × E was modest but

obviously exceeded the variance due to the main effect of the

QTL (Figure S7). These results indicate that Q × E represents a

vital resource for interpreting the variability in grain moisture in

addition to the main effects of QTLs. The early stage-specific

Q × E explained 0.21% to 0.49% of variance in grain moisture,

and the effects of the late stage-specific Q × E were similar

(0.13% to 0.91%). Notably, the constitutive Q × E appeared to

contribute 0.14% to 1.04% of variance, a value significantly

higher than that of stage-specific Q × E (P = 0.0046) (Figure 2b

and Figure S8). These findings suggest that the interactions

between QTLs and the environment are activated dynamically

from the early to late stage of the kernel dehydration process.

Moreover, the Q × E variance tended to slightly increase during

the kernel dehydration process along a developmental stage

gradient (Figure S9), indicating that grain moisture becomes more

sensitive to the environment after entering the late stage of

dehydration.

To determine how epistasis between pairwise QTLs influences

grain moisture, we built a regression model that fit all QTLs and

pairwise interaction terms. For simplicity, for each time point, we

analysed BLUP data rather than multiple environmental data. On

average, during the five time points, over half (53.13%) of the

variance in moisture content could be explained by main-effect

QTLs, followed by epistasis (30.49%) (Figure S10), highlighting the

crucial role of epistasis in grain moisture in maize. In contrast to

Q × E, epistasis tended to explain less variance along the kernel

dehydration process (Figure S10), implying that epistasis primarily

regulates grain moisture during the early dehydration stage.

Across all 3,195 possible pairwise QTLs, there were 85 to 51

significant epistatic effects detected from the early to late stages

of dehydration, with an average of 74 epistatic effects (Fig-

ure 2c). The majority of epistatic effects were detected at specific

developmental stages, suggesting that epistasis is another mech-

anism that fine tunes grain moisture in addition to Q × E. At a

specific developmental stage, epistasis could involve 1) two QTLs

that do not interact with the environment; 2) two QTLs that

interact with the environment; or 3) one QTL that interacts with

the environment and one that does not. Intriguingly, the

proportion of epistasis that involved Q × E substantially increased

during development from the early to late stages (Figure S11 and

Table S5), suggesting that more complex regulatory networks

might participate in the late dry-down stage.

Figure 2 Genetic basis of the spatio-temporal variation in moisture content. (a) Manhattan plot of GWAS for grain moisture. The 71 significant loci that

influence moisture content or AUDDC value are indicated by coloured dots. The colours (orange, red and blue) represent the three classes of significant loci

that interact with the environment at the early or late stage. (b) Variability of Q × E variance during the dehydration process. In the heatmap, the colour

indicates how this QTL interacts with the environment, including early Q × E, later Q × E, and constitutive Q × E. The colour density indicates the variance

explained by Q × E at a specific stage of dehydration. (c) Epistasis between 71 significant loci. In the circle plot, the coloured lines connecting two genomic

locations indicate significant epistasis between two GWAS loci. The colour indicates the dehydration stage in which the significance of epistasis was

detected.
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Interplay of moisture plasticity with the environment
and time gradients

The variation in additive effects across an environmental contin-

uum is typically attributed to phenotypic plasticity (Lowry et al.,

2019; Zan and Carlborg, 2019). To explore this notion, we

focused on a GWAS locus (peak as chr9.S_93812340) that was

significantly associated with moisture content in environment

14WH at 34 DAP (P = 1.59 × 10−7, MLM, n = 467) (Figure S2d).

The SNP chr9.S_93812340 significantly affected moisture content

between contrasting genotypes (AA/GG), in the 14 JL environ-

ment across all time points, and in 14WH during the early stage

and 14HeN during the late stage, but not in the remaining

environments or time points (Figure S12), indicating that this

locus likely interacts with environmental and time gradients. To

test this idea, we estimated the additive effect of this locus in

specific environments and time points (see Materials and meth-

ods). Both spatial and temporal factors interactively influenced

the additive effects of locus chr9.S_93812340 (Figure 3a). For

instance, in the 14JL environment, the additive values of this locus

continuously increased from 1.48 (34 DAP) to 3.17 (58 DAP). By

contrast, the additive value kept decreasing from early to late

development, reaching nearly zero at 58 DAP (Figure 3a).

