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Abstract

Background.—Rising temperatures due to climate change are expected to impact human 

adaptive response, including changes to home cooling and ventilation patterns. These changes may 

affect air pollution exposures via alteration in residential air exchange rates, affecting indoor 

infiltration of outdoor particles. We conducted a field study examining associations between 

particle infiltration and temperature to inform future studies of air pollution health effects.

Methods.—We measured indoor fine particulate matter (PM2.5) in Atlanta in 60 homes (810 

sampling-days). Indoor-outdoor sulfur ratios were used to estimate particle infiltration, using 

central site outdoor sulfur concentrations. Linear and mixed-effects models were used to examine 

particle infiltration ratio-temperature relationships, based on which we incorporated projected 

meteorological values (Representative Concentration Pathways intermediate scenario RCP 4.5) to 

estimate particle infiltration ratios in 20-year future (2046–2065) and past (1981–2000) scenarios.

Results.—The mean particle infiltration ratio in Atlanta was 0.70 ± 0.30, with a 0.21 lower ratio 

in summer compared to transition seasons (spring, fall). Particle infiltration ratios were 0.19 lower 

in houses using heating, ventilation, and air conditioning (HVAC) systems compared to those not 

using HVAC. We observed significant associations between particle infiltration ratios and both 
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linear and quadratic models of ambient temperature for homes using natural ventilation and those 

using HVAC. Future temperature was projected to increase by 2.1 °C in Atlanta, which 

corresponds to an increase of 0.023 (3.9%) in particle infiltration ratios during cooler months and 

a decrease of 0.037 (6.2%) during warmer months.

Discussion.—We estimated notable changes in particle infiltration ratio in Atlanta for different 

20-year periods, with differential seasonal patterns. Moreover, when stratified by HVAC usage, 

increases in future ambient temperature due to climate change were projected to enhance seasonal 

differences in PM2.5 infiltration in Atlanta. These analyses can help minimize exposure 

misclassification in epidemiologic studies of PM2.5, and provide a better understanding of the 

potential influence of climate change on PM2.5 health effects.
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Introduction

The impact of both short- and long-term exposures to fine particulate matter (PM2.5) on the 

global burden of disease has been well established (Cohen et al. 2005; WHO 2016; Cohen et 

al. 2017). Individual exposure to PM2.5 can vary considerably, and is subject to modification 

from physical, behavioral, and socio-demographic factors. Notably, most individuals spend 

the majority (>90%) of their time indoors (Klepeis et al. 2001), and exposure to PM2.5 also 

occurs for many people during transportation and at work (Meng et al. 2005). Home 

ventilation has been identified as a central driver of indoor PM2.5 levels (Thatcher and 

Layton 1995; Liu and Nazaroff 2003). Specifically, home ventilation affects indoor PM2.5 

levels through its competing influence of outdoor ambient particle infiltration and 

exfiltration of indoor-generated particle sources (Long et al. 2001).

Ventilation is commonly expressed in terms of air exchange rate (AER), or the number of 

times an indoor air volume is replaced by outdoor air over time (e.g., per hour). Limited 

previous studies have suggested that AER may modify both short- and long-term health risks 

of air pollution (Janssen et al. 2002; Bell and Dominici 2008; Sarnat et al. 2013). The 

observed association of outdoor PM2.5 health effects with AER may be due, in part, to its 

impact on total human exposure to particles from outdoor sources.

Broadly, AER is associated with building envelope tightness and other aspects of physical 

structure, as well as several key meteorological factors, including ambient temperature and 

wind speed (Chan and Gadgil 2005; Sherman and Chan 2006; Persily et al. 2010). Given the 

influence of meteorology on AER, projected changes in ambient temperature associated 

with long-term global climate trends may affect population exposures to PM2.5 and their 

related disease burden. To our knowledge, only a few limited studies have examined this to 

date (Ilacqua et al. 2017; Lee et al. 2017). Using the Lawrence Berkeley National Laboratory 

model of infiltration and climate change data in nine metropolitan areas in the United States, 

Ilacqua et al. reported that infiltration associated with AER would decrease by 5% due to 

climate change, while localized increased infiltration is expected during the summer months, 

up to 20–30% (Ilacqua et al. 2017). In a retrospective cohort 340 homes in the greater 
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Boston area, our group modeled increased future temperatures due to climate change to be 

associated with increased PM2.5 infiltration, particularly during the summer (Lee et al. 

