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Abstract

The interfacial tension of phase-separated biomolecular condensates affects

their fusion and multiphase organization, and yet how this important property

depends on the composition and interactions of the constituent macromole-

cules is poorly understood. Here we use molecular dynamics simulations to

determine the interfacial tension and phase equilibrium of model condensate-

forming systems. The model systems consist of binary mixtures of Lennard-

Jones particles or chains of such particles. We refer to the two components as

drivers and regulators; the former has stronger self-interactions and hence a

higher critical temperature (Tc) for phase separation. In previous work, we

have shown that, depending on the relative strengths of driver-regulator and

driver-driver interactions, regulators can either promote or suppress phase sep-

aration (i.e., increase or decrease Tc). Here we find that the effects of regulators

on Tc quantitatively match the effects on interfacial tension (γ). This important

finding means that, when a condensate-forming system experiences a change

in macromolecular composition or a change in intermolecular interactions

(e.g., by mutation or posttranslational modification, or by variation in solvent

conditions such as temperature, pH, or salt), the resulting change in Tc can be

used to predict the change in γ and vice versa. We also report initial results

showing that disparity in intermolecular interactions drives multiphase coexis-

tence. These findings provide much needed guidance for understanding how

biomolecular condensates mediate cellular functions.

KEYWORD S

biomolecular condensates, interfacial tension, multiphase coexistence, phase equilibrium,
phase separation

1 | INTRODUCTION

Biomolecular condensates formed via phase separation
often appear as micro-sized liquid droplets. The surface
tension, γ, at the interface between the dense phase and
the surrounding bulk phase is a very important property
that affects the dynamics, organization, and, ultimately,

function of biomolecular condensates. Notably, interfa-
cial tension drives the fusion of droplets and is thus a
main determinant of fusion speed.1–3 Experimental stud-
ies have revealed that, instead of a single homogeneous
phase, condensates, including membraneless organelles
such as nucleolus, can occur as multiple coexisting dense
phases, each with a distinct composition.1,4–10 Interfacial
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tension may play a vital role in the spatial organization
of the multiple dense phases.1 Moreover, the material
states of condensates often evolve over time, both for nor-
mal cellular functions and as an aberrant transitions.11

The time evolution is also partly driven by material prop-
erties including interfacial tension.

Inside cells, condensates often comprise dozens to
hundreds of macromolecular components.4 The complex
composition provides ample opportunities for the pertur-
bation of interfacial tension, by changes in macromolecu-
lar composition or their interactions through mutations,
posttranslational modifications, and variations in solvent
conditions such as temperature, pH, and salt. It is very
possible that compositions of condensates are tailored to
achieve desired interfacial tensions.1 However, there is
no general understanding of how interfacial tension
depends on macromolecular composition.

Many theoretical and computational studies have
focused on calculating binodals, that is, coexistence cur-
ves between dense and bulk phases.12–20 These studies,
even when based on highly simplified models, have gen-
erated far-reaching conclusions on phase equilibrium. In
particular, results for spherical particles and polymer
chains, as models for structured and disordered proteins,
respectively, have shown that chain systems tend to have
a higher critical temperature (Tc) and lower densities in
both phases.14 Most relevant for the present study, our
computations led to general predictions for how Tc is
perturbed by compositional changes (Figure 1(a)).15,18

When two macromolecular species is mixed, one capable
of phase separation on its own (or doing so at a higher

Tc) and known as driver whereas the other known as reg-
ulator, the change in Tc depends on the strength of
driver-regulator attraction (εDR) and the amount of regu-
lator added. Regulators with εDR< εDD (strength of driver
self-attraction) decreases Tc and are called weak-
attraction suppressors of phase separation – they do so by
partitioning into the dense phase and thereby replacing
some of the stronger driver-driver interactions with wea-
ker driver-regulator interactions. In contrast, regulators
with εDR> εDD have the opposite effect at low concentra-
tions and are called strong-attraction promotors. At
higher concentrations, regulator-regulator interactions in
the dense phase start to dominate and hence Tc exhibits a
turnover. Corresponding effects on the threshold driver
concentration for phase separation at a given tempera-
ture are predicted, with promotion and suppression of
phase separation indicated by decrease and increase
of the threshold concentration, respectively. These pre-
dictions were validated by our own experiments and also
explain many experimental observations reported in the
literature.18 Extending such computations to predict
interfacial tension was the main motivation for the
present work.

