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Simple Summary: Around 30% of men treated with adjuvant therapy experience recurrences of
prostate cancer (PC). Current monitoring of the relapse of PC requires regular postoperative prostate-
specific antigen (PSA) value follow-up. Our study aims to identify potential multiomics biomarkers
using modern computational analytic methods, deep learning (DL), similarity network fusion (SNF),
and the Cancer Genome Atlas (TCGA) prostate adenocarcinoma (PRAD) dataset. Six significantly in-
tersected omics biomarkers from the two models, TELO2, ZMYND19, miR-143, miR-378a, cg00687383
(MED4), and cg02318866 (JMJD6; METTL23) were collected for multiomics panel construction. The
difference between the Kaplan–Meier curves of high and low recurrence-risk groups generated from
the multiomics panels and clinical information achieve p-value = 2.97 × 10−15 and C-index = 0.713,
and the prediction performance of five-year recurrence achieves AUC = 0.789. The results show that
the multiomics panel provided valuable biomarkers for the early detection of high-risk recurrent
patients, and integrating multiomics data gave us the power to detect the complex mechanisms of
cancer among the interactions of different genetic and epigenetic factors.

Abstract: This study is to identify potential multiomics biomarkers for the early detection of the
prognostic recurrence of PC patients. A total of 494 prostate adenocarcinoma (PRAD) patients
(60-recurrent included) from the Cancer Genome Atlas (TCGA) portal were analyzed using the
autoencoder model and similarity network fusion. Then, multiomics panels were constructed
according to the intersected omics biomarkers identified from the two models. Six intersected
omics biomarkers, TELO2, ZMYND19, miR-143, miR-378a, cg00687383 (MED4), and cg02318866
(JMJD6; METTL23), were collected for multiomics panel construction. The difference between the
Kaplan–Meier curves of high and low recurrence-risk groups generated from the multiomics panel
achieved p-value = 5.33 × 10−9, which is better than the former study (p-value = 5 × 10−7). Addition-
ally, when evaluating the selected multiomics biomarkers with clinical information (Gleason score,
age, and cancer stage), a high-performance prediction model was generated with C-index = 0.713,
p-value = 2.97 × 10−15, and AUC = 0.789. The risk score generated from the selected multiomics
biomarkers worked as an effective indicator for the prediction of PRAD recurrence. This study helps
us to understand the etiology and pathways of PRAD and further benefits both patients and physi-
cians with potential prognostic biomarkers when making clinical decisions after surgical treatment.
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1. Introduction

Prostate cancer (PC) is the second most frequent cancer diagnosis made in men and
the fifth leading cause of death worldwide, with a rapidly rising number of patients in the
past few decades. Based on GLOBOCAN 2018 estimates [1], 1,276,106 new cases of PC
were reported globally in 2018, with higher prevalence in developed countries. According
to an estimate by the American Cancer Society [2], there were about 191,930 new cases of
PC and about 33,330 deaths from PC in 2020 in the U.S.

At present, standard treatments of PC include a prostatectomy, radiation therapy, or
both. Despite these aggressive approaches, 25–40% of treated men experience recurrences
of PC [3]. R factors associated with PC recurrence include the prostate-specific antigen
(PSA) level in serum, the Gleason score of the prostate specimen, the patient’s age, and
the cancer stage. The most common early sign of recurrent PC is a rising serum PSA level.
Although this requires regular postoperative follow-up, routine monitoring of the serum
PSA is the mainstream method for detecting early PC recurrence in current clinical practice.
As the data collecting technology advances with time, more and more omics data are
being collected for cancer research, such as the Cancer Genome Atlas (TCGA), International
Cancer Genome Consortium (ICGC), and Gene Expression Omnibus (GEO) databases [4–6].
With the help of this big data support, we can obtain better predictive performance results.
Meanwhile, machine learning has been growing at an incredible pace these days, and many
types of research using techniques of deep learning have been skyrocketing.

After a survey of previous works (shown in Table 1), we discovered that few studies
analyzed the recurrence of PC with multiomics data using computational methods. Our
study can fill in the gap of lacking prostate adenocarcinoma (PRAD)-related research using
multiomics data.

Table 1. Comparisons of studies integrating omics data for prognostic predictions.