2017). These earlier analyses left some major questions concerning the generalizability of 

their findings to other locales, and incompletely characterized uncertainty resulting from 

using simulation analysis and retrospective databases.

To address these gaps, we conducted this study with the aim of quantifying the change of 

AER due to temperature increases resulting from climate change, and assess its impact on 

PM2.5 exposure. We hypothesized that future outdoor temperature increases would alter the 

contribution of outdoor particle sources to indoor concentrations, leading to differences in 

PM2.5 infiltration. To test this hypothesis, we conducted a large field sampling study 

consisting of 60 single family homes (each household with 14 exposure-days conducted in 

both warm and cold seasons) in the greater Atlanta area to model the relationship between 

outdoor temperature and PM2.5 infiltration. To estimate PM2.5 infiltration, we use sulfur 

ratio (Sr) as a tracer of outdoor PM2.5 infiltration into the indoor environment. As a major 

constituent of PM2.5, sulfur is a chemically stable pollutant, with few indoor sources, and 

negligible spatial variability over the region of greater Atlanta, with infiltration and 

deposition rates similar to those of PM2.5 (Sarnat et al. 2002). Thus Sr has been accepted as 

a means of approximating outdoor PM2.5 infiltration ratios in numerous studies and reviews 

(Sarnat et al. 2002; Diapouli et al. 2013; Breen et al. 2014; Lee et al. 2017). Using modeled 

projected temperature increase derived from Intergovernmental Panel on Climate Change 

(IPCC) climate change models to predict future particle infiltration ratio (2046–2065) as 

well as historic particle infiltration ratio (with 1981–2000 as a control), we modeled the 

impact of temperature increases on PM2.5 infiltration in Atlanta. Results from this current 

analysis are expected to test the generalizability of our previous findings and fill knowledge 

gaps in population-based particle infiltration studies, providing a tool for future 

investigations on potential influence of climate change on PM2.5 health effects.

Methods

Study Population and Field Campaign

We conducted a prospective field sampling campaign in Atlanta between January 2016 and 

June 2017. During this period, 60 single-family residences, with non-smoking residents, 

were recruited from the Atlanta metropolitan area. Home measurements were made using a 

convenient sampling method. While home selection was not random or generalizable, the 

homes in the study varied by size, age, architectural style, and geographic location within 

the city. Indoor air sampling in each household was scheduled for two sessions, during both 

cool and warm months, for periods of 7 consecutive days in each session. In addition, a 

questionnaire was completed for each home for home type, age, and size, as well as for 

indoor emission sources that may impact PM2.5 and sulfur levels, such as cooking, wood 

stoves, and candles. In addition, questions regarding parameters influencing home air 

exchange rates were included, such as use of heating, ventilation, and air conditioning 

(HVAC), and the frequency of opening windows. Indoor temperature and relative humidity 

were measured using the HOBO Temperature/Relative Humidity 3.5% Data Logger (Onset 

Inc). Fifty-seven of 60 (95%) households participated in both sessions, while three 
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households were lost to follow up at the second visit. The study protocol was approved by 

the Institutional Review Board of Emory University. All participants provided informed 

written consent.

Exposure Assessment

For each field session, PM2.5 was collected on 37 mm Teflon filters every 24 hours using a 

custom-made sampling manifold, which we successfully deployed in previous studies 

(Zanobetti et al. 2014). The sampler was placed in the main activity room (other than 

kitchen), typically the family or living room. The sampler started automatically when 

plugged in and was unplugged immediately at the end of the sampling period. The average 

flow rate of the sampler was set at 4 L/min. All indoor filters were analyzed for PM2.5 mass 

gravimetrically and for trace elemental concentrations (including sulfur) using X-Ray 

Fluorescence (XRF) at the Harvard T.H. Chan School of Public Health (Lee et al., 2017).

