Skip to main content
. 2021 May 22;21(11):3611. doi: 10.3390/s21113611
Algorithm 1. The robust SMC-PHD filter.
Step 1 Prediction
for i=1,2,,Lk1
    xk(i)qk(xk1(i),Zk),ωkk1(i)ωk1(i)pS,kfkk1(xk(i)xk1(i))qk(xk(i)xk1(i),Zk)
    υkk1(i)=ρ(υk1(i)d1)+d+1,Vkk1(i)=ρVk1(i)αkk1(i)=ραk-1(i),βkk1(i)=ρβk-1(i)
end for
for i=Lk1+1,Lk1+2,,Lk1+Jk
    xk(i)pk(Zk),ωkk1(i)1Jkγk(xk(i))pk(xk(i)Zk)
    υkk1(i)=υγ,k(i),Vkk1(i)=Vγ,k(i)
    αkk1(i)=αγ,k(i),βkk1(i)=βγ,k(i)
end for
Step 2 Update
For i=1,2,,Lk1+Jk
        Rk(i)=Vkk1(i)/(υkk1(i)d1),νk(i)=αkk1(i)/βkk1(i)gk(zx¨k(i))=St(z;h(xk(i)),Rk(i),νk(i))
        gkp(x¨k(i))=pD,kgk(zkpx¨k(i))κk(zkp)+Ck(zkp)Ck(zkp)=j=1Lk1+JkpD,kgk(zkpx¨k(i))ωkk1(i)
        I=1,,Zk,J=p=1,,Zkgkp(x¨k(i))σ
        l=argmaxpIgkp(x¨k(i)),q=argminpIgkp(x¨k(i))
        g˜kp(x¨k(i))=gkp(x¨k(i)),p=l  or  pJgkq(x¨k(i)),pl  &  pJ
        ωk(i)=(1pD,k)ωkk1(i)+p=1Zkg˜kp(x¨k(i))ωkk1(i)
Perform iteration initialization, set the iteration number τ, and update the parameters of measurement noise by Equations (49)–(60).
end for
Step 3 Resampling
Step 4 State extraction
    Step 3 and step 4 are the same as that in the standard SMC-PHD filter.