To further explore the influence of interactive effects on QTL

features, we selected another locus that influences moisture

(peaked as chr3.S_203291222) and examined its interaction with

locus chr9.S_93812340 (epistasis) in a specific environment and

time point. The epistasis pattern dynamically changed in response

to spatial and temporal alterations (Figure 3b). In environment

14SY, the epistatic interaction was consistently significant

throughout the dehydration process. In 14JL, only one locus

appeared to influence moisture additively until the late dehydra-

tion stage, but in 14WH, the loci had a significant epistatic effect

during the initial dehydration process (Figure 3b). These results

illustrate how epistasis dynamically regulates kernel moisture

content during the dehydration process, which can be reshaped

by specific environmental factors.

Genetic correlations of grain moisture with agronomic
and metabolic traits

Many traits in the present maize association-mapping population

have been deciphered genetically and their underlying QTLs or

genes identified (Liu et al., 2017; Wen et al., 2018; Yang et al.,

2014). Of the 19 agronomic traits examined, 8 were significantly

correlated with moisture content (P < 0.01) (Figure S13 and

Table S6). Of the 55 primary metabolic traits, 33 were signifi-

cantly correlated with moisture content (P < 0.01), including 32

positive and only 1 negative correlation (Figure S14 and Table S7).

For example, early flowering was strongly correlated with a rapid

moisture dry-down rate, and larger kernel size was correlated

with a higher moisture content at harvest. In total, we detected

41 moisture-related traits (P < 0.01) associated with 35 previ-

ously detected GWAS loci associated with agronomic traits (Liu

et al., 2017; Wen et al., 2018; Yang et al., 2014). Notably, 9 of

the 35 loci affected moisture content during at least four stages

(ANOVA, P < 0.01) (Figure 4a); these loci might also regulate

kernel size, ear size or the contents of amino acids and other

metabolites. For example, the GG genotype of

chr1.S_170961872 simultaneously regulates both traits, as it

increases kernel width by 0.76 mm and moisture content by

1.54–2.4% relative to the AA genotype (Figure S15). We also

assessed the effects of the 71 loci controlling moisture content on

agronomic and metabolic traits (P < 0.01). Of these, 12 moisture-

related QTLs had absolutely no effect on any agronomic trait,

while 8 QTLs did not affect any metabolic trait (Figure 4b).

Notably, 56.34% of moisture-related QTLs affected more than

15% of agronomic traits, but only 11.27% of moisture-related

QTLs affected more than 15% of metabolic traits (Figure 4b).

Identification of key genes controlling grain moisture in
maize

A GWAS locus (peak at chr9.S_93812340) on chromosome 9 was

significantly associated with moisture content (P = 1.59 × 10−7,

MLM, n = 467) (Figure 5a). GRMZM5G805627, encoding a

maize cryptochrome circadian regulator 1 homolog (hereafter

called CRY1-9), is the only gene within this 100 kb region (50 kb

upstream and downstream of the lead SNP) according to the B73

reference genome (Figure 5b and c). B73 transcriptomic profiling

data revealed that CRY1-9 is specifically and highly expressed in

maize endosperm from 6 DAP to 10 DAP (Figure S16) (Chen

et al., 2014). Furthermore, GWAS detected a cis eQTL (peak at

chr9.S_93812706) that regulated CYR1-9 expression in 15 DAP

kernels (P = 7.14 × 10−35, MLM, n = 341) (Figure 5D). By con-

ditioning chr9.S_93812706 as a covariate, the cis eQTL for CYR1-

9 expression was still detected, where chr9.S_93812340

appeared to be the second most significant loci

(P = 1.92 × 10−9, MLM, n = 341) (Figure 5e). These results

suggested that the locus chr9.S_93812340 simultaneously

affected CRY1-9 expression (P = 4.42 × 10-22) (Figure 5f) and

moisture content (P = 9.99 × 10−4) (Figure 5g). But we’re not

able to detect direct correlation between CYR1-9 expression and

moisture content (r = 0.029, P = 0.29; Figure S17). Other

genetic elements, like siRNA, lncRNA within the 100kb region,

may also serve as genetic factors that coordinate grain moisture

content. In brief, moisture content is controlled by a major QTL on

chromosome 9, which may be associated with the regulation of

CYR1-9 gene expression. Nevertheless, further experiments are

needed to validate and understand the function of this gene.