Concentrations of corresponding 24-hour outdoor PM2.5 and sulfur concentrations were 

measured at the Jefferson Street monitoring site (JST), which has been used previously to 

generate population exposure estimates in various air pollution health studies conducted in 

Atlanta (Sarnat et al. 2013; Strickland et al. 2010; Liang et al. 2018b; Sarnat et al. 2018; 

Liang et al. 2019; Blumberg et al. 2020; Li et al. 2021) and is generally considered to be 

representative of Atlanta urban background pollutant concentrations and composition 

(Solomon et al. 2003; Liang et al. 2018a; Moutinho et al. 2020). In this study, daily particle 

infiltration ratio in each household was determined as the ratio of sulfur concentration 

measured indoors to the concurrent measured concentrations from JST. The same approach 

was previously reported to show good agreement with independently validated indoor-

outdoor PM2.5 ratios in six Boston homes (Sarnat et al. 2002) and has been used widely in 

the field (Wallace and Williams 2005; Lee et al. 2017).

Prior to, during, and after the field sampling, we conducted quality assurance and quality 

control by running 4 independent sessions of side-by-side collocated measurements. A total 

of 80 samples were collected and analyzed. The precision in measuring sulfur concentrations 

was excellent, with an average relative precision of 7.6%. We also compared the samplers 

with two different outdoor monitoring sites (including the central monitoring JST site) and 

observed a relative precision of 4.1%. In addition, 54 field and lab blanks were collected 

during the field campaign. The blanks for PM mass did not significantly differ from zero, 

but the blank sulfur mass concentrations averaged 0.0011 ± 0.0012 μg/m3 and sample 

concentrations were corrected accordingly.

Meteorology Data

We obtained representative meteorology data for the homes in our study cohorts from the 

North American Regional Reanalysis (NARR) database, which provides historical high 

resolution data for North America based on 32 ×32 km geographical grid (Mesinger et al. 

2006). The metropolitan area of Atlanta overlaps with 36 geographical grids in NARR 

database. Home locations were matched to the centroids of the grids from the NARR 

database, where meteorology data from the grid with the smallest distance to a home was 

used to provide representative weather data for the home, including average daily 
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temperature (measured at 2 m above the surface), wind speed (measured at 10 m above the 

surface), and precipitation and relative humidity (measured at 2 m above the surface). We 

replaced negative values for precipitation by zero. This approach was used to minimize 

potential bias resulting from spatial variability on the observed association between 

meteorology and particle infiltration ratio, as compared with using data measured from the 

Atlanta Hartsfield-Jackson International Airport site.

Climate forecast model

We modeled daily meteorological variables, including temperature, wind speed, relative 

humidity, and precipitation in Atlanta for two analytic 20-year periods: 1981–2000 (past) 

and 2046–2065 (future). The modeled past predictions between 1981 and 2000 were used to 

compare with future climate-change induced temperature changes generated by the same 

model, so that both sets of predictions exhibited similar uncertainties and potential biases. 

Modeled parameter values for both the past and future periods were generated using data 

archived for the Coupled Model Inter-comparison Project Phase 5 (CMIP5), an initiative of 

the Intergovernmental Panel on Climate Change Fifth Assessment Report (Stocker et al. 

2013). This database contains projected meteorology generated by a suite of climate models 

for a range of socioeconomic scenarios, known as the Representative Concentration 

Pathways (RCPs), labelled for potential radiative forcing in the year 2100 of 8.5 W/m2 

(RCP8.5), 6.0 W/m2 (RCP6.0), 4.5 Wm−2 (RCP4.5), and 3 Wm−2 (RCP2.6). We chose the 

RCP4.5 intermediate scenario in this analysis and obtained projected daily values for 6 

weather variables in Atlanta for the periods between 1981–2000, and 2046–2065, including 

temperature (K), wind speed (m/s), relative humidity (%), precipitation (kg/m2/day), 

pressure at mean sea level (Pa), and specific humidity (kgwater/kgair), from an ensemble of 

