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Abstract

Background: Microorganisms drive critical global biogeochemical cycles and dominate the biomass in Earth’s
expansive cold biosphere. Determining the genomic traits that enable psychrophiles to grow in cold environments
informs about their physiology and adaptive responses. However, defining important genomic traits of
psychrophiles has proven difficult, with the ability to extrapolate genomic knowledge to environmental relevance
proving even more difficult.

Results: Here we examined the bacterial genus Arthrobacter and, assisted by genome sequences of new Tibetan
Plateau isolates, defined a new clade, Group C, that represents isolates from polar and alpine environments. Group
C had a superior ability to grow at −1°C and possessed genome G+C content, amino acid composition, predicted
protein stability, and functional capacities (e.g., sulfur metabolism and mycothiol biosynthesis) that distinguished it
from non-polar or alpine Group A Arthrobacter. Interrogation of nearly 1000 metagenomes identified an over-
representation of Group C in Canadian permafrost communities from a simulated spring-thaw experiment,
indicative of niche adaptation, and an under-representation of Group A in all polar and alpine samples, indicative of
a general response to environmental temperature.

Conclusion: The findings illustrate a capacity to define genomic markers of specific taxa that potentially have value
for environmental monitoring of cold environments, including environmental change arising from anthropogenic
impact. More broadly, the study illustrates the challenges involved in extrapolating from genomic and physiological
data to an environmental setting.
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Background
Many biotic and abiotic factors influence the ability of
microorganisms to become indigenous members of en-
vironmental communities. Certain environmental factors
can limit or prevent the growth of microorganisms,
while enhancing, or being essential for others, resulting
in ecological niches that support specific microbiome
structures [1]. This phenomenon is well illustrated by a
Winogradsky column where light and oxygen can be
seen to exert major influences on the diversity and the
dynamic of microorganisms throughout its length [2]. In
more recent times, particularly through technological
advancement (e.g., metagenomics), the understanding of
microbial ecology and the contributions that microor-
ganisms make to the natural world has grown consider-
ably. Appreciation for microorganisms has accrued from
discoveries of new biomes capable of supporting micro-
bial colonization, such as the deep subsurface [3]; new
examples of life hidden within microbial “dark matter”
(e.g., Asgard archaea [4]); and the dynamic nature of
microbial responses, particularly those that provide
surprises, such as the major societal upheaval caused by
the SARS-CoV-2 coronavirus. There is a growing
realization that microorganisms constitute the life sup-
port system of the biosphere and must be properly
accounted for when devising strategies to mitigate the
impacts of human activity on the natural world [5]. In
essence, we are living in a period in history when the
need for society to learn about microbial responses to
natural and anthropogenic influences is of unprece-
dented relevance [5–7].
Metagenomic methods have provided a level of insight

into microbial communities [8, 9] that could possibly be
equated to the advances made by Carl Woese and
colleagues when using rRNA sequencing to discover
Archaea as the third domain of life. Applied to the cold
biosphere, Earth’s single largest biome, metagenomic
analyses have catalogued diverse ways in which microbial
life has evolved. As an example, Antarctic, marine-derived
lake communities have been shown to have evolved inde-
pendently over their relatively short history of 3000–5000
years, adapting not just to low temperature but also to a
variety of important environmental factors specific to each
lake system (reviewed in Ref. [10]). Metagenomic analyses
have also begun to be used to uncover the ways in which
communities in polar environments respond to changing
environmental conditions; for example, the effects of the
seasonal polar sunlight cycle on Antarctic marine and
marine-derived lake communities [11, 12] and the roles
that Arctic bacteria play in melting permafrost acting as a
CO2 source and atmospheric CH4 sink [13, 14].
Arthrobacter (Actinobacteria; Micrococcales; Micro-

coccaceae) are a globally distributed genus of bacteria
commonly found in soil, but also in a broad range of

environments including water, human skin, and sewage
[15–18]. Arthrobacter are reported to play important
roles in global biogeochemical cycles and decontamin-
ation of polluted environments [17, 19]. Their responses
to temperature, desiccation, ionizing radiation, oxygen
radicals, and a range of chemicals have been described
[20–22]. Their growth in the laboratory is characterized
by nutritional versatility that translates to an ability to
grow aerobically in media utilizing a wide range of car-
bon and nitrogen sources [16]. Some isolates closely re-
lated to the type species A. globiformis were obtained
from a Lapland glacier region [23], and the identification
of psychrophilic species has led to the characterization
of a number of Arthrobacter enzymes for their biotech-
nological potential (e.g., Ref. [24]). Arthrobacter have
been isolated from a range of low-temperature environ-
ments, including permafrost and glaciers [25–27].
Due to the large scale of the Earth’s cold biosphere

and its relevance to global biogeochemical cycles, and
the biotechnological potential of psychrophiles and their
products, numerous studies have been performed to
attempt to define the critical traits of psychrophiles
(discussed in Ref. [10, 24, 28–34]). In the current study,
we sequenced the genomes of Arthrobacter isolated from
lakes, glaciers, and a wetland from the Tibetan Plateau
(Additional file 1: Fig. S1) and utilized the existence of
more than 100 Arthrobacter genomes to assess traits
that may explain the presence of the genus in naturally
cold environments. After identifying a clade characteris-
tic of polar and alpine environments and determining
that representatives had a superior ability to grow at low
temperature, we used available metagenome data to as-
sess the environmental relevance of the findings. What
we learned illustrated the complexities involved in
attempting to extrapolate from genomic and physio-
logical data to an environmental setting. It also revealed
possible avenues for utilizing Arthrobacter as biomarkers
of environmental warming.