Title Cancer Type Sample Size Omics Data Prediction Type Methods Reference

Predicting clinical
outcomes from

large-scale cancer
genomic profiles with
deep survival models

Pan-glioma
(LGG/GBM),

BRCA, KIPAN

Clinical and molecular
data from TCGA

Gene expressions
from TCGA

Survival analysis,
established deep

survival models to
improve prognostic

accuracy

Deep learning
(DL) and
Bayesian

optimization
methods

Yousefi et al.,
September

2017 [7]

Deep learning-based
multi-omics integration

robustly predicts
survival in liver cancer

HCC 360 patients from
TCGA

RNA sequencing,
miRNA sequencing,

methylation data
(TCGA)

Survival prognostic
predictions

DL-based model,
validated on five
external datasets

Chaudhary
et al., March

2018 [8]

Deep learning-based
multi-omics data

integration reveals two
prognostic subtypes in

high-risk neuroblastoma

Neuroblastoma
407 patients from

TARGET, 498 patients
from SEQC

Gene expression, copy
number alterations

(TARGET and SEQC)

Identified two
subtypes with

significant survival
differences

DL-based model,
validated in two

independent
datasets

Li Zhang
et al.,

October 2018
[9]

Integrative network
analysis of TCGA data

for ovarian cancer
Ovarian cancer 1214 Patients from

TCGA

Gene expression,
methylation data,

miRNA, copy number
alterations (TCGA)

Predicted clinical
outcomes and

elucidated interplay
between different

levels

A new
graph-based
framework

Zhang et al.,
December
2014 [10]

Similarity network
fusion for aggregating

data types on a
genomic scale

GBM, BIC,
KRCCC, LSCC,

COAD

Patients ranging from
92 to 215 depended on

cancer type profiled
by TCGA

mRNA expression,
DNA methylation,
miRNA expression

data (TCGA)

Prediction of patients’
survival risk analysis

Similarity
network fusion

Wang et al.,
January 2014

[11]

TCGA, the Cancer Genome Atlas; miRNA, microRNA; TARGET, therapeutically applicable research to generate effective treatments; SEQC,
sequencing quality control; LGG, low grade glioma; GBM, glioblastoma multiforme; BRCA, breast cancer; KIPAN, pan-kidney; HCC,
hepatocellular carcinoma; BIC, breast invasive carcinoma; KRCCC, kidney renal clear cell carcinoma; LSCC, lung squamous cell carcinoma;
COAD, colon adenocarcinoma; mRNA, messenger RNA.
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Yousefi et al. [7] focused on using deep learning (DL) and Bayesian optimization
methods for predicting cancer outcomes. By obtaining clinical and molecular data from
multiple cancer datasets, including pan-glioma (LGG/GBM), breast (BRCA), and pan-
kidney (KIPAN), from the Cancer Genome Atlas (TCGA), this study illustrated the success
of transferring clinical information across diseases by deep survival models to improve
prognostication. Chaudhary et al. [8] attempted to identify robust survival subgroups of
hepatocellular carcinoma (HCC). Two optimal subgroups of patients were identified with
significant survival differences, of which frequent TP53 inactivation mutations, higher
expression of stemness markers (KRT19 and EPCAM) and the tumor marker BIRC5, and
the activation of Wnt and Akt signaling pathways are associated with the more aggres-
sive subtype.

Zhang et al. [9] adopted a DL algorithm, autoencoder, to integrate multiomics data
obtained from TCGA, and the K-means clustering algorithm was applied to classify two
subtypes with significant survival differences. In the end, this study indicated that in
the ultra-high-risk subtype, the occurrence of amplification of the MYCN gene is more
frequent, in agreement with the overexpression of MYC/MYCN targets in this subtype.
Zhang et al. [10] illustrated an integrative framework to recognize ovarian cancer-related
genetic and epigenetic features and to evaluate the causal relationships among these fea-
tures based on TCGA data. They discovered a set of features of 13 hub genes, including
ARID1A, C19orf53, CSKN2A1, and COL5A2, and two genes associated with glycoprotein
synthesis, PSG11 and GALNT10, that were highly accurately predictive of the overall sur-
vival times of ovarian cancer patients. Wang et al. [11] performed an innovative approach
called similarity network fusion (SNF) to create a comprehensive view of a given disease
with multiomics data by network constructions of samples for each input data type. They
then fused the networks into a single network that represented the full spectrum of the
underlying data. They discovered better outcomes for survival predictions and subtype
identification compared to other integrative analyses using only a single data type.

Herein, we propose modern computational analytical methods, the autoencoder
model, as our adopted DL algorithm, and SNF to create a comprehensive view of the
connections among methylation-related gene expressions, micro (mi)RNA, and gene ex-
pressions, and differentiate patients at a high risk of recurrence with the prediction model
to better predict the prognosis of PC. The autoencoder model is an artificial neural network
comprised of an encoder and a decoder. The most important attribute of the autoencoder
model [12] is that it can be used to learn a compressed representation that better captures
properties that reflect the variety of patients’ prognoses. On the other hand, SNF is a
computational method for data integration, which iteratively integrates each individual
network into a single fused network to create a comprehensive view of a biological process
in a given disease.