14 CMIP5 models, which have a horizontal resolution of ~200 km.

To compare the CMIP5 historical data to the actual weather records for data quality 

assurance, we matched Atlanta zip code centroids to the nearest NARR grids for data 

extraction. Atlanta overlaps with 36 NARR grids; therefore, we averaged the values of the 

selected 6 weather variables over these 36 grids to give the final daily data for 1981–2000 in 

the NARR dataset. To correct bias in the CMIP5 meteorology data, we calculated the daily 

bias between projected meteorological variables in CMIP5 and those in NARR during the 

period of 1981–2000. Then we subtracted the daily bias of each variable from the original 

CMIP5 archives for 1981–2000 and 2046–2065. Finally, we processed these bias-corrected 

meteorological variables into daily averaged values and subsequently used statistical 

analysis to predict particle infiltration ratios for the past and the future 20-year analytic 

period.

Data analysis

We conducted descriptive statistics for indoor and outdoor PM2.5 and sulfur concentrations, 

indoor-outdoor particle infiltration ratios (i.e. Sr) (in all homes, and stratified by HVAC use), 

and meteorology parameters.

First, to test the hypothesis whether particle infiltration ratio was a function of outdoor 

temperature, we modeled particle infiltration ratio as a function of temperature using data 
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collected in all 60 houses in Atlanta during 2016–2017. Based on a previous finding (Lee et 

al. 2017), we expected HVAC usage would modify the temperature effect on particle 

infiltration ratio, largely due to reduced air exchange rate on closed window days, and 

increased air exchange rate when HVAC was not used and windows were opened for 

ventilation. Consequently, these models were conducted using: 1) all homes (the entire 

population) with mixed HVAC usage (HVAC=mixed), and; 2) homes stratified by HVAC 

usage, (i.e., the subpopulation of naturally ventilated homes with no HVAC usage 

(HVAC=0) and the subpopulation of homes with HVAC usage (HVAC=1). Window opening 

status was highly correlated with HVAC usage and was thus not included in the analysis 

(Lee et al. 2017). Linear mixed effect models were conducted to examine the association 

between particle infiltration ratio and outdoor temperature for all three population scenarios, 

while controlling for a random home-specific intercept to account for the autoregressive 

residual correlation from the repeated measurements within the same home and the 

heterogeneity of the overall particle infiltration ratio between homes. Daily averages of each 

of the other meteorological parameters, including wind speed, relative humidity and 

precipitation, and household physical factors, such as house age, square footage, and number 

of window, were used first in separate models to test their individual associations as 

predictors of particle infiltration ratio. Where significant, these independent terms were also 

included as covariates in the final multivariate particle infiltration ratio-temperature model.

To test whether variation in the future versus past ambient temperatures alter PM2.5 

infiltrations and corresponding contributions to indoor concentrations by month, we 

estimated past and future particle infiltration ratio using our particle infiltration ratio-

temperature model outlined above, in conjunction with projected meteorology for 1981–

2000 and 2046–2065 periods. Daily meteorology predictions were summarized into monthly 

or yearly averages based on individual CMIP5 models. To account for variability in 

predictions across all CMIP5 models, predictions were presented as the overall mean ± 

standard deviation (SD).

All statistical analyses were performed in R, version 3.4 (R Foundation for Statistical 

Computing; http://www.r-project.org/). Effect estimates with p-value ≤0.05 were considered 

significant.

Results

We collected 810 24h-integrated indoor samples from 60 homes across all 12 calendar 

months in the Atlanta Metropolitan area between January 2016 and June 2017. The average 

indoor PM2.5 and sulfur concentrations were 10.2 ± 15.8 μg/m3 and 0.3 ± 0.2 μg/m3, 

respectively, while the average outdoor PM2.5 and sulfur concentrations, measured at the 

JST central monitoring site, were 10.9 ± 4.7 μg/m3 and 0.4 ± 0.2 μg/m3, respectively. 

Summary statistics for other sampling parameters, meteorology factors, and household 

characteristics collected from the baseline questionnaire are presented in Table 1 and 

supplementary Table S1. During the study period, the average ambient and indoor 

temperatures were 18.4 ± 7.5 and 22.2 ± 2.4 °C, respectively.