Results
Phylogenomics
To increase the number of Arthrobacter genomes from
polar and alpine (PA) environments, a total of 16 iso-
lates from seven lakes, two glaciers, and one wetland on
the Tibetan Plateau (Additional file 1: Fig. S1 and Table
S1) were sequenced (see the “Methods” section). After
genome quality assessment and dereplication, 13 high-
quality genome sequences for new Tibetan Plateau iso-
lates were incorporated into the study (Additional file 2:
Dataset S1). The phylogenomic relationships of a total of
210 non-redundant high-quality Micrococcaceae ge-
nomes (Additional file 2: Dataset S1) were analyzed by
constructing maximum likelihood and Bayesian trees
(Additional file 1: Fig. S2). The two trees were congruent
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and most tree-nodes (194/208) were supported by high
bootstrap values (>70%) (Additional file 1: Fig. S2). The
Arthrobacter lineage formed a cluster with 106 represen-
tatives that was clearly separated from other Micrococca-
ceae genera (Additional file 1: Fig. S2). The Arthrobacter
genomes represented PA isolates (total 31, including the
13 new genomes), with the remainder from a broad range
of non-polar or alpine (NPA) environments (Additional
file 2: Dataset S1).
The Arthrobacter lineage separated into three clades

that branched from the root of the Arthrobacter tree
(Fig. 1). The 31 PA Arthrobacter were distributed across
the tree, although 11 PA Arthrobacter formed a cluster
with three NPA Arthrobacter in the central clade (Fig. 1
a). Within the central clade, 10 Arthrobacter grouped to-
gether (Fig. 1 b, blue font) with an F measure of 0.95,
defining them as an operationally monophyletic lineage
[35]. This was supported by three-dimensional nonmetric
multidimensional scaling analysis of amino acid compos-
ition (Fig. 1 c) and both average nucleotide identity (ANI)
and average amino acid identity (AAI) distributions (Fig. 1
d, e). The grouping of 10 Arthrobacter (Fig. 1 b, blue font)
consisted of nine PA Arthrobacter, plus A. psychrolacto-
philus B7 which was isolated from Pennsylvania soil fol-
lowing snow melt; the isolate was obtained as a source of
cold-active enzymes and was capable of growth at 0 °C
[36]. The monophyletic lineage of 10 Arthrobacter was
defined as Group C (Fig. 1 b, blue font), with all other PA
Arthrobacter as Group B (Fig. 1 b, olive green font), and
all Arthrobacter from NPA environments as Group A
(Fig. 1 b, orange font).

Low-temperature growth capacity of Group C
Arthrobacter
To evaluate the growth temperature response of Group
A, B, and C, three Arthrobacter from each group were
grown at 25, 5, and −1 °C and growth monitored
(OD600) over time (Fig. 2). The three Group C Arthro-
bacter exhibited a markedly enhanced rate of growth at
−1 °C (Fig. 2 c) particularly compared to Group A
Arthrobacter and had a reduced rate of growth at 25 °C
compared to some of the Group A and B Arthrobacter
(Fig. 2 a, b).

Genomic characteristics
The size of the 106 Arthrobacter genomes ranged from
3.24 to 5.89 Mbp (Additional file 2: Dataset S1). Between
Group A and C, no significant differences occurred in
genome size, 16S rRNA and tRNA gene copy number,
or coding density (Additional file 1: Fig. S3). However, a
significant difference was observed in amino acid com-
position and G+C content (Fig. 3, Additional file 1: Fig.
S3 and Additional file 2: Dataset S1). In Group C, the
content of N, K, M, I, S, T, F, Q, W, and H was

significantly higher, while A, E, G, P, D, and R was sig-
nificantly lower (one-way ANOVA, p < 0.05, Additional
file 1: Fig. S4). The correlation between amino acid com-
position and G+C content was significantly negative for
the amino acids N, I, M, S, F, K, and Q (R2 ranged from
0.46 to 0.81; p < 0.01) and significantly positive for W,
G, D, P, R, and A (R2 ranged from 0.39 to 0.77; p < 0.01)
(Additional file 1: Fig. S5).
To evaluate the potential structural relevance of the

amino acid compositional differences, temperature-
dependent protein stability predictions were made using
SCooP, which predicts stability assuming proteins are
monomeric and follow a two-state folding transition
[37]. From 180 proteins targeted for evaluation (mostly
single-copy genes; see the “Methods” section), 86 pro-
duced robust stability curves (Fig. 3, Additional file 1:
Fig. S6 and Additional file 3: Dataset S2). Stability was
calculated at −1 °C to match the growth temperature at
which Group C showed a marked difference in growth
ability (Fig. 2). The 86 Group C proteins had signifi-
cantly higher ΔG values (Group A, −4.27; Group B,
−4.29; Group C, −3.60; p < 0.01), with 32 proteins being
responsible for the reduced predicted stability
(Additional file 1: Fig. S6 and Additional file 3: Dataset
S2). These 32 proteins contained a particularly high
representation of the amino acids that were most over-
represented in Group C (i.e., N, K, and R; Additional file
1: Fig. S4). The 32 proteins represented 12 functional cat-
egories, primarily metabolism (28 proteins; 9 categories),
with four involved in respiration, stress response, or cell
division and cell cycle (Additional file 3: Dataset S2). The
marked amino acid compositional differences, broad rep-
resentation of functional categories, and high proportion
of proteins with predicted decreases in stability (~ 1/3rd
of those tested) demonstrate that Group C Arthrobacter
possess broad genomic differences to Group A Arthrobac-
ter. If the decreases in predicted protein stability translate
to an increased capacity to perform catalysis at low
temperature, this may contribute to the higher growth
rates of Group C at −1°C (Fig. 2).
To further explore the influence of amino acid compos-