We detected another GWAS locus (peak at

chr7.S_132808190) on chromosome 7 that influences AUDDC

(AUDDC_5_2, AUDDC_5_3, AUDDC_5_4, AUDDC_4_3 and

AUDDC_4_2) (Figure 6a and Table S4). Three genes were located

within a 100 kb region of the lead SNP based on the reference

genome. Of these, GRMZM2G137211 encompassed the non-

synonymous SNPs with the most significant effects

(chr7.S_132808190 and chr7.S_132808253) (P = 6.34 × 10−7

and P = 8.3 × 10−7) (Figure 6b). Notably, this gene is highly

expressed in immature leaf (V9) and innermost husk (R1) tissue in

B73 (Sekhon et al., 2011). We selected GRMZM2G137211 as the

candidate gene responsible for this significant AUDDC locus. This

gene encodes a gar2-related nucleolar protein and is therefore

referred to as GAR2 hereafter. Resequencing the region near

GAR2 revealed an 8-bp InDel polymorphism (GAACATCA/-) in the

5’ untranslated region (5’UTR) (Figure 6c) that significantly

influences AUDDC (P = 2.37 × 10−7, ANOVA, n = 465) (Fig-

ure 6e). Given the high LD between this 8 bp InDel and the lead

SNP, we speculated that the 8 bp InDel is likely the causal variant

underlying GAR2 for AUDDC (Figure 6d).

To verify this notion, we constructed an F2:3 population by

crossing two inbred lines, GEMS2 and ZHENG58, based on the

presence or absence of the 8bp InDel. The progeny lines without

the8 bp insertion exhibited significantly higherAUDDCvalues than

those with the 8 bp insertion (P = 0.011, ANOVA, n = 141)

(Figure 6f). To further validate the functionofGAR2, weperformed
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a gene editing experiment via CRISPR/Cas9 in maize variety

KN5585 (Liu et al., 2020). Two sgRNAs were used to target the

coding region of GAR2 at a 376 bp distance (Figure 6g). The

positive edited lines (n = 15), carrying the premature termination

of GAR2 protein and a loss-of-function mutation (Figure 6h), had

significantly higher AUDDC values than the negative lines (n = 9)

(P = 9.9 × 10−5, ANOVA, n = 24) (Figure 6i), with similar effects

on moisture content (Figure S18). These results confirm the notion

that GAR2 is responsible for the QTL on chromosome 7 that

negatively regulates grain moisture in maize. The underlying

molecular mechanism should be further explored.

Discussion

Grain moisture at harvest is influenced by grain moisture at

physiological maturity and the field dry-down rate. Grain

moisture is crucial for determining the time of physiological

maturity, but it is difficult to accurately estimate this parameter.

Black-layer formation (Carter and Poneleit, 1973; Daynard and

Duncan, 1969) and milk-line progression (Afuakwa and Crook-

ston, 1984) were previously used to estimate physiological

maturity in maize, but these techniques appear to be subjective

and are affected by environmental conditions (Daynard, 1972).

The relationship between days to silking and physiological

maturity has been extensively explored to estimate the develop-

mental status of a maize. The interval from silking to physiological

maturity was estimated to be 60 days (Hanway, 1963) and

53–61 days (Hillson and Penny, 1965). Gunn and Christensen

(1965) suggested that this interval ranges from 45 days for early-

maturing hybrids to 70 days for later-maturing hybrids. Jin et al.

(2002) studied 42 maize inbred lines and 8 hybrids and

determined that late and mid-late lines reach physiological

Figure 3 Effect spectrum of a major QTL and epistasis due to the effects of dehydration and the environment. (a) Additive effect of a major moisture-related

QTL (peak at chr9.S_93812340). The colour indicates the environment, and the size indicates the QTL effect in a specific environment. (b) Epistatic effect

between two moisture-related QTLs (peaks at chr9.S_93812340 and chr3.S_203291222). The x-axis represents the moisture content of lines grouped by

homozygous genotypes (AA/GG) at chr9.S_93812340, while the solid and dotted line represent the homozygous genotypes (CC/TT) at chr3.S_203291222.

The colour of the line indicates the environment in which epistasis was detected.
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maturity at 50–60 days after silking, and mid-early materials

reach physiological maturity at 45–50 days after silking. These

findings suggest that it may be impossible to determine the

absolute time of physiological maturity because this parameter is

affected by environmental factors and genetic background.