Liang et al. Page 6

Environ Res. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.r-project.org/


Using the outdoor sulfur concentrations measured at the JST monitoring site as an indicator 

of ambient sulfur across the sampling domain, mean indoor-outdoor particle infiltration ratio 

(i.e. Sr) for these homes was 0.74 ± 0.39 (i.e. 74% of outdoor PM2.5 infiltrates indoors). 

There was a clear seasonal trend in particle infiltration ratio during the study period, where 

homes measured during transition seasons (February to April, and October to November) 

exhibited higher mean particle infiltration ratio as compared to homes measured during 

summer and winter months (Figure 1). When stratified by HVAC usage, mean particle 

infiltration ratio in naturally ventilated homes was 0.79 ± 0.30 (N=539), comparable, albeit 

moderately higher, than mean particle infiltration ratio in homes using HVAC (0.72 ± 0.44, 

N=271) (Table 1, Figure 2). Among the modeled meteorological variables, ambient 

temperature was the only statistically significant predictor of particle infiltration ratio, where 

a 1 °C increase in temperature was associated with a 1.2% decrease (0.009) in particle 

infiltration ratio (Table 2). Indoor temperature and indoor relative humidity were both 

significantly associated with particle infiltration ratio. Since the climate model cannot 

predict indoor meteorological parameters, we only used outdoor temperature as a predictor 

of particle infiltration ratio in the statistical analysis. Many household physical 

characteristics, including house age, square footage, and number of windows, were not 

associated with particle infiltration ratio in the model, and were thus not included in the final 

statistical model (Table 2 and Figure S1).

We observed substantial variability in particle infiltration ratio across the different homes, 

with 17% of samples yielding particle infiltration ratio >1, indicative of potential indoor 

sulfur sources (Figure S2). Given that the key underlying assumption of using sulfur ratio as 

a surrogate of PM2.5 infiltration factor is the absence of indoor sources of sulfur, to minimize 

misclassification, we assembled a reduced, censored dataset which excluded 138 sampling 

days with particle infiltration ratio >1. Moreover, 23 additional samples from 5 households 

were excluded in the reduced dataset due to over 70% of the measured particle infiltration 

ratio >1. A total of 810 and 649 samples were used in the full and reduced dataset, 

respectively, for the statistical analysis.

We observed significant associations between particle infiltration ratio and outdoor 

temperature in the full dataset, modeling temperature as a both a linear and quadratic term 

(Table 3). Specifically, in the quadratic models, particle infiltration ratio was positively 

associated with temperature in lower temperature ranges (<18 °C), with the particle 

infiltration ratio-temperature association turning negative in higher temperature ranges (>18 

°C). Consistent quadratic trend in particle infiltration ratio-temperature association was 

observed in models stratifying homes by use of HVAC.

We observed similar trends in both the full and reduced datasets (Table 3). For the reduced 

dataset, both linear and quadratic forms of outdoor temperature were significantly associated 

with particle infiltration ratio in all three scenarios (i.e. AC=mixed, 0 or 1). Thus, we used 

the effect coefficient estimates of the linear and quadratic forms of outdoor temperature in 

the reduced dataset to predict particle infiltration ratio using the estimated past and future 

temperatures from an ensemble of 14 CMIP5 models.
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We present the 20-year averages of monthly mean temperature under the RCP 4.5 

intermediate scenario for the past and future study periods from all 14 CMIP5 models and 

their overall monthly averages in Figure 3. We observed good predictability for temperature 

among these CMIP5 models, where the model-specific trends and monthly temperature 

prediction were consistent. In the future period, mean monthly temperature is projected to 

increase by 1.5–2.5°C in Atlanta relative to the past period, with larger temperature 

increases predicted during summer months (Figure 3). Correspondingly, this would result in 

a 0.023 ± 0.008 (3.9%) increase in particle infiltration ratio (i.e., increased outdoor 

infiltration) during cooler months (October to March), and an average 0.037 ± 0.015 (6.2%) 

decrease during warmer months (April to September, Figure 4C). The predicted seasonal 

trends of particle infiltration ratio in the past (1981–2000) and in the future (2045–2065) 

were also consistent with the current seasonal trend observed for the field study, when 

transition season had higher particle infiltration ratio and summer had lower infiltration due 

to the high prevalence of AC usage (Figures 4A and 4B).