ition on functional potential, Bray-Curtis distances of
genome-wide amino acid composition were evaluated for
proteins representing 26 functional categories (Fig. 3). The
greatest distance was for the category “phages, prophages,
transposable elements, plasmids,” consistent with previous
studies associating transposable elements with cold-
adapted microorganisms [38–40]. The functional potential
of Group C was also compared to Group A using enrich-
ment analysis [41] performed on proteins representing the
26 functional categories. Group C was over-represented in
sulfur metabolism; cofactors, vitamins, prosthetic groups,
pigments; protein metabolism; stress response; cell
division; and cell cycle (Fig. 3, Additional file 1: Fig. S7
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and Additional file 4: Dataset S3), whereas Group A was
over-represented in the metabolism of aromatic com-
pounds; nitrogen metabolism; amino acids and derivatives;

regulation; and cell signaling (Additional file 1: Fig. S7 and
Additional file 4: Dataset S3). The category “sulfur metab-
olism” also exhibited signatures of amino acid bias (Bray-

Fig. 1 Arthrobacter phylogeny and genome compositional profiling. a Maximum likelihood Arthrobacter phylogenomic tree. The Arthrobacter
portion of maximum likelihood Micrococcaceae phylogenomic tree (Additional file 1: Fig. S2a) is reproduced with each leaf marked as polar and
alpine (PA, gray highlight) or non-polar and alpine (NPA). The tree has three major clades with the central clade highlighted (purple box). b As for
a except Arthrobacter names denoted and font color used to depict Group A (orange font; NPA environments), Group B (olive green font; PA
environments clustering with sequences from NPA environments), and Group C (blue font; PA environments that formed an operationally
monophyletic lineage with an F measure of 0.95). The specific types of cold environments from where Group C Arthrobacter were isolated are
shown to the right of the tree. c Three-dimensional nonmetric multidimensional scaling (NMDS) plot of genome-wide amino acid composition. d
Distribution of pairwise average nucleotide identity (ANI). e Distribution of pairwise average amino acid identity (AAI)
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Curtis distance; Fig. 3), suggesting selection for this func-
tional capacity occurred at the levels of both gene comple-
ment and amino acid composition.
Functional assessments were extended to identify spe-

cific genes unique to Group C. A number of genes in-
volved in the synthesis of amino acids, vitamins, and
nucleosides were present in all Group C genomes (Fig. 4).
The specific genes also tended to be present in the other
four, non-Group C members (Group A and Group B) of
the central clade (Fig. 4), but had low representation in
other Arthrobacter genomes (Fig. 4). The most marked
feature was a complete mycothiol (MSH) biosynthesis
pathway that was present in all Group C genomes (Fig. 4);
MSH is a redox-active thiol, functionally analogous to
glutathione (which is typically absent from Actinobac-
teria), that maintains intracellular redox balance and can
therefore protect against oxidative damage [42]. Further-
more, MSH potentially serves as a stable reservoir of
carbon and sulfur in bacteria [43]. The ability to respond
effectively to oxidative damage may be an important trait
of microorganisms from cold environments, particularly
for facilitating growth at low-temperature limits [44–48].
The MSH pathway was also present in the other four,
non-Group C members of the central clade, plus one
other Group B member (Fig. 4). Therefore, the MSH path-
way plus the individual genes involved in the synthesis of
amino acids, vitamins, and nucleosides are characteristic
of Group C Arthrobacter, but are not unique to this group.
If MSH or the other individual genes fulfill roles in facili-
tating growth at low temperature, the genes may be under
stronger positive selection in Group C, while also being
retained within Group A and Group B populations (pan
genome), but at a significantly lower level.
A total of 48 Group C gene families had significantly

higher, and 66 had significantly lower average gene copy
number compared to Group A, including four which
were absent in Group C genomes (Additional file 5:

Dataset S4, p < 0.05). The absence of two specific genes
is noteworthy: adenosylhomocysteinase, which hydro-
lyzes S-adenosyl-L-homocysteine (a product of methyl
transfer reactions that involve S-adenosyl-L-methionine)
to homocysteine and adenosine [49], and formate–tetra-
hydrofolate (THF) ligase, which catalyzes the initial
recruitment of single carbon units for THF-mediated
one-carbon metabolism [50]. The absence of both genes
would be expected to disrupt the synthesis of methio-
nine from homocysteine, and instead favor the alterna-
tive pathway of synthesizing methionine from cysteine;
the latter pathway may be connected to MSH metabol-
ism, in that accumulation of cysteine (a precursor of
MSH synthesis) is toxic to cells [43], so surplus cysteine
not required for MSH synthesis, or resulting from MSH
degradation, could be directed to methionine synthesis
(Additional file 5: Dataset S4).
Some of the gene families had particularly high copy

numbers per genome (~30 in Group A) with large reduc-
tions (~6) in Group C (Additional file 5: Dataset S4); this
trend was observed for 3-oxoacyl-[acyl-carrier protein]
reductase (FabG), glycerate kinase (GlxK), and alcohol de-
hydrogenase (Adh). For FabG, this likely reflects a reduced
capacity of Group C to catalyze the formation of long-
chain fatty acids (Additional file 5: Dataset S4). GlxK is an
important catabolic enzyme, in that diverse substrates are
degraded to glycerate, and GlxK links these degradation
pathways to central carbon metabolism [43]. Decreased
copy numbers of Adh likely indicates decreased capacities
to utilize alcohols. Thus, decreases in GlxK and Adh
might reflect decreased substrate preferences by these
Arthrobacter. It was noteworthy that the copy number of
cold shock protein (csp) genes was lower in Group C.
While csp genes are sometimes equated with an ability to
grow in the cold or survive cold shock, these nucleic acid
binding proteins can perform diverse roles in cellular
function (reviewed in Ref. [34]); the findings here reinforce

Fig. 2 Growth temperature profiles of Group A, B, and C Arthrobacter. OD600 growth curves for representative Arthrobacter of Group A (orange
symbols and line; A. luteolus, A. globiformis, and A. subterraneus), Group B (olive green symbols and line; Arthrobacter sp. 4R501, Arthrobacter sp.
9E14, and Arthrobacter sp. 08Y14), and Group C (blue symbols and line; A. alpinus, Arthrobacter sp. A3, and Arthrobacter sp. N199823) at a 25 °C, b
5 °C, and c −1 °C
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the notion that csp and other “stress” genes are not good
molecular markers for identifying psychrophiles [5, 33].