Therefore, in the current study, we measured grain moisture in

each line multiple times (every five days) beginning at 34 days

after pollination to cover the entire period of kernel development

from the early stage to the maturity or post-maturity stage. This

analysis allowed us to systematically dissect the dynamics of grain

moisture during kernel development.

Moisture meter BLD5604 was used in this experiment, which

enable to continuous measurement because this was a nonde-

structive procedure. It’s worth noting that, the accuracy of

electrical conductivity based moisture meter may be biased by

some factors, such as the size, composition of seed and the

thickness of kernel pericarp. Therefore, it is imperative to develop

simple and efficient measuring methods and instruments if we

want to measure corn grain moisture more accurately and

effectively.

We collected grain moisture data from five geographic

locations, representing the temperate Chinese Corn Belt over a

latitudinal gradient (Table S1). In general, grain moisture

decreased more rapidly in the low-latitude environment, presum-

ably due to temperature and humidity conditions during the

dehydration process (Schnidt and Hallauer, 1966). Integrating

multiple GWAS data per environment and developmental stage,

we identified 71 QTLs that influence grain moisture in maize. For

each developmental stage, each QTL had small effects on

moisture variance and jointly explained ~10% of moisture

variation. These results indicate that grain moisture is controlled

by many loci with minor effects, which could not have been

detected using a small population. We also found that Q × E had

important effects on grain moisture variation, accounting for

nearly one half of the main effects of QTLs. Intriguingly, Q × E

contributed more when kernel dehydration switched from early-

to late-stage moisture, while different sets of Q × E appeared to

be specifically triggered in the early or late stage (Figure 2b and

Figure S8). By contrast, pairwise QTL epistasis contributed

considerably to moisture variance, that is, up to 42.61% for the

early dehydration stage, which is comparable to the main effects

of QTLs. Taken together, our genetic analysis based on QTL

detection demonstrated that grain moisture is a typical polygenic

trait that is interactively influenced by genotype and spatio-

temporal factors.

Field dry-down occurs due to two factors: stress dehydration

due to specific morphological characteristics (i.e. husk length, ear

length, number of kernel rows, ear height and plant height),

environmental conditions (humidity and temperature), and phys-

iological dehydration during seed maturation due to phytohor-

mones and dry matter in kernels; the latter is the essence of

kernel dehydration. The process of kernel dehydration inhibits

early embryo germination and the biosynthesis of specialized

proteins that protect the embryo from the damaging effects of

desiccation and enhance embryo viability during strong dehydra-

tion. The phytohormone abscisic acid (ABA) plays crucial roles in

seed development and maturity and establishing embryo dor-

mancy. White maize generally has higher grain moisture content

at harvest than yellow maize (Kang and Zuber, 1989) because

white maize lacks phytoene synthase (PSY), an enzyme involved

in both carotenoid and ABA biosynthesis. In summary, it is

important to understand the genetic basis of maize kernel

dehydration; breeders use this knowledge to better select lines

with lower grain moisture at harvest. However, the geographic,

environmental and morphological characteristics that influence

moisture dry-down have to be considered.

In traditional breeding, rapidly dehydrating maize is empirically

selected based on morphological characteristics, such as early

Figure 4 Genetic correlations of grain moisture with agronomic and metabolic traits. (a) A network of moisture content, agronomic and metabolic traits

mediated by shared important loci. The circles and hexagons represent significant loci and traits, respectively. Red indicates moisture content, while yellow

and green indicate agronomic and primary metabolites, respectively. The thickness of the line represents the degree of significance (–logP value). (b) The

proportion of other traits affected by the detected moisture-related QTLs. The upper panel shows the influence of each moisture-related QTL on agronomic

traits (n = 19), while the lower panel shows the metabolic traits (n = 55) (P < 0.01). The red horizontal line indicates a proportion of 15%, which was used

as a threshold to determine whether a moisture-related QTL obviously affected an agronomic or metabolic trait.
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maturity, as heading date is positively correlated with grain

moisture at harvest (Figure S13) (Jin et al., 2002). It makes sense

to perform this indirect selection because there are various

genetic correlations between morphological traits and grain

moisture. Indeed, many QTLs detected in the present study

colocalize with agronomic QTLs (Figure 4a). Using the newly

detected QTLs for grain moisture, it should be possible to directly

select favourable alleles for the genetic improvement of maize

with the rapid-dehydration trait, especially for GAR2, which has

been functionally confirmed. Surprisingly, most moisture-related

QTLs identified in this study did not influence the majority (>85%)

of metabolic traits, that is GAR2 and CRY1-9 did not affect the

majority of metabolic traits but had some effects on agronomic

traits (Figure 4b and Figure S19). Therefore, the QTL sets

discovered in the present study could be useful for improving

grain moisture without affecting the nutritional quality of kernels.

