Skip to main content
. 2021 May 22;21(11):3610. doi: 10.3390/s21113610
Algorithm 1  Multi-scale fusion and denoising of NIR and RGB images.
Input: Noisy gray image from RGB image, NIR image Initialize: ω1=ω2=0.5,σ1=0.5,γ1=2, η=0.005
β=1.2, ε=0.001, α0=I, v0=u
M=35, N=20, τ=104, ε1=ε2=102.
1. Perform DT-CWT on noisy gray and NIR images.
2. Detail layer:

For m=1:M (M: Maximum decomposition)

    For n=1:N (N: Maximum iteration number)

        a. Calculate VI of vn and g [24];

        b. Calculate α0 from g by (13);

        c. Calculate ω3ω5 by (14)–(17);

        d. Optimize αn+1 by (21);

        e. Optimize vn+1 by (23);

        if αn+1αn22/αn22<ε1 and

            vn+1vn22/vn22<ε2; break;

     end For

 end For

3. Base layer:

For n=1:N (N: Maximum iteration number)

    a. Calculate VI of vln and gl [24];

    b. Calculate αl0 from g by (26);

    c. Calculate ω3 by (14);

    d. Optimize αln+1 and vln+1 by (24)–(25);

    if αln+1αln22/αln22<ε1 and

        vln+1vln22/vln22<ε2; break;

end For

4. Perform inverse DT-CWT.
Output: Fused gray image.