Ecology of Group C Arthrobacter
We hypothesized that if the laboratory-generated growth
data (Fig. 2) and genomic traits (Fig. 3) translated to com-
petitiveness in cold environments, Group C Arthrobacter
would be over-represented in metagenome data from PA
vs NPA environments. The relative abundance of

Arthrobacter in environmental samples (publicly available
metagenome data) tends to be low, with no metagenome-
assembled genomes (MAGs) present in the ~8000 MAGs
that were constructed from ~1500 metagenomes [51], and
a total of 12 (> 90% completeness) present in 76,831 Inte-
grated Microbial Genomes (IMG) MAGs (December
2019). To facilitate metagenome analyses, group-specific
genes (Additional file 6: Dataset S5) were examined in 639
metagenomes representing PA, temperate, and tropical

Fig. 3 Overview of genomic characteristics of Group C Arthrobacter. a Box plot of G+C content. Group A (red); Group C (blue); boxes represent
the interquartile range with horizontal lines showing maximum and minimum values, excluding outliers. Group C had significantly lower G+C
content. b Scatter plot of amino acid composition. Group A (light red circles); Group C (blue circles); ***p < 0.005; *p = 0.05–0.01; ns, not
significant. The composition of numerous amino acids varied significantly between Group C and Group A Arthrobacter. c Protein stability
predictions calculated using SCooP. Group A (red line); Group C (blue line). The curve is for coenzyme A biosynthesis bifunctional protein, CoaC,
and is representative of one of the 32 Group C proteins from a total of 86 which had reduced predicted stability (Additional file 3: Dataset S2 and
Additional file 1: Fig. S6) d Box plot of amino acid bias for functional categories. Boxes represent the interquartile range of the Bray-Curtis
distances; lines extending from boxes show the maximum and minimum Bray-Curtis distances; dots beyond the lines represent outliers. Biases in
amino acid composition (b) were reflected in specific functional categories. e Representation of functional categories. Specific functional
categories were over- or under-represented in Group C; arrows indicate relative increases (up arrow) or decreases (down arrow) in functional
categories in Group C. f Representation of specific functions. Specific functional processes defined by genes or pathways were characteristic of
Group C (up arrow) or had a restricted capacity in Group C (down arrow) compared to Group A (also see Fig. 4)
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environments (Additional file 7: Dataset S6), with repre-
sentation shown relative to the Arthrobacter pan genome
(Fig. 5a) (see the “Methods” section for a description of
the analytical approach).
Group C-specific genes were more highly represented in

11 permafrost metagenomes (Fig. 5b). All of the 11 meta-
genomes came from a single site: Axel Heiberg Island,
Nunavut, Canada [52]. The Axel Heiberg Island study re-
ported 76 metagenomes derived from 1-m cores that were
used during a controlled thawing experiment [52]. Most
Group C-specific genes were enriched in the 65-cm depth

active-layer (7 metagenomes), with one from the 35-cm
active-layer and three from the 80-cm permafrost-layer
(Additional file 1: Table S2). A total of 94% of the variabil-
ity that exists in hits to Group C for the 639 metagenomes
(Fig 5b) was traced to pre-existing variability in hits to the
Arthrobacter pan genome, and when this covariance was
removed by ANCOVA analysis, a statistically significant
difference in the y-intercepts for the regression lines (p <
0.0001) remained; this confirms the over-representation of
Group C-specific genes in the 11 metagenomes compared
to the remaining 628 metagenomes.

Fig. 4 Arthrobacter genes typifying the functional potential of Group C. a Maximum likelihood Arthrobacter phylogenomic tree as for Fig. 1. b
Heat map of the representation of specific genes in Arthrobacter genomes, highlighting those present in Group C and the central clade. i,
branched-chain acyl-CoA dehydrogenase; ii, enoyl-CoA hydratase; iii, biotin repressor; iv, hydrolase in cluster with formaldehyde/S-
nitrosomycothiol reductase; v, mycothiol-dependent formaldehyde dehydrogenase
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To assess whether Group C Arthrobacter were gener-
ally enriched in permafrost regions, all other publicly
available permafrost metagenomes (334 metagenomes)
were analyzed (Fig. 5c). A number appeared somewhat
enriched in Group C-specific genes (e.g., a metagenome
from Stordalen Mire near Abisko, Sweden; marked by
an arrow in Fig. 5c), but as the slopes of the two regres-
sion lines were not parallel, it was not valid to compare
the y-intercepts, and hence, the significance of the differ-
ence between them could not be evaluated [53].
For Group B-specific genes, no obvious trends separated

the PA from NPA metagenomes (Fig. 5d). However, the
distribution of Group A-specific genes clustered according
to climate classification, with PA metagenomes showing
lower Group A content (y = 0.1202x + 3.4193, R2 =
0.96801) compared to temperate and tropical metagenomes
(y = 0.1804x − 15.015, R2 = 0.96989) (Fig. 5e). The 11 Axel
Heiberg Island metagenomes had a statistically significant
under-representation of Group A-specific genes compared
to all other metagenomes (ANCOVA, p < 0.0001). This
pattern indicates there is selection against Group A