The calculation of interfacial tensions for phase-
separated model systems has a long history.21–23 Here we
note only a few studies that have direct relevance to the
present work. Lee et al24 and Stephan et al25 both
reported interfacial tensions for binary mixtures of
Lennard-Jones particles. The latter study presented inter-
facial tensions when the strength of the cross-species
interactions was varied. Silmore et al26 reported interfa-
cial tensions for pure Lennard-Jones chains at different
lengths. Our work here covers binary mixtures of both
Lennard-Jones particles and Lennard-Jones chains, over
a range of temperatures. Our focus is the relation
between Tc and γ at a given temperature when the molar
ratio of the two species is varied.

The Lennard-Jones interaction energy between two
particles is

φ rð Þ¼ 4ε
r
σ

� �12
� r

σ

� �6
� �

ð1Þ

where r is the interparticle distance, ε represents the
strength of the attraction, and σ denotes the diameter of
the particles. For a pure Lennard-Jones particle system,
Tc scales with ε. This scaling relation illustrates that
phase separation is driven by attractive interactions
between constituent macromolecules; the stronger the
attraction, the higher the critical temperature for phase
separation. An approximate expression for the interfacial
tension is27

FIGURE 1 Motivation and general description of the

simulation systems. (a) Dependence of the critical temperature for

phase separation on the strength of driver-regulator attraction and

the amount of regulator added. Red, white, and blue indicate

increase, no change, and decrease in Tc, respectively. (b) Illustration

of the driver (red) and regulator (blue) particles and chains.

(c) Values of the interaction strengths between different species
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γ ≈ �πρd
2

2
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0

drr3φ rð Þ ð2Þ

where ρd is the density of the dense phase. This approxi-
mation illustrates that the interfacial tension also scales
with the interaction strength. Since both Tc and γ scale
with ε, we can expect correlation between Tc and γ when
intermolecular interactions are perturbed. Our results
below indeed conform to this expectation. We also pre-
sent unexpected behaviors, indicated by anomalous γ for
certain mixtures.

2 | RESULTS AND DISCUSSION

We studied binary mixtures of Lennard-Jones particles or
chains comprising 10 such particles (Figure 1(b)). The
strength, εDD, of the self-interaction of driver particles is
assigned a value of 1 to set the energy scale. The counter-
part, εRR, for regulator particles has a value of 0.9. Similar
to previous work,15,18 we study three different values for
εDR, that is, 0.8, 1.0, and 1.2 (Figure 1(c)). The first εDR
value is less than εRR and expected to model weak-
attraction suppressors whereas the third εDR value is
greater than εDD and expected to model strong-attraction
promotors. For a given εDR value, we also study the
whole range of mixing ratios between driver and regula-
tor particles or chains, with regulator mole fraction, xR,
at 0 (pure driver), 0.2, 0.4, 0.6, 0.8, and 1 (pure regulator).
Lastly, for each εDR and xR, we study a range of tempera-
tures, for particles starting at 0.65 and going all the way
toward Tc with increments of 0.02 whereas for chains
starting at 1.7 and going all the way toward Tc with incre-
ments of 0.1. We use the term ''corresponding'' to refer to
a particle system and a chain system that have the same
values for εDR and xR.

The equilibrium between the dense and bulk phases
was sampled by molecular dynamics (MD) simulations
using the slab method (see Computational Methods).21

The simulations produce a dense phase, as a slab in the
middle, at equilibrium with the bulk phase on the oppo-
site sides, in a rectangular box (Figure 2).