Yet, more than half of these QTLs had significantly effects on

agronomic traits simultaneously, likely due to QTL pleiotropy or

linkage drag. The traditional approach of marker-based selection

of available allelic variants may not be suitable for utilize these

QTLs that influence multiple traits. Saturation mutagenesis of

gene promoters and gene editing of key QTLs or genes represent

powerful approaches for manipulating multiple correlated traits

for precise breeding (Eshed and Lippman, 2019; Liu et al., 2020b).

Materials and methods

Plant materials and field trials

A maize (Zea mays L.) association panel of 513 genetically diverse

inbred lines (Yang et al., 2011) was used to dissect the dynamic

variation in grain moisture. The 513 inbred lines were planted in a

randomized block design with one-row plots and two replications

across five geographical locations in China in two years: Jilin

(14JL; Gongzhuling, E 124°690, N 43°790), Liaoning (14SY;

Shenyang, E123°430, N 41°810), Henan (14HeN; Xinxiang, E

113°910, N 35°310) and Hubei (14WH; Wuhan E 114°320, N

30°580) in 2014 and Hainan (13HN; Sanya, E 109°510, N 18°250)
in 2013. Temperature and weather data were collected during

data collection at all five geographical locations (Table S1). Field

management followed standard procedures.

Phenotypic data collection and statistical analysis

For each line, the pollination date was recorded. For each

location, the transient moisture content (MC) was measured at

Figure 5 Candidate gene of a major QTL for moisture content. (a) Manhattan plot of GWAS for moisture content (34 DAP) at location 14WH. The lead

SNP is indicated by a red dot. (b) Regional plot for the QTL on chromosome 9. The upper panel shows the p values of SNPs surrounding a 1-Mb region

upstream and downstream of the lead SNP. The lower panel indicates a 100 Kb region covering 50 Kb upstream and downstream of the lead SNP, where

only one annotated gene (GRMZM5G805627, also named CRY1-9) was found based on the maize reference genome. (c) Gene model of CRY1-9. Solid

boxes indicate exons, open boxes indicate untranslated regions (UTRs), and lines connecting the exons indicate introns. The red stars mark the positions of

chr9.S_93812340. (d) Manhattan plot of GWAS for CRY1-9 expression. The two key SNPs are indicated by red dots. (e) Regional Manhattan plot of

conditional GWAS for CRY1-9 expression. The GWAS for gene expression was repeated by fitting the original lead SNP (chr9.S_93812706) as a covariate.

(f) The influence of chr9.S_93812340 on CRY1-9 expression. (g) The influence of chr9.S_93812340 on moisture content. The significance of difference

between two genotypes was evaluated using Student’s t-test.
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five successive stages – 34, 40, 46, 52 and 58 days after

pollination (DAP) – using GE’s BLD5604 moisture meter. At each

stage, five individuals were measured for each line, with two

measurements performed per individual (Figure 1a). The mean of

ten individual moisture values was used as the MC value for each

line.

We also used the area under the dry-down curve (AUDDC)

(Yang et al., 2010) to efficiently quantify the dehydration rate.

The formula used to calculate AUDDC is:

AUDDC k s¼∑
k

i¼s

γi þ γiþ1

� �
=2

� �
tiþ1� tið Þ:

where, s < k and s, k ε {1,2,3,4,5}, and ti ε {34,40,46,52,58}

where γ is the converted meter reading, i is the ith measured time

and ti is the corresponding days after pollination. Therefore, ten

AUDDC traits were obtained based on measurements at five time

points: 34–40 DAP (AUDDC_2_1), 40–46 DAP (AUDDC_3_2),

46–52 DAP (AUDDC_4_3), 52–58 DAP (AUDDC_5_4), 34–46
DAP (AUDDC_3_1), 40–52 DAP (AUDDC_4_2), 46–58 DAP

(AUDDC_5_3), 34–52 DAP (AUDDC_4_1), 40–58 DAP

(AUDDC_5_2) and 34–58 DAP (AUDDC_5_1).