Arthrobacter in PA environments and/or selection for
Group A in NPA environments.
To define variables that may explain the niche adapta-

tion of Group C in the Axel Heiberg Island permafrost,
available abiotic and biotic data were used from the
permafrost study [13, 14]. A range of physicochemical
data were available for each of the four depths (5, 35, 65,
and 80 cm), but as the timing of sampling for physico-
chemical data (0, 4, 6, 8, 11, and 12 weeks) did not align
with the timing of sampling for the metagenomes (0,
0.25, 6, 12, and 18 months), the physicochemical data
were ultimately not useful for interpreting Group C dis-
tribution. Depth, treatment group, and sample core did
not explain the variation in species composition across
the sites, and although incubation time had some ex-
planatory power for the distribution of the entire perma-
frost study dataset (data not shown), the metagenomes
enriched in Group C Arthrobacter were widely distrib-
uted and did not cluster together, suggesting the import-
ance of specific microniches in the enrichment of these
species. Assessment of the functional potential of the

Fig. 5 Metagenome analysis of Group C Arthrobacter. a Depiction of the mean annual temperature (MAT) of surface air at a height of 2 m (European
Centre for Medium-Range Weather Forecasts) relative to latitude. The 639 metagenomes are divided into thermal categories: PA (black squares, 196
metagenome), temperate (gray squares, 243 metagenomes), and tropical (purple squares, 200 metagenomes). b Linear regression showing the
correlation of the abundance of Group C-specific genes within each of the 639 metagenomes (see panel a) relative to the abundance of Group C-
specific genes within the Arthrobacter pan genome. The 95% prediction interval (dark pink band) and 95% confidence interval (light pink band) are
shown for each regression line (panels b, c, and e). The upper cluster contains 11 Axel Heiberg Island permafrost metagenomes. c As for panel b,
except with the addition of 334 permafrost metagenomes (total 973 metagenomes). The Stordalen Mire (Abisko, Sweden) metagenome is shown by
an arrow. d As for panel b, except showing Group B-specific genes. e As for panel b, except showing Group A-specific genes present in PA genomes
(lower line) and NPA genomes (upper line). The regression line for the 11 Axel Heiberg Island permafrost metagenomes is not shown
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microbial communities in each of the 76 metagenomes
using the presence/absence of KO groups also did not
identify any significant functional differences (PERM
ANOVA, p > 0.05; data not shown).
In contrast, strong taxonomic associations were identified

with many members of the microbial community. Analyses
were performed to assess taxa that correlated with Group
A and Group C, just Group A, and just Group C (Add-
itional file 8: Dataset S7). A total of 107 operational taxo-
nomic units (OTUs) positively correlated with Group C
Arthrobacter, and 63 negatively correlated (Additional file
8: Dataset S7). Of the 107 OTUs positively correlated to
Group C, 72 were also positively correlated to Group A
above the threshold of 0.5 (the remainder were positively
correlated with values 0.359–0.499), and no OTUs were
positively correlated to Group A that did not also correlate
to Group C. The positively correlating OTUs were domi-
nated by both spore- and non-spore-forming members of
Actinobacteria and Firmicutes, as well as members of Pro-
teobacteria; the majority of these OTUs were isolated from
soil. Negatively correlating bacterial OTUs mainly belonged
to marine or lacustrine members of Bacteroidetes, Cyano-
bacteria, and Proteobacteria, as well as certain eukaryotes
(fungi, plants, marine annelid worm).

Discussion
Numerous studies have been performed to define the
critical traits of a psychrophile, including those that have
compared genomes that represent a broad range of spe-
cies and thermal environments (discussed in Ref. [33, 34,
54]). The current study explored genomic characteristics
of a lineage with less than 3.5% difference in 16S rRNA
gene identity. The analyses revealed that the Arthrobac-
ter lineage contains a clade with members (Group C)
possessing a clear capacity to grow faster than their
relatives (Group A and B) under laboratory growth
conditions at −1 °C (Fig. 2). A number of genomic char-
acteristics that potentially explain the physiological cap-
acity of Group C were identified. (1) Group C possess an
amino acid composition that is predicted to reduce the
stability of a large proportion of proteins thereby enhancing
enzyme activity at low temperature [53]. (2) Group C ge-
nomes are enriched in sulfur metabolism genes, and sulfur
is required for the cysteine component of mycothiol. The
synthesis of mycothiol may potentially protect Group C
Arthrobacter against oxidative damage that may otherwise
accumulate as cell division decreases towards the lower
temperature limit of growth [44]. (3) Group C exhibits a
relatively high proportion of mobile elements, which is a
trait shared with some other cold-adapted microorganisms
[38–40]. Collectively, the physiological and genomic traits
appear compelling for denoting Group C, a cold-adapted
clade of Arthrobacter.

