Skip to main content
. 2021 May 21;13(11):2528. doi: 10.3390/cancers13112528

Table 2.

Performances of different hyper-parameter values of TCGA three-omics data.

Epoch Additional Hidden Layer Shape Bottleneck Layer Shape Normalization Experiment Survival-Related Node Number 3-Omics C-Index
No. of hyper-parameters used 5 500 200 Standard Normalization DL 53 0.684 (SE 0.023)
No. of bottleneck nodes 10 500 100 Standard Normalization DL 24 0.656 (SE 0.022)
10 500 200 Standard Normalization DL 59 0.668 (SE 0.023)
10 500 300 Standard Normalization DL 124 0.668 (SE 0.02)
10 1000 100 Standard Normalization DL 26 0.673 (SE 0.027)
10 1000 300 Standard Normalization DL 118 0.683 (SE 0.02)
10 1000 500 Standard Normalization DL 207 0.678 (SE 0.02)
No. of epochs 1 500 200 Standard Normalization DL 70 0.677 (SE 0.02)
5 500 200 Standard Normalization DL 53 0.684 (SE 0.023)
15 500 200 Standard Normalization DL 83 0.676 (SE 0.026)
30 500 200 Standard Normalization DL 95 0.661 (SE 0.023)
50 500 200 Standard Normalization DL 124 0.663 (SE 0.027)
1 1000 300 Standard Normalization DL 115 0.679 (SE 0.02)
5 1000 300 Standard Normalization DL 103 0.672 (SE 0.02)
15 1000 300 Standard Normalization DL 120 0.666 (SE 0.023)
30 1000 300 Standard Normalization DL 162 0.659 (SE 0.023)
50 1000 300 Standard Normalization DL 188 0.67 (SE 0.023)
Hidden layers 5 1000, 500 100 Standard Normalization DL 24 0.68 (SE 0.025)
5 1000, 500 200 Standard Normalization DL 86 0.668 (SE 0.023)
5 1000, 600 200 Standard Normalization DL 87 0.661 (SE 0.023)

DL, deep learning; SE, standard error.