When stratified by HVAC usage, increased future climate change-related temperatures were 

projected to enhance seasonal differences in PM2.5 infiltration in Atlanta (Figure 5). In 20 

years, seasonal difference (between transition season and summer) in mean particle 

infiltration ratio was estimated to be as high as 0.22 (45.7%) for naturally ventilated homes 

(HVAC=0) and 0.15 (27.8%) for the whole population (HVAC=mixed), using summer as a 

baseline reference (Figure 5B). A similar profile was observed for the past period, with less 

substantial seasonal differences. Mean particle infiltration ratio was estimated to be 0.13 

(22.3%) and 0.09 (14.9%) higher during transition season compared to summer for naturally 

ventilated homes and homes with HVAC usage, respectively.

Discussion

We conducted this large prospective study of 60 single-family residences to investigate the 

impact of temperature increases due to projected climate change on outdoor PM2.5 

infiltration in Atlanta. The current analysis is particularly pertinent to public health since 

people spend 90% of their time indoors. Increasing ambient temperatures due to climate 

change can, correspondingly, lead to changes in infiltration patterns, thus affecting our 

exposure to ambient air pollution and associated adverse health effects. To our knowledge, 

this study constituted the single largest prospective, longitudinal assessment on the 

relationship between daily and long-term temperature change and particulate pollutant 

infiltration.

Broadly, the results during this two-year study point to a substantial impact of outdoor 

temperature on particle infiltration ratio and changes in future particle infiltration ratio due 

to climate change, modified further by changes in HVAC usage. Based on these 

measurements and analyses, we offer several key findings to potentially help provide a better 

understanding of the influence of projected climate change on PM2.5 health effects.

There are previous reports that outdoor temperature has a strong impact on particulate matter 

infiltration, mainly by changing residential frequency of HVAC usage and window opening 

(Wallace et al. 2002； Kearney et al. 2014). However, our study confirms the effect of 
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outdoor temperature, and indicates that other meteorological parameters play a negligible 

role. In general, particle infiltration has been reported to be higher with frequent window 

opening for natural ventilation, and lower with HVAC in use and windows closed (Howard-

Reed et al. 2002; Wallace et al. 2002; Howard-Reed et al. 2003). Our analysis is consistent 

with these findings, since we observed a strong association between outdoor temperature, 

HVAC usage, and frequency of window opening. In Atlanta, there were more than 95% 

households using HVAC in the summer and winter seasons (June to September and 

December to January, respectively). The frequency of window opening was highest during 

the two transition seasons (April to May and October to November), when HVAC is not 

necessary. Using sulfur ratio as a surrogate of particle infiltration, we observed lower 

particle infiltration ratio values during the summer or winter likely due to greater HVAC 

usage, and substantially higher particle infiltration ratio values during the transition seasons, 

when people tend to open windows frequently as a means of ventilating their homes. The 

particle infiltration ratio seasonal trend observed here was robust across the past and 

predicted future trends.

A limited number of studies have examined the relationship between temperature profiles 

and particle infiltration. Hystad et al. conducted indoor and outdoor light scattering 

measurements of PM from 84 homes in two cities in North America and observed a 

significant positive linear relation between outdoor temperature and PM2.5 infiltration 

(Hystad et al. 2009). In the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA 

Air), 2-week average outdoor temperature was the most consistent predictor of particle 

infiltration, with a positive linear association during the cold season (Allen et al. 2012). 

However, the generalizability of these findings is somewhat limited due to the relatively 

small sample size and that not all seasons of the year were sampled. Notably, our results 

show significant non-linear particle infiltration ratio-temperature associations, which were 

positive when temperatures were lower (<18 °C), and negative with steep rates of change 

when temperatures were higher. Using daily average temperature as a continuous predictor 

for particle infiltration ratio with a nonlinear model, we were able to overcome the above 

limitations and investigate the particle infiltration ratio-temperature relationship with a finer 

temporal coverage and more accurate assessment. This finding is supported by results from 

two previous studies that quantified the relationship between continuously measured 

temperature and particle infiltration (Meng et al. 2009; Lee et al. 2017). Meng et al., for 

example, reported greater particle infiltration for homes without AC, and a non-linear 

relationship where the highest infiltration occurred at 20°C across 114 homes from 3 cities 

using 48-hour integrated samples.