2. Materials and Methods

We applied two innovative computational analyses, the autoencoder model and SNF,
on PRAD patients to help better predict disease recurrence. Our workflow of methods (as
shown in Figure 1) was divided into two parts: one part focused on identifying recurrent
biomarkers based on their integration of omics information, and the other constructed a
prediction model according to recurrence-associated omics features.

2.1. Data Collection and Preprocessing

The data we used were extracted from TCGA portal (https://tcga-data.nci.nih.gov/
tcga/ (accessed on 15 November 2020)). The dataset was composed of 494 PRAD samples
with all level-3 omics data and clinical information, including age, time to recurrence, TNM
stage, PSA value, and Gleason score. (Table S1).

Omics features were omitted if zero or if values were missing. Each sample was
normalized using the standardNormalization function in the SNFtool package [11] before

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
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further calculation. Integration of the input dataset was conducted with R program-
ming software.

Figure 1. Overview of the study workflow. TNM, tumor, node, metastasis status; PSA, prostate-
specific antigen.

2.2. SNF Construction

First, SNF was used to construct sample similarity matrices for each of the omics
data types (gene expression, methylation-related genes, and miRNA) using pairwise
correlations. Then, we set the number of neighbors to 20 and the hyperparameter sigma to
0.5 to transform sample similarity matrices to sample similarity graphs where nodes were
samples and edges represented samples’ pairwise similarities.

Next, we ran the sample network fusion for 20 iterations, updating each of the sample
similarity networks with information from the other networks, making them more similar.
At last, the final fused network of samples, to which the SNF process had converged,
generated optimal numbers of subgroups among patients according to spectral clustering.

We implemented the SNFtool package in R programming software to conduct the
graphical integration analysis [11].

2.3. DL Framework

Three preprocessed TCGA PRAD omics datasets with a total of 494 patients were
stacked into a new matrix before being input into the autoencoder model. Next, we
applied a classic autoencoder model with three hidden layers (of 500, 200, and 500 nodes,
respectively), of which the 200-node bottleneck layer represented new features. Then,
among these 200 new features, we selected 53 features (with the Cox-PH model, p < 0.05)
that were associated with the attribute of time to recurrence.

We trained the autoencoder model using a gradient descent algorithm, the tanh
activation function, five epochs, a batch size of 32, and a learning rate of 1 × 10−6. The
parameters of L1 and L2 regularization were set to 0.0001 and 0.001, respectively.

The data integration analysis of the autoencoder model was implemented in R pro-
gramming software with the ANN2 package [9].

2.4. Identification of Recurrence-Associated Variables and Subgroups

Univariate Cox regression analysis: after the autoencoder model reduced the initial
number of features to 200 new nodes acquired from the bottleneck layer, we built a
univariate Cox-PH model and selected nodes that were significantly associated with time
to recurrence (p < 0.05). We built a Cox-PH model using the R survival package.
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K-means clustering algorithms for the autoencoder model: we then used these
recurrence-associated nodes to cluster samples using the K-means clustering algorithm.
The optimal number of clusters was determined according to two metrics: the silhouette
index [13] and elbow methods [9].

Spectral clustering algorithms for SNF: as for the SNF portion, we applied the spectral
clustering function in the R SNFtool package to cluster the samples. The optimal number
of clusters was estimated with two heuristics: Eigen-gaps and rotation cost methods.

2.5. Functional Enrichment Analysis of Recurrence-Associated Variables

Identification of differentially expressed omics data: to identify genes, methylation-
related genes, and miRNAs that were differentially expressed between the high-risk and
low-risk subgroups of recurrence, we calculated the average value for each feature in each
subgroup. Next, we implemented the Wilcoxon rank-sum test in R programming to search
for the top differentially expressed features between the two subgroups.

Functional analysis: GeneGO-MetaCore [14] (http://www.genego.com/metacore.php
(accessed on 25 January 2021)): differentially expressed genes (DEGs) between the two
subgroups were uploaded to MetaCore from Clarivate. The database in MetaCore is
unique and highly accurate, which is manually corrected. p values were calculated by
the hypergeometric distribution in MetaCore to assess the statistical significance of the
enrichment pathways and diseases (by biomarkers) and multiple test corrections using
false discovery rate adjustments.

2.6. Evaluation of the Discrimination Power between the Autoencoder Model and SNF

Two metrics (C-index and log-rank p values) were applied for the purpose of as-
sessment. They could genuinely reflect the predictive accuracy of the recurrence in our
identified subgroups.

