Skip to main content
. 2021 May 24;22(11):5521. doi: 10.3390/ijms22115521

Table 1.

DeepD2V Hyper-parameters, search space, and recommendation.

Calibration Hyper-Parameters Search Space Recommendation
Convolutional layer number {1, 3, 5, 7} 3
Learning rate {1×102, 1×103, 1×104, 1×105} 1×103
Batch Size {1, 32, 64, 128, 256, 512} 64
Loss Function / Binary cross entropy
Optimizer {Adam, AdaDelta} Adam
Convolutional neurons number {8, 16, 32, 64, 128} 16
Convolutional kernel size {3, 9, 16, 24} 3
Max Pooling window size {2, 4, 8} 2
Number of bi-LSTM neurons {8, 16, 32, 64} 16
Dropout ratio {0.1, 0.2, 0.5} 0.1