Our findings are also consistent with a similar study we conducted in 340 homes in the 

greater Boston area (Lee et al. 2017), where temperature was found to be the only significant 

predictor of particle infiltration ratio among all meteorological variables in homes with or 

without AC usage. However, compared to the positive linear and quadratic relationships 

between temperature and particle infiltration ratio observed in Boston, the temperature-

particle infiltration ratio association observed in Atlanta exhibited a different pattern. 

Specifically, the quadratic term of temperature was negatively associated with particle 

infiltration ratio, indicating that particle infiltration ratio would decrease substantially for 

lower or higher temperature ranges. We hypothesize that the observed different patterns 
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between Atlanta and Boston mainly resulted from their distinct climate patterns, where 

Atlanta has hotter summers and milder winters compared to Boston. Substantial differences 

in HVAC prevalence and usage also exist between these cities. Strikingly, in Atlanta, 79% of 

the households sampled used HVAC throughout the year, compared to 24.3% HVAC usage 

for the homes in the Boston study. For most households in Atlanta operating HVAC during 

summer and winter, particle infiltration ratio decreased substantially in both lower and 

higher temperature ranges, correspondingly.

Using this particle infiltration ratio-temperature relation together with the estimated past and 

future temperature from an ensemble of 14 CMIP5 models, we predicted a 3.9% increase in 

particle infiltration ratio during cooler months and an average 6.2% decrease during warmer 

months in Atlanta, where enhanced seasonal differences in PM2.5 infiltration would be 

observed among naturally ventilated households without HVAC usage. Generally, the 

difference was smaller for the past than predicted for the future because particle infiltration 

ratio in naturally ventilated homes is expected to be more sensitive to increasingly higher 

temperatures in the future. The predicted 45.7% difference in particle infiltration ratio 

between transition season and summer for naturally ventilated homes in the future 20 year-

period suggests that this subpopulation may be more vulnerable to ambient air pollution with 

the corresponding enhanced infiltration of outdoor particles during transitions. Thus, added 

caution and targeted preventive action (i.e. use of air filtering, alternative ventilation 

mechanisms, or personal protection equipment) may be recommended with the goal of 

protecting those most susceptible.

It is important to emphasize several key assumptions in our analysis. In conducting the 

study, we assumed that individuals would react and behave to changing temperature 

conditions in a similar way during both analytic periods. This status quo response implies 

that individuals will adapt to climate changes by opening windows more (when temperatures 

are moderate) or use more air conditioning (when temperatures are hot). However, humans 

could, and perhaps will, assimilate to a changing climate, by moving to areas less impacted 

by these changes or by adopting behaviors and responses different from those practiced 

today. We believe, however, that behavioral adaptations are less likely to occur if 

temperature in a city changes slowly over many years by only 2–3 °C (Lee et al. 2017). In 

addition, we assume that homes in the future will be constructed and operated in the same 

manner as they are today. It is possible, however, that homes will be more efficiently 

insulated, influencing corresponding patterns of window usage as well as general heating 

and cooling practices. The HVAC system used to heat or cool homes may also change in the 

future, and the rate of technology penetration will depend on the cost and affordability. 

Despite this, it is worth reiterating that the lifespan of homes can vary from a few decades to 

100 or more years, suggesting that it may take a long time to replace housing stock. Since 

the average temperature is modeled to change by a few degrees with a few additional 

episodes of high temperature conditions, our assumption that we will overcome climatic 

changes simply by using more AC in the summer and open the windows more during the 

transition seasons seems reasonable. These behavior changes have the potential to 

substantially impact home ventilation, and as a result, the contribution of indoor and outdoor 

sources to total indoor PM2.5. In this analysis, we studied the impact of changes in average 

temperature and observed notable changes on future particle infiltration; however, changes 
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in minimum and maximum temperature in the future will be larger and therefore may have a 

greater impact on particle infiltration.