For each stage, the location term was treated as the environ-

mental factor influencing the MC and AUDDC data. A mixed liner

model was built by fitting intercept as the fixed effect and

genotype and environment as random effects. The variance

components of genotype and environment were estimated based

on restricted maximum likelihood (REML) using the R package

‘lme4’ (R Core Team, 2013). The best linear unbiased prediction

(BLUP) value for each line was obtained. The broad-sense

heritability was calculated as:

H2 ¼ σ2g
σ2gþσ2e=n

where σ2g is the genotypic variance, σ2e is the residual variance,

and n is the number of environments. All data from each

environment and BLUP were used for subsequent analyses,

including 30 MC and 60 AUDDC traits.

Genome-wide association analysis

Genome-wide association study (GWAS) was performed for 90

grain moisture-related traits using the compressed mixed linear

model (Zhang et al., 2010) implemented in TASSEL V5.0 software

Figure 6 Identification of GAR2, a gene responsible for AUDDC in maize. (a) GWAS of the BLUP values for AUDDC_5_2. AUDDC_5_2 indicates the area

under the dry-down curve from 40 DAP to 58 DAP. The lead SNP underlying the QTL on chromosome 7 is indicated by a red dot. (b) Regional plot of the

major QTL on chromosome 7. The top panel shows the p values of SNPs within a 15-Mb region surrounding the lead SNP. The two most significant SNPs are

indicated by red dots (P < 2.0 × 10−6). The bottom panel indicates a 100 Kb region surrounding the lead SNP that only contains three annotated genes

(arrow) based on the maize reference genome. The red arrow indicates the candidate gene (GRMZM2G137211, also named GAR2) responsible for this

AUDDC QTL. (c) Gene model of GAR2. Solid boxes indicate exons, while open boxes indicate untranslated regions (UTRs) and lines that connect exons

represent introns. The red stars represent the two most significant SNPs that could cause amino acid substitutions (Val-Ala and Thr-Ser). The red triangle

indicates the position of an 8 bp InDel (GAACATCA/-) identified by gene resequencing. The red arrows indicate the positions of the two sgRNAs used for

CRISPR-Cas9 gene editing. (d) LD pattern of the GAR2 region. The heatmap indicates the pairwise r2 values among the polymorphisms in a 0.1-Mb region

upstream and downstream of the lead SNP. The two most significant SNPs and the 8 bp InDel are indicated by red lines. (e) The effect of the 8 bp InDel on

AUDDC values in the association-mapping population. (f) The effect of the 8 bp InDel on AUDDC values in the F2:3 population. (g) Gene editing using

CRISPR/Cas9. The red bases and line segment show variation and the blue bases show the PAM site. (h) Premature protein termination due to gene

knockout. (i) The different AUDDC values between wild type and GAR2-edited types via CRISPR-Cas9. The comparison between different genotypes is

based on Student’s t-test.
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(Bradbury et al., 2007). The mixed linear model allows the

significance of a correlation between genome-wide SNPs and

target trait variation to be tested by controlling population

structure and related kinship. The 1.25 million high-quality SNPs

(MAF > 5%) and the estimated population structure and kinship

in the 513 diverse inbred lines were used in a previous study of

agronomic traits (Gui et al., 2020; Liu et al., 2017a). To reduce

the redundancy of the SNP information, we estimated the

effective number of independent tests (Ne) of the 1.25 million

SNPs to be 490,547 based on linkage disequilibrium using GEC

software (Li et al., 2012). Thus, the p value of 2.0 × 10−6 (P = 1/

Ne, Ne = 490,547) was determined to be the threshold for

declaring a significant association according to the adjusted

Bonferroni method (Li et al., 2012). If the significant SNPs for one

trait were located close together (<50Kb), they were treated as a

single locus or QTL, where the most significant SNP was

considered to be the lead SNP. For each QTL detected, a 100Kb

region surrounding the upstream and downstream 50 Kb regions

of the lead SNP was searched for candidate genes underlying

grain moisture in maize.