Concordance index: the concordance index (C-index) is defined as the proportion of
concordant pairs divided by the total number of possible evaluation pairs [15], and it is
based on the Harrell C statistic [16]. The method for calculating the C-index is to randomly
pair up samples from the data, and if one with an actual shorter survival time presents a
shorter predicted survival time or lower predicted survival probability than the other, this
means that the prediction result is in conformity with the actual result. We constructed
the Cox-PH model and calculated the C-index using the R survival package. We assessed
the predictive accuracy of the recurrence subgroup according to the C-index when higher
values indicated better discrimination.

Log-rank p value of the Cox-PH regression: the log-rank test is a statistical test to
compare the survival times between two or more groups. Kaplan–Meier survival curves
were plotted based on the two risk groups, and the log-rank p values of differences in
survival between the curves were calculated with the R survminer package [17].

2.7. Construction of the SVM Classifier Based on the Labeled Subgroup

This data partitioning aimed to evaluate the robustness of the SVM classifier. Labels
of TCGA samples were generated from K means clustering using nodes of the autoencoder
model built with all of the samples. Next, we selected the top omics features that were
most correlated with the subgroup labels based on the Wilcoxon rank-sum test, and then
combined these top-selected omics data together as one dataset named multiomics features.
The default selection numbers were set to 100 for gene expression, 100 for methylation-
related genes, and 50 for miRNAs. Next, we built supervised classification classifiers
using the SVM algorithm with different combinations of multiomics data and clinical data,
including the Gleason score, age, and TNM (tumor, node, metastasis status) stage.

We used a 5-fold cross-validation method to partition TCGA dataset as follows: we
first randomly split the 494 samples from TCGA into five folds. One of the five folds was
used as the test set and the remaining four folds as the training set. For each training set,
an SVM classifier was built to predict the labels of the test set. This data partitioning aimed

http://www.genego.com/metacore.php
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to assess the robustness of the SVM classifiers. Therefore, we performed 10 repetitions and
obtained the mean value representing the average prediction accuracy.

2.8. Multiomics Panel Construction for PRAD Recurrence Prediction

Univariate Cox regression was performed on the intersected omics data between the
DL and SNF models, of which those found significantly associated with recurrence were
retained for further analysis. Next, we applied multivariate Cox regression on the selected
omics data to construct a linear risk-score model. The risk score for each sample was
calculated using the following formula; where βi indicates the coefficients evaluated with
omics expression and xi refers to the relative omics expression level.

Risk score = ∑inβi*xi
Finally, the samples were divided into low- and high-risk groups according to the

cutoff risk score calculated by R survMisc package.

3. Results
3.1. Outcome of the SNF Analysis
3.1.1. Two Differential Recurrence-Risk Subgroups were Identified in TCGA Three-Omics Data

The optimal estimated number of clusters from the SNF analysis was two, according
to the calculation of both the Eigen-gap algorithm [18] and the rotation-cost algorithm [19]
for the given materials of the 494 PRAD patient samples. As shown in Figure 2, with each
labeled subgroup, we combined samples with their time-to-recurrence value and ran the
ggplot2 package in R programming to plot out the recurrence-risk curves. As a result, we
obtained two curves with a p value of 0.016 and C-index of 0.623.

Figure 2. Recurrence-risk curves according to the labels generated from the similarity network fusion.

3.1.2. Differential Expression Analysis of Each Omics Dataset

We sorted out the top 100 DEGs and methylation-related genes, as well as the top
50 differentially expressed miRNAs between the subgroups. A detailed list of the top
differential genes is shown in Table S2.

3.2. Outcome of the Autoencoder Model Analysis
3.2.1. Performance of the Autoencoder Model with Different Hyper-Parameters

To obtain the best performance from the training algorithm, we fit the autoencoder
model with different hyper-parameters. Figure 3 shows the architecture of the autoencoder
model we used. There were three parameters targeted: the number of bottleneck nodes,
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the number of epochs, and the number of hidden layers. Then, we compared the different-
parameter-generated autoencoder models in terms of prognostic performance measured by
the C-index. As shown in Table 2, more hidden layers or a higher number of bottleneck layer
nodes usually decreased the performance instead of improving it. Oddly, when it came to
the number of epochs, the performance did not accordingly increase or decrease in a trend.
At last, we selected the one with the highest C-index (of 0.684) as our autoencoder model,
which was constructed of three hidden layers, and 500, 200, and 500 nodes, respectively,
with the parameter of epochs set to five.

Table 2. Performances of different hyper-parameter values of TCGA three-omics data.