However, from assessing available metagenome data,
we infer that these traits do not translate to a generally
enhanced ability to compete in low-temperature envi-
ronments. Other than the 11 specific Axel Heiberg Is-
land permafrost metagenomes, Group C Arthrobacter
were not highly represented in the other metagenomes
from cold environments, including 144 from Arctic peat
soil, 22 associated with glaciers, 42 from polar deserts,
and importantly, 365 from other permafrost environ-
ments. Even at the Axel Heiberg Island site, Group C-
specific genes were not highly abundant at 5- and 20-cm
depths. Instead, the pattern of abundance of Group C
appears to derive not just from low temperature, but
from niche-specific conditions.
Attempting to identify specific niche conditions is not

trivial. For the Axel Heiberg Island study, the permafrost
microbial community was reported to be dominated by
Actinobacteria and Proteobacteria, with significant in-
creases at depth for Firmicutes and Actinobacteria and
significant decreases for Acidobacteria, Proteobacteria,
and Verrucomicrobia [14]. However, despite these taxo-
nomic differences, we did not identify significant pre-
dicted functional differences by depth. When we turned
to specifically correlating the abundance of Group C to
OTUs from the metagenome data, a large number of
OTUs with positive or negative correlations were identi-
fied (Additional file 8: Dataset S7). At a broad level, the
environmental data of the positively correlating taxa are
consistent with Group C associating with other soil bac-
teria. While this provides scope for investigating specific
taxa that may help shape the niche that Group C oc-
cupy, determining which taxa are important and the na-
ture of their interactions will require a dedicated effort.
For the negatively correlating cohort, they tend to rep-

resent isolates from non-soil environments (Additional
file 8: Dataset S7) and may therefore represent non-
indigenous microorganisms that have been introduced.
The permafrost samples were obtained from an “upland
polygonal terrain in proximity to the McGill Arctic
Research Station at Expedition Fjord (79°24’57"N,
90°45’46"W)” [13]. The prevalence of negatively correlat-
ing OTUs matching to Proteobacteria isolated from sea
water may reflect aeolian carriage from Expedition Fjord,
which is located ~8 km from the Research Station. As
the samples were obtained for a simulated permafrost-
thaw experiment [52], the negatively correlating OTUs
may also reflect environmental disturbance.

Conclusions
Our study commenced with the analysis of genome
sequences of new Group C Arthrobacter isolated from the
Tibetan Plateau and progressed through to a rationalization
of Group C abundance in global metagenomes. Group C
was clearly distinguished from Group A Arthrobacter by
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possessing genomic signatures consistent with its represen-
tation in PA environments and an ability to grow faster
when cultivated at −1°C. Assessment of available metagen-
ome data points to the Group C traits as being more rele-
vant to cold niches rather than competitiveness across
global permafrost or cold soil environments. The challenge
in being able to define the specific niche parameters enab-
ling Group C Arthrobacter to be relatively competitive illus-
trates the inherent difficulties associated with defining
“cause and effect” for explaining “why” microorganisms res-
ide in the environments in which they are found, that is,
the characteristics of the ecological niches that define
microbiome structure [1]. Without knowing the specific ef-
fectors, the ability to understand and predict responses to
environmental changes is greatly compromised [5, 7, 55,
56]. Establishing long-term data records that include com-
prehensive metadata associated with monitoring sites, in-
cluding metadata for each biological sample, will be
essential for learning how to link environmental parameters
to microbial processes. In a study of sulfate reduction in
Arctic marine sediments, growth yield was reasoned to be
the most relevant factor for determining the competitive-
ness of sulfate-reducing bacteria in permanently cold mar-
ine sediments [54]. These findings illustrate that for cold
environments, linking genomic and metagenomic data to
measurements of metabolic rates, growth rates, and growth
yields will undoubtedly help to clarify how specific micro-
bial processes and associated taxa are influenced by envir-
onmental temperature.
While the characteristics that define the Group C niche

are still to be defined, at sites where Group C Arthrobacter
are relatively abundant, they may have value as a biomarker
for monitoring the stability of those locations. Moreover,
Group A Arthrobacter may serve as a more broadly useful
biomarker of soil microbial communities. Group A exhib-
ited high relative abundance across NPA metagenomes and
relatively low abundance across PA metagenomes. As the
data indicate environmental temperature exerts a broad,
strong influence on Group A Arthrobacter, we predict that
environmental warming will generally increase the relative
abundance of Group A. Similar influences of environmental
temperature have been described for the marine SAR11
clade, including the predicted displacement of polar special-
ists by phylotypes from warmer latitudes [57]. Depending
on how strongly the environmental factors other than
temperature select for Group C in permafrost, the apparent
broad influence of temperature on Group A suggests it will
displace Group C from the niches in which it is currently
relatively competitive.

Methods
Arthrobacter isolation and genome sequencing
Sampling and isolation of Arthrobacter from lakes,
glaciers, and a wetland on the Tibetan Plateau was

performed based on procedures previously described
[26, 27, 58, 59], and information associated with sam-
pling and isolation is provided in Additional file 1: Table
S1. Briefly, surface water samples from lakes Dawa Tso,
Gomang Tso, Peng Tso, Ranwu, Sumzhi Tso, Yamdrok
Tso, and Zigetangcuo were collected during the 2012
summer fieldwork based on procedures previously de-
scribed [58]. All water samples were collected in sterile
250-mL Nalgene bottles and stored in the field at 4 °C.
After transport at 4 °C to the Institute of Tibetan Plateau
Research-Lhasa, 15% glycerol (v/v) was added and the
samples were stored at −20 °C prior to transport and
storage of samples at −20 °C at the Institute of Tibetan
Plateau Research-Beijing. For glacier samples, 12-cm-
diameter ice cores were drilled in Noijinkangsang
(August 2007; 33-m-long ice core) and Ulugh Muztagh
(May 2012; 164-m-long ice core) glaciers. The ice cores
were cut into sub-sections with intervals of 5–10 cm
using a bandsaw in a walk-in-freezer (−20 °C). Ice on the
surface of the samples (1 cm thick) was chipped off
using a sterilized blade, the inner cores were rinsed with
cold ethanol (95%), followed by cold, triple-autoclaved,
double-distilled water. The frozen lake water and the ice
core samples were placed in autoclaved containers and
melted slowly at 4 °C before being used for cultivation
attempts. A volume of 200 μL of thawed water of each
sample was placed directly onto R2A solid medium for
cultivation.
Soil cores at 0–5-cm soil depth were collected from