Publicly available RNA-seq data for maize kernel tissue after 15

DAP were used in this study. These data were obtained from 368

lines, a subset of the 513 lines used in the present study, covering

28,769 annotated maize genes (Fu et al., 2013). Based on the

expression levels of candidate genes responsible for grain

moisture, we carried out expression QTL (eQTL) analysis to

explore the genetic variants influencing gene expression based on

the mixed linear model.

Candidate gene resequencing

The GAR2 sequence was obtained from the B73 reference

sequence v2. Primers were designed using Primer-BLAST in the

NCBI website to cover the 5’ or 3’ untranslated region (UTR) of

the gene (Table S8). The PCR products were sequenced to

identify the candidate functional sites. The sequences were

aligned using BioEdit. A total of 29 SNPs and 4 InDels were

detected in the association mapping, most of which did not affect

the phenotype statistically, except for an 8 bp InDel based on

candidate gene association analysis (P < 0.01).

Cross-validation using a different population

To validate the function of GAR2, we constructed an F2:3
segregation population from a cross between two inbred line

(GEMS2 and Zheng 58). The parental lines were polymorphic at

the 8 bp InDel located in the 5’UTR of GAR2 based on GWAS

results. The segregation population of 141 lines was planted in a

randomized block design with one-row plot and one replication

at Baoding in 2015 (Hebei Province, E115°470, N 38°870). The
phenotypic data for grain moisture were collected as described

above. A primer to detect the 8 bp InDel (Table S8) was used to

genotype all inbred lines. Mean grain moisture was compared

between the lines with or without the 8 bp insertion based on

Student’s t-test (P < 0.05).

CRISPR/Cas9-mediated gene editing

To validate GAR2 as the causal gene responsible for the QTL on

chromosome 7, we edited the gene sequence using the CRISPR-

Cas9 system. We designed two guide RNAs (gRNAs) targeting the

second and third exons of GAR2 using CRISPR-P (Liu et al.,

2017b). The vector carrying the two gRNAs was introduced into

immature KN5585 embryos by Agrobacterium-mediated trans-

formation by the WIMI Biotechnology Co., Ltd. Following self-

pollination of a T1 individual that is heterozygous at GAR2, a total

of 24 T2 CRSPR-Cas9 edited seedlings were obtained (including

positive and negative control plants), which were planted in a

randomized block design with one-row plots and one replication

at Sanya in 2019, Hainan province (E 109°510, N 18°250). DNA
was extracted from each individual at the seedling stage. Primers

were designed to amplify the region including the two gRNAs

within the gene (Table S8). Sanger sequencing of the PCR

products was used to identify the sequence variant type. Grain

moisture in T2 individuals was measured at three stages after

pollination and subjected to statistical analysis between edited

and wild-type plants (Student’s t-test, P < 0.05).

Epistasis and interactions between QTLs and the
environment

We subjected the newly detected QTLs to epistasis analysis based

on BLUP values of grain moisture. For each developmental time,

the two lead SNPs of each pair of QTLs were used to build a full

regression model that included interaction term and two main-

QTL effect terms Another reduced model that merely included

two main-effect QTLs was compared with the full model to test

the significance of a epistasis and the explained variance. The

multiple regression model that fitted all main-effect QTLs and all

pairwise QTL terms was used to estimate the joint variance

explained by overall QTLs and epistasis.

For each developmental time, we assessed the interactions

between QTL and environment (Q × E) by regressing grain

moisture data to the Q × E term with controlling the main-effect

QTL and environmental effect. The reduced model only fit a main-

effect QTL and environmental effect. For each QTL, the compar-

ison between the full model and reduced model allowed us to

estimate the significance and explained variance of each Q × E

term. The joint variance explained by overall Q × E for grain

moisture per each developmental time was estimated using a

multiple regression model. All analyses of epistasis and Q × E

effects were implemented with R software (R Core Team, 2013).

All genotypic and phenotypic data were deposited publicly in

MAIZEGO and ZEAMAP databases. In MAIZEGO, the 1.25M SNP

genotypic data was available at the section ‘Genotypic Data’ and

the grain moisture data can be accessed at the section ‘Pheno-

typic Data’ (http://www.maizego.org/Resources.html). In ZEA-

MAP, the genotypic and phenotypic data can be accessed from

the links (http://www.zeamap.com/ftp/02_Variants/SNPs/Maize

go_1.25M_SNPs/) and (http://www.zeamap.com/ftp/03_Genetic

s/Phenotype/Maizego_Moisture_and_AUDDC/).
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