Epoch Additional Hidden
Layer Shape

Bottleneck
Layer Shape Normalization Experiment Survival-Related

Node Number
3-Omics
C-Index

No. of hyper-
parameters used 5 500 200 Standard

Normalization DL 53 0.684
(SE 0.023)

No. of
bottleneck nodes

10 500 100 Standard
Normalization DL 24 0.656

(SE 0.022)

10 500 200 Standard
Normalization DL 59 0.668

(SE 0.023)

10 500 300 Standard
Normalization DL 124 0.668

(SE 0.02)

10 1000 100 Standard
Normalization DL 26 0.673

(SE 0.027)

10 1000 300 Standard
Normalization DL 118 0.683

(SE 0.02)

10 1000 500 Standard
Normalization DL 207 0.678

(SE 0.02)

No. of epochs

1 500 200 Standard
Normalization DL 70 0.677

(SE 0.02)

5 500 200 Standard
Normalization DL 53 0.684

(SE 0.023)

15 500 200 Standard
Normalization DL 83 0.676

(SE 0.026)

30 500 200 Standard
Normalization DL 95 0.661

(SE 0.023)

50 500 200 Standard
Normalization DL 124 0.663

(SE 0.027)

1 1000 300 Standard
Normalization DL 115 0.679

(SE 0.02)

5 1000 300 Standard
Normalization DL 103 0.672

(SE 0.02)

15 1000 300 Standard
Normalization DL 120 0.666

(SE 0.023)

30 1000 300 Standard
Normalization DL 162 0.659

(SE 0.023)

50 1000 300 Standard
Normalization DL 188 0.67

(SE 0.023)

Hidden layers

5 1000, 500 100 Standard
Normalization DL 24 0.68

(SE 0.025)

5 1000, 500 200 Standard
Normalization DL 86 0.668

(SE 0.023)

5 1000, 600 200 Standard
Normalization DL 87 0.661

(SE 0.023)

DL, deep learning; SE, standard error.
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Figure 3. Architecture of the autoencoder model we adopted in this study.

3.2.2. Two Recurrence-Risk Subgroups Identified

We built a univariate Cox-PH regression on each of the 200 nodes extracted from
the bottleneck layer to identify those which were significantly (p < 0.05) associated with
time-to-recurrence. Eventually, 53 nodes were shown to be significant. These 53 nodes
were subsequently utilized to cluster samples using the K-means algorithm. To deter-
mine the optimal number of clusters, we performed the silhouette index, as shown in
Figure 4a. We found that K = 2 was the best number of clusters with the highest score.
Therefore, TCGA PRAD samples were dichotomized.

Figure 4. (a) The silhouette index plot indicating that the optimal number of clusters was two, (b) clustering plot of patients
according to the K-means algorithm.

Furthermore, we assessed prognostic differences between these two subgroups with
a recurrence-risk analysis, and the difference between the two subgroups was extremely
significant (log-rank p = 7 × 10−8), with a C-index of 0.684 (Figure 5).
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Figure 5. Recurrence-risk curves according to the labels derived from the autoencoder model.

3.2.3. Differential Expression Analysis between the Two Subgroups

After obtaining labels generated from K-means clustering, we listed the top 100 DEGs
and methylation-related genes, as well as the top 50 differentially expressed miRNAs
between the subgroups, as shown in Table S3.

3.3. Validation of the Robustness of the SVM Classifier

In order to construct the recurrent prediction model using the SVM algorithm, we
adopted subgroups from the autoencoder model for labeling the risk of samples due to its
highly distinguishing performance (C-index) compared to the SNF.

To test the robustness of the classification on predicting prognoses, we validated
the SVM classifiers on fivefold cross-validation with 10 repetitions on the testing dataset.
As shown in Table 3, we first trained the SVM classifier with the 53 autoencoder model-
generated nodes. The prediction accuracy on the testing dataset was 97.1%, with 97.0%
sensitivity and 97.2% specificity. Next, we input the multiomics data composed of the top
100, 100, and 50 DEGs from the expression, methylation, and miRNA datasets, respectively,
including 250 features in total, into the SVM classifier. The prediction accuracy was 90.8%,
with 93.8% sensitivity and 87.4% specificity.

Table 3. Fivefold cross-validation of the prediction accuracy of support vector machine (SVM) classifiers corresponding to
different combinations of omics and clinical features.

Inputs for the SVM Classifier Prediction Accuracy (%) Sensitivity (%) Specificity (%)

Autoencoder model-generated nodes (#53) 97.1% 97.0% 97.2%
Multiomics features (#250) 1 90.8% 93.8% 87.4%

Multiomics features + 3 clinical features 2 93.7% 95.6% 91.5%
Multiomics features + stage 94.3% 96.5% 91.7%
Multiomics features + age 90.7% 93.6% 87.4%

Multiomics features + Gleason Score 90.6% 93.2% 87.6%
1 Multiomics features included the top 100 differentially expressed genes, the top 100 differentially expressed methylation genes, and the
top 50 differentially expressed miRNAs. 2 The three clinical features included were the Gleason score, age, and stage data.