In addition, some limitations of this analysis warrant attention. The generalizability of the 

observed study findings may be limited and may not apply to other cities with differences in 

climate conditions, housing characteristics and occupant behaviors, as demonstrated by the 

differential particle infiltration ratio-temperature relation observed in Atlanta compared to 

that previously reported in Boston (Lee et al. 2017). Future study should consider using 

sampling sites from various regions with different climate patterns. In assessing the 

relationship between different meteorological factors and particle infiltration ratio, indoor 

temperature and relative humidity also can be assumed to be significantly associated with 

particle infiltration ratio, but were not included in the final statistical analyses due to the lack 

of climate change predictions for indoor environments. It is possible that indoor temperature 

and relative humidity may change substantially in the future and thus exert different 

influences on particle infiltration, which we are not able to predict in the current analysis. 

Finally, although we use temporally resolved measurements (24 hour-sampling), and 

recorded participant activity and household physical characteristic with a daily 

questionnaire, it is possible that other unknown or unquantifiable factors may influence 

infiltration. When conducting our sensitivity analyses using the reduced dataset, which 

excluded households with potential indoor sulfur sources (N=138), we observed similar, 

consistent particle infiltration ratio-temperature associations compared to results from the 

full dataset.

Under a mild climate change scenario, we quantified the temperature and particle infiltration 

ratio relationship, and predicted changes in particle infiltration due to predicted future 

increases in temperature. These analyses can help provide a better understanding of the 

potential influence of climate change on PM2.5 health effects.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• To date, largest prospective, longitudinal assessment of temperature change 

and particulate pollutant infiltration

• Temperature significantly associated with ambient particle pollution 

infiltration indoors

• Climate changes projected to enhance seasonal differences in particle 

infiltration

• Stronger increase in future particle infiltration projected among naturally 

ventilated houses
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Figure 1. 
Distribution of particle infiltration ratio by month in houses (N=810) in Atlanta
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Figure 2. Distribution of particle infiltration ratio by HVAC/Heating system usage and windows 
opening in Atlanta.
(Top Left) Percentage of homes using HVAC/Heating system by month. (Top Right) Particle 

infiltration ratio by daily HVAC/Heating system usage. (Bottom Left) Percentage of 

household windows opening by month. (Bottom Right) Particle infiltration ratio by daily 

windows opening.
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Figure 3. Projected mean monthly temperature for the past (1981–2000) and the future (2046–
2065) time periods using 14 CMIP5 models (dashed lines) under the RCP4.5 intermediate 
scenario.
(Top Left and Top Right) The solid line is the ensemble 168 monthly mean outdoor 

temperature across the CMIP5 models. (Bottom) The solid lines are the overall monthly 

future-past temperature differences across the CMIP5 models while the dashed lines are ± 1 

standard deviation from the overall mean. Mean monthly temperature projected to increase 

by 1.5–2.5°C in Atlanta, with larger increases in summer.
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Figure 4. Projected mean monthly particle infiltration ratio for the past (1981–2000) and the 
future (2046–2065) time periods.
The solid lines show the overall monthly particle infiltration ratio in the past (Figure 4A), in 

the future (Figure 4B), or the differences in particle infiltration ratio between the two time 

periods (Figure 4C) using projected temperature from 14 CMIP5 models while the dashed 

lines indicate ± 1 SD from the overall mean.
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Figure 5. Projected mean monthly particle infiltration ratio for the past (1981–2000) and the 
future (2046–2065) time periods among homes with and without heating, ventilation, and air 
conditioning (HVAC) usage.
The solid lines show the overall monthly particle infiltration ratio in the past (Figure 5A), in 

the future (Figure 5B), or the differences in particle infiltration ratio between the two time 

periods (Figure 5C) using projected temperature from 14 CMIP5 models while the dashed 

lines show ± 1 SD from the overall mean. Green lines denote homes without HVAC and blue 

lines denote homes with HVAC usage
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