the Madoi wetland in August 2011 [59]. Soil samples
were placed in a box with ice packs during transporta-
tion and were stored in the laboratory at 4 °C. The soil
samples were suspended in triple-autoclaved, double-
distilled water (m/v, 1:10), incubated statically at room
temperature for 2 h, and 200 μL of supernatant was dis-
pensed directly onto R2A solid medium for cultivation.
All cultivation on R2A solid medium (lake, glacier, and

wetland samples) was performed at the Institute of
Tibetan Plateau Research-Beijing in incubators at tem-
peratures ranging from 4 to 24 °C for a period ranging
from 1 week to 2 months (Additional file 1: Table S1).
Colonies were quadrant-streaked several times for purifi-
cation, and purity was assessed using microscopy.
Genomic DNA was extracted from isolates using a

TIANamp Bacteria DNA Kit (Tiangen, Beijing) following
the manufacturer’s instructions. The 16S rRNA genes
were amplified with the universal bacterial primers 27F
(5′AGAGTTTGATCCTGGCTCAG-3′) and 1492R (5′
CGGTTACCTTGTTACGACTT-3′) and the amplifica-
tion products were sequenced at Boai Yonghua (Beijing)
on an ABI PRISM 3730xl sequencer. The taxonomy of
the isolates was determined by aligning the 16S rRNA
gene sequences against the NCBI-nr nucleotide database
using blastn (Blast+ v2.9.0). The 16 Arthrobacter isolates
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(Additional file 1: Table S1) were deposited in the China
General Microbiological Culture Collection Center
(CGMCC) with accession numbers: CGMCC 1.16187-
1.16198, 1.16223, and 1.16312.
Using genomic DNA (extracted as described above) for

the 16 isolates, paired-end libraries with an insert size of
500 bp were constructed and sequenced using an Illumina
Hiseq 2000 platform. Prior to de novo sequence assembly,
low-quality reads were filtered out using Fastp with default
options [60]. Filtered sequencing reads were subjected to
assembly using SPAdes v3.11.1 with default options [61].
The assembled genome sequences were deposited in
DDBJ/ENA/GenBank under the BioProject PRJNA421662.
For genomic analyses, three of the 16 isolates were ex-

cluded due to genome quality or dereplication criteria
(also see the “Preparation of Arthrobacter genomes for
analysis” section below and the “Phylogenomics” section
in the “Results” section). All 13 isolates used for the
study represented unique sites (lakes, glaciers, or wetland)
or specific location of an individual lake (Zigetangcuo) or
depth of a glacier core (Ulugh Muztagh) (Additional file 1:
Table S1).

Growth temperature response
Three replicates of each Arthrobacter were grown in 100
mL of R2A broth in 150-mL flasks at 25, 5, and −1°C for
up to 10 days. The optical density was measured at 600
nm (OD600) using a Microplate Reader (MD, Spectra-
Max M5) by transferring 200 μL of the culture into
microwells. OD600 measurements were taken every 24 h
for cultivation at −1 °C and 5 °C, and every 12 h for cul-
tivation at 25 °C. For cultivation at −1°C, flasks were
placed in ice produced by an ice maker (TKKY, FM40)
with flasks placed in a ~ 4°C refrigerator and ice re-
placed every 12 h. Growth at 5 and 25°C was performed
using a constant-temperature incubator as described
previously [62]. All cultures were grown statically, with
flasks swirled to resuspend biomass prior to recording
OD600. Arthrobacter used for growth temperature pro-
files were as follows: Group A: A. luteolus, A. globiformis,
and A. subterraneus; Group B: Arthrobacter sp. 4R501,
Arthrobacter sp. 9E14, and Arthrobacter sp. 08Y14; and
Group C: A. alpinus, Arthrobacter sp. A3, and Arthro-
bacter sp. N199823.

Preparation of Arthrobacter genomes for analysis
As the taxonomic assignment of the genus Arthrobac-
ter is not consistent, in August 2018, all genome se-
quences with the taxonomy identifier “Arthrobacter”
or “Micrococcaceae” were retrieved from GenBank,
providing a total of 427 genomes including the 16
new Tibetan Plateau genomes. The completeness of
each genome was calculated using CheckM v1.0.7
with default options [63]. Genomes composed of >

300 contigs, with an N50 of < 20 kb, completeness of
< 95%, and contamination > 5% were removed. Ge-
nomes were dereplicated to remove genomes with an AAI
≥ 99.5%. AAI values were calculated using CompareM
with default options (https://github.com/dparks1134/
CompareM). ANI was calculated using the ANI calculator
(http://enve-omics.ce.gatech.edu/ani/). A total of 210 ge-
nomes met quality requirements, which included 13 of the
16 new Tibetan Plateau genomes (Additional file 2: Data-
set S1). Gene families were clustered using FastOrtho soft-
ware (--pv_cutoff 1-e5 --pi_cutoff 70 --pmatch_cutoff 70)
(http://enews.patricbrc.org/fastortho/) with the cutoff
values set according to Parks et al. [35]. A gene family
matrix was produced using custom PERL scripts, and
non-functional-based group-specific genes were calculated
based on this matrix. The annotation of genes was stan-
dardized by annotating all genomes using RAST (Rapid
Annotation using Subsystem Technology) [64] and
PROKKA [65].