Moreover, we further assessed the performance of the prediction accuracy by adding
additional clinical variables as features to build other SVM classifiers (Table 3). As a
result, we discovered that adding clinical variables, including the Gleason score, age, and
TNM stage, helped to improve the prognostic prediction accuracy. The combination of a
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multiomics dataset (250 features) with all clinical information altogether produced 93.7%
accuracy, with 95.6% sensitivity and 91.5% specificity, on the testing dataset. Moreover, we
also evaluated the predicting performance of individual clinical information combined with
the multiomics dataset. The accuracy of the SVM classifier increased to 94.3%, with 96.5%
sensitivity and 91.7% specificity, when the stage was input with the multiomics dataset,
which generated the highest prediction accuracy among all clinical features. Adding the
SVM classifiers of age or Gleason score also showed good prediction results, with 90.7%
accuracy, 93.6% sensitivity, and 87.4% specificity and 90.6% accuracy, 93.2% sensitivity, and
87.6% specificity, respectively.

Overall, the SVM classifier using the autoencoder model-generated nodes had the
best prediction accuracy, and outperformed the ones using multiomics features, with or
without adding clinical features.

3.4. Intersected DEGs between the Autoencoder Model and SNF

After acquiring results from each novel computational analysis, we further conducted
a comprehensive comparison of the top 100 DEGs, 100 methylation-related genes, and the
top 50 selected miRNAs between the two models.

The results showed that there are 21 genes (LSM7, PAXX, PPP1R35, MHENCR,
PSMG3, ATP5MPL, POLR2H, TELO2, PFDN6, PLEKHJ1, STX10, ZMYND19, FYCO1,
PARVA, NFE2L2, MBNL2, LPP, ELF1, RNF185, IL6ST, PARM1), 3 methylation-related genes
(cg00687383 (MED4), cg02318866 (JMJD6; METTL23), cg02978959 (CTC-444N24.6; ZNF460)
and 33 miRNAs (hsa-mir-143, hsa-mir-379, hsa-mir-1247, hsa-mir-452, hsa-mir-133a-2, hsa-
mir-133a-1, hsa-mir-1-1, hsa-mir-1-2, hsa-mir-221, hsa-mir-152, hsa-mir-328, hsa-mir-505, hsa-
mir-324, hsa-mir-107, hsa-mir-136, hsa-mir-181b-2, hsa-mir-128-2, hsa-mir-181b-1, hsa-mir-193b,
hsa-mir-381, hsa-mir-222, hsa-mir-139, hsa-mir-455, hsa-mir-132, hsa-mir-134, hsa-mir-127, hsa-
mir-365b, hsa-mir-365a, hsa-mir-574, hsa-mir-374b, hsa-mir-148b, hsa-mir-193a, hsa-mir-378a)
found intersected between the two models. Therefore, we extracted these omics features
from each model and compared their gene expression profiles within the subgroups. Finally,
we discovered that each gene expressed the identical regulatory direction in both models
and further reinforced that these intersected omics data could be potential biomarkers for
PRAD recurrence prediction. The comparison of the gene expression profiles between the
two models is shown in Table S4.

3.5. Prognostic Multiomics Panel Construction

TELO2, ZMYND19, miR-143, miR-378a, cg00687383 (MED4), and cg02318866 (JMJD6;
METTL23), and the first and second most significant p-value from each intersected omics
data of the two models were identified for multiomics panel development. According to
the results shown in Figure 6, the recurrence in the high-risk-score group was significantly
shorter compared with the low-risk score group (p-value = 5.33 × 10−9, C-index = 0.694).
The performance of discrimination power of our multiomics panel was better than the
previous study using gene expression data only (p-value = 5 × 10−7) [20]. Additionally, the
multiomics panel combined with clinical information also generated good performance
in differentiating recurrence-risk subgroups (C-index = 0.713, p-value = 2.97 × 10−15).
Then, the 5-year receiver operating characteristic (ROC) curve was graphed to compare the
prognostic value of the multiomics panel and the multiomics panel adding clinical data and
other clinical information. The area under the curve of the ROCs (AUC) of age, Gleason
score, cancer stage, the multiomics panel, and the multiomics panel with clinical data were
0.535, 0.699, 0.648, 0.742, and 0.789, respectively. These results indicate that the risk score is
better at predicting recurrence-risk than the other clinical information. Additionally, the
omics features selected according to the intersected data of the two models are robust for
PRAD recurrence prediction.
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Figure 6. (a) Recurrence-risk curves according to high and low risk score. (b) Recurrence-risk curves according to risk score
combined with clinical information. (c) The 5-year survival receiver operating curve of risk score and other clinical data and
their AUC.

4. Discussion
4.1. Potential Recurrence Biomarkers of PRAD from the Autoencoder Model and SNF

Among the intersected omics features, TELO2 and ZYMND19 are the most significant
DEGs. Guo et al. [21] revealed that TELO2 was significantly upregulated in colorectal
cancer (CRC), which was concordant with the regulatory pattern in our study. Additionally,
the significant restraints of the growth, cell cycle, and metastasis of CRC cells manifest after
TELO inhibition, indicating that TELO2 promotes tumor progression. Iddawela et al. [22]
used the top nine genes (including gene ZMYND19) correlated with H2AFX expression
to generate a 10-gene signature. Given that patients with poor outcome can be defined
by their DNA damage signature, these gene signatures can become potential prognostic
markers for early PC patients’ treatment decisions.

In addition, the conclusions of previously related studies were also concordant with
our results for genes, which were correlated with the regulation of PC. Fan et al. [23]
indicated that POLR2H played a key role regarding the occurrence of PC. The result also
showed that POLR2H was significantly upregulated in PC, which implied that this gene
might be a potential biomarker for prognosis, diagnosis, and drug targets. Bii et al. [24]
identified MBNL2 as a candidate PC progression gene, which was downregulated to medi-
ate the progression of androgen-independent PC. Hua et al. [25] also showed that MBNL2
was downregulated in PC samples compared to normal samples, and the confirmation of
the prognostic value was comprehensively evaluated by correlations with pathological
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T staging, the pathological grade, and Gleason score, revealing a good diagnostic and
prognostic value for PC.

Budka et al. [26] suggested that ELF1 was the most generally downregulated ETS factor
in primary prostate tumors, and in the case of metastatic disease, the expression of ELF1 also
decreased. ELF1 was negatively correlated with PC progression. Fladeby et al. [27] demon-
strated that PARM-1 is a novel androgen-regulated gene, highly expressed in androgen-
dependent cancer xenografts. They further revealed the phenomenon of the increasing
growth of PC cells when forcibly elevating the expression of hPARM-1 in hPARM-1 non-
expressing human cells.

Several studies showed matching results with our methylation-related genes.
Paschalis et al. [28] addressed that the knockdown of JMJD6 reduced prostate cancer
cell growth, AR-V7 levels, and the recruitment of U2AF65 to AR pre-mRNA. Mutagenesis
studies suggested that the activity of JMJD6 is pivotally associated with the generation of
AR-V7 and with the catalytic machinery residing within a druggable pocket. Addition-
ally, Dali Tong [29] proposed that targeting the JMJD6/U2AF65 pathway may cause the
inhibition of castration-resistant prostate cancer (CRPC) development.

As for the miRNAs, previous studies were used for comparison with our results,
supporting the fact that the overlapping miRNAs we found were correlated with the
regulation of PC. Kumar et al. [30] indicated that the reduction of miR-1 and the elevation
of miR-21 were linked to biochemical recurrence in PC, suggesting that stromal miRNA
expression may be informative for PC prognoses. Leite et al. [31] found that there was a
significant global loss of miR-143 expression during the transitions from high-grade prostate
intraepithelial neoplasia to invasive adenocarcinoma and from localized to metastatic
adenocarcinomas. Additionally, Szczyrba et al. [32] observed a tendency towards a lower
expression of miR-143 in both high-grade tumors and poorly differentiated tumors in PC.
Gururajan et al. [33] demonstrated that miR-379 plays an important role in PC biology
by facilitating tumor growth, the epithelial-to-mesenchymal transition (EMT), and bone
metastasis. More importantly, high-expressed miR-379 was associated with the disease-free
survival of PC patients. Taddei et al. [34] suggested that cancer-associated fibroblasts induce
the downregulation of miR-1247 in PC cells. Furthermore, miR-1247 targets neuropilin
(NRP)-1 and downregulates EGFR signaling, thus effecting the survival, invasion, and
proliferation of cells.

Gao et al. [35] concluded that miR-452-5p is downregulated in PC, and might affect the
progression of PC by interaction with target genes through several significant pathways.
Kojima et al. [36] indicated that miR-1 and miR-133a downregulations frequently occurred
in PC, and that both function as tumor suppressors. When compared to non-PC tissues,
expression levels of miR-1 and miR-133a in PC were significantly lower.

In conclusion, we presumed that these overlapping features play crucial roles and
are potential biomarkers in the recurrence incidence of PRAD cancer patients, since they
rank as the top 100/50 selected features in both models, and the regulatory patterns
were concordant.

4.2. Functional Pathway Analysis of the Top DEGs

We used the MetaCoreTM-built network algorithm to discover which DEGs had direct
interactions in our gene list (top 100 DEGs from the autoencoder model) and to conduct an
enrichment analysis workflow to identify pathways in which these objects were involved.
In Figure 7, among the top 10 pathways, the signaling process in epidermal growth factor
(EGF) receptor (EGFR) was the most significant one associated with PC.