Phylogenetic and genomic analyses
For phylogenomic clustering, Cellulomonas carbonis
T26 and C. fimi ATCC 484 were chosen as the outgroup
as they are close relatives of Micrococcaceae [66], and
species that are closely related to the in-group are more
suitable for phylogenetic reconstruction than distantly
related species [67]. A maximum likelihood phyloge-
nomic tree was constructed using PhyloPhlAn2 with de-
fault options [68]. A Bayesian tree was constructed using
MPI Mrbayes v3.2 (prset aamodelpr = mixed, mcmc
nchains = 16, ngen = 300,000, and leaving other param-
eter values as default) [69]. The F measure (harmonic
mean of precision) provides a metric for determining if
taxa are operationally monophyletic (F measure ≥ 0.95)
[35] and was calculated as F = 2 × ((precision × recall)/
(precision + recall)). The genome-wide amino acid com-
position was calculated using CompareM with the func-
tion aa_usage. The stability curves of proteins were
predicted by SCooP [37] using the PDB (Protein Data
Bank) files modeled by SWISS-MODEL [70]. The stabil-
ity equations of the same protein from different hosts
were visualized and smoothed using ggplot2 v3.2.1 [71].
The stability curves were analyses for 180 single-copy
genes that were shared by most genomes; a small num-
ber of genomes had multiple copies of genes, and up to
three genomes were permitted to have the absence of
the gene in order to account for the use of unclosed ge-
nomes (99 of the 106). After retrieval from SWISS-
MODEL of all possible PDB files matching the candidate
genes, a total of 17,339 stability equations were gener-
ated (Additional file 3: Dataset S2). Ordination and stat-
istical analyses, including three-dimensional nonmetric
multidimensional scaling and gene enrichment analyses,
were performed with R v3.3.3 and Origin v9.5. For
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comparisons between Group A, B, and C Arthrobacter,
group-specific genes or functions were defined as being
present in 95% of the target group (e.g., Group C)
genomes and absent in 95% of each of the other group(s)
(e.g., Group A) genomes. Group-specific genes were
identified (Group A, 74 genomes, 16,149 specific genes;
Group B, 22 genomes, 4675 specific genes; Group C, 10
genomes, 969 specific genes; Additional file 6: Dataset
S5) and normalized to account for the different number
of genomes used for each group. To account for differ-
ences in gene content between Arthrobacter, compari-
sons were calculated relative to the total Arthrobacter
gene complement from all 106 Arthrobacter genomes
(referred to as the Arthrobacter pan genome). Gene copy
number was calculated as the average number of the
gene for each genome in a group (e.g., Group C), with
gene loss or gain calculated from the average copy num-
ber for the groups (e.g., Group C vs Group A). To assess
the bias of amino acid composition of different func-
tional classes of proteins, genes were assigned to func-
tional categories (assigned by RAST) and total amino
acid composition for all proteins from the functional
category was compared between groups (e.g., Group C
vs Group A). Similarity was measured by Bray-Curtis
distance with larger Bray-Curtis distances denoting
stronger bias, possibly indicative of selection pressure
[41]. The functional potential of groups was also
compared using enrichment analysis [41]. Briefly, the
presence or absence of KEGG Ortholog (KO) groups in
genomes and metagenomes (see the “Collection and
analysis of metagenomes” section) was assessed [41], and
non-parametric one-way ANOVA was used to identify
differentially abundant categories using R [72].

Collection and analysis of metagenomes
Assembled metagenomes were downloaded from IMG
(https://genome.jgi.doe.gov/portal/). Classification into
PA or NPA environments were made using metadata
associated with metagenomes, supplemented by Köp-
pen-Geiger climate classifications (to define temperate
and tropical regions) using ArcGIS location data [73].
Analyses were initially performed using 639 metagen-
omes from environments with MAT ranging from −24
to 28 °C, representing PA (n = 196, gene count = 183 mil-
lion), temperate (n = 243, gene count = 190 million), and
tropical (n = 200, gene count = 841 million) zones (Add-
itional file 7: Dataset S6). Subsequently, all additional
(334) available (May 2020) unique assembled permafrost
metagenomes were analyzed. Analyses assessed the rela-
tive abundance of each Arthrobacter group (A, B, and C)
using group-specific genes (see the “Phylogenetic and gen-
omic analyses” section) by performing a local alignment
search against the metagenomes using DIAMOND
v0.9.24 with the arguments --outfmt 6, --query-cover 70,

--id 70, --evalue 1e-5, and leaving others as default [74].
One-way ANCOVA was used to assess statistical differ-
ences between regression lines for groups of metagenomes
[75] using the data import webform for k = 2 at http://
vassarstats.net/vsancova.html. Correlation analyses were
performed between Arthrobacter groups and other mem-
bers of the microbial community from 76 metagenomes
derived from a simulated permafrost-thaw experiment
[14]. OTUs were assigned from IMG phylodist matches
(which are based on the top taxon in the IMG isolate data-
base) by clustering the IMG phylodist matches at the
genus level; < 4% of OTUs had < 35% identity. The raw
abundance of all OTUs was determined, with 956 meeting
the criteria of average abundance ≥ 2, and detection in at
least 56 of the 76 metagenomes. The 956 OTUs were used
to construct a correlation matrix using SparCC [76] im-
plemented in python3 with default parameters (20 itera-
tions). One hundred simulated datasets were created by
random shuffling of the original input with replacement,
and their correlation matrices were constructed in the
same way. The simulated datasets were used to calculate
the one- and two-sided pseudo p-values. The selected
threshold for strong correlations was > | 0.5 |. To assess if
depth, incubation time, treatment group, sample core, or
physicochemical data explained the variation in species
composition across permafrost sites, a generalized linear
latent variable model was employed as implemented in
the R package gllvm [77]. All custom scripts are available
at https://github.com/environmental-genomes/Arthro.
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