All EGFR family members are expressed in PC [37,38]. Within this family, ErbB2 is
the favored dimerization partner for EGFR. The triggering of ErbB2/EGFR is connected
to androgen-independent activation of the androgen receptor (AR) in PC [39]. Moreover,
downstream signaling from EGFR may functionally inhibit the AR, even at the level of the
plasma membrane. [40–42].



Cancers 2021, 13, 2528 13 of 16

Figure 7. The map of top 10 pathways associated with the top differentially expressed genes. EGFR,
epidermal growth factor receptor; KEAP1, Kelch-like ECH-associated protein 1; NRF2, nuclear factor
erythroid 2-related factor 2; MAPK, mitogen-activated protein kinase; ESR1, estrogen receptor 1;
ESR2, estrogen receptor 2; HGF, hepatocyte growth factor.

The overexpression of EGFR and the autocrine secretion of EGF and transforming
growth factor (TGF)-alpha compose one of the key autoregulatory loops that facilitate the
cell growth of a number of PC cell types. EGFR and its ligands, EGF and TGF-alpha, are
overexpressed in PC during disease progression to more malignant hormone-independent
and metastatic forms. The EGFR gene is amplified in many PC samples [43]. PC cells
express the proto-oncogene ErBB2, as well as type III mutant EGFR, designated EGFRvIII,
which mediates the cell growth of several human cancer cells [44,45]. ErbB2 is also often
amplified in PC [46].

As shown in Figure S1, EGFR stimulation results in the activation of distinct intracel-
lular signaling pathways, including the phosphatidylinositol 3-kinase (PI3K) cat class IA,
extracellular signal-regulated kinase 1/2 (ERK1/2), phospholipase C (PLC)-gamma, and
the signal transduction and activator of transcription 3 (STAT3) pathways [45]. Activation
of the PI3K cat class IA/AKT (PKB) kinase and classical Ras/Raf/MEK/ERK1/2 cascades
through EGF-EGFR leads to the downregulation of p27KIP1, which, in turn, changes the
expressions of numerous mitogenic genes involved in PC cell growth. On the other hand,
the inhibition of EGFR signaling cascades may cause the upregulation of the p27KIP1
protein, which then inhibits cyclin-dependent kinases followed by the G1/S transition
of the mitotic cell cycle [47,48]. EGFR phosphorylates and activates STAT3, which, in
turn, binds to and increases the transcriptional activation of the AR [49]. PLC-gamma is
a downstream effector required for EGFR-mediated cell motility, which results in PC cell
invasion and metastasis [50,51].

5. Conclusions

This is a study of recurrence-risk analysis and prognostic biomarker identification in
PRAD patients after a radical prostatectomy. We implemented two computational analytical
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methods, the autoencoder model and similarity fusion network, to integrate three-omics
data including gene expressions, methylation-related gene expressions, and miRNA. Both
models differentiated significant subgroups of PRAD patients using multiomics features,
but the autoencoder model generated better distinguishing power (C-index of 0.684). On
top of that, our model could predict the recurrence rate once the related clinical data were
obtained after the operation. In this regard, our proposed model not only possesses the
compatible ability to distinguish low- and high-risk patients, but also the earlier prediction
of the recurrence of PRAD, which would benefit patients by allowing for early interventions
to prevent recurrence from occurring.

In addition, we built SVM classifiers with subgroups to predict the recurrence of PRAD.
Finally, by testing the robustness through fivefold cross-validation, the SVM classifier using
the autoencoder model-generated nodes outperformed other combinations with clinical
information with 97.1% accuracy, 97.0% sensitivity, and 97.2% specificity.

Additionally, TELO2, ZMYND19, miR-143, miR-378a, cg00687383 (MED4), and
cg02318866 (JMJD6; METTL23) were identified as highly associated with the recurrence-risk
of PRAD patients. Multiomics panels were further constructed to evaluate the high- and
low-risk subgroups. The outcome showed that the p-value = 5.33 × 10−9, C-index = 0.694,
and C-index = 0.713, p-value = 2.97 × 10−15, respectively, for the multiomics panel and
the other panel combined with the clinical information, which are better than the previous
studies. This indicates that the omics features we selected are potential robust biomarkers
for PRAD prognostic prediction. Additionally, we found pathways related to tumor devel-
opment or prognosis via MetaCore, which indicates that EGFR signaling plays a vital role
in the recurrence of PRAD.

This study contributes a different perspective to the current understanding of PRAD
prognoses. In this regard, we suggest that these results should be taken into account for
further clinical applications and better clinical decision-making.
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