2.1 | Strength of D-R interactions
dictates regulatory effects on critical
temperature

From the MD simulations, we obtain the total densities,
ρb and ρd, of the two components in the bulk and dense
phases (see Computational Methods and Figure S1a) at a

series of temperatures (Figure 3(a) for particles and
Figure 3(b) for chains). We fit the resulting binodals to
the following equations:

1
2
ρbþρdð Þ¼ ρcþA T�Tcð Þ ð3aÞ

Δρ� ρd�ρb ¼B Tc�Tð Þβ ð3bÞ

where ρc is the critical density, A and B are constants,
and the exponent β is set to 0.32. Equation [3a] is called
the law of rectilinear diameters,28 whereas Equation [3b]
is a scaling relation.28,29

The critical temperature for the pure driver particle
system is 1.171, in good agreement with a value 1.16 in a
previous study with the same cutoff.12 The pure regulator
particle system is identical to the pure driver counterpart,
except that the interaction energy is reduced by a factor
of 0.9. Correspondingly the critical temperature is
expected to be reduced to 1.171 � 0.9 = 1.054, which is
nearly identical to the Tc value, 1.055, determined from
our simulations of the pure regulator particle system.
When regulator particles are mixed with driver particles,
very different changes in Tc are observed depending on
the value of εDR (Figures 3(a) and 4(a)). At εDR = 0.8, as
xR increases from 0, Tc gets lower. Then at xR = 0.6 and
0.8, where the regulator becomes the major species, Tc is
even lower than that for pure regulator particles. Of
course as xR! 1, Tc must come back to the value for pure
regulator particles. The dependence of Tc on xR for at εDR
= 0.8 has the shape of an upward parabola.

At εDR = 1.2, Tc initially increases with increasing xR,
which is just opposite to the situation at εDR = 0.8. At xR
= 0.6 the trend is reversed and Tc decreases all the way

FIGURE 2 Setup and simulation to reach phase-separated

equilibrium. (a) System in an initial cubic box. (b) System after two-

fold compression in each direction. (c) Enlarged box in z direction.

(d) Two-phase equilibrium. A zoomed view of the dense phase and

the neighboring regions in the bulk phase is shown at the bottom
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till xR = 1, but still is above that for pure driver particles
even at xR = 0.8. The overall shape of the dependence of
Tc on xR is a downward parabola. At εDR = 1.0, the
dependence of Tc on xR is close to a linear interpolation
between the two end values (i.e., for pure driver and pure
regulator), but with a small downward curvature.

The Tc trends at the different εDR values are qualita-
tively in line with our conclusion in previous studies,15,18

where regulators with εDR< εDD and with εDR> εDD are
classified as weak-attraction suppressors and strong-
attraction promotors, respectively. One difference
between the present work and our previous studies lies in
the self-attraction of regulator particles. In the previous
studies, regulator particles experience only steric repul-
sion among themselves, whereas here they experience
Lennard-Jones interactions, albeit with a weaker strength
than that for the driver particles. Therefore, in our previ-
ous studies, the extent of weak-attraction suppression of
phase separation, as measured by the decrease in Tc,
increases monotonically with xR, whereas here the
decrease in Tc reaches a maximum at an intermediate xR.
Similarly, in our previous studies, once strong-attraction
regulators switch from being promotors to suppressors at
a certain xR, Tc decreases indefinitely with further
increase in xR, but here Tc decreases at most to the value
for pure regulator particles.

The Tc trends at the three εDR values for binary mix-
tures of Lennard-Jones chains (Figures 3(b) and 4(b))
qualitatively parallel those for the Lennard-Jones parti-
cles. Quantitatively, two differences are worth noting.
Firstly, the critical temperatures of the chain systems are
higher, by a factor αT≈ 2.3, than the corresponding parti-
cle systems. Secondly, the binodals shift toward lower
densities. These two differences in the binodals of particle
and chain systems have been pointed out previously
based on predictions of perturbation theories.14

2.2 | Particle systems and chain systems
have approximately equal interfacial
tensions at matching temperatures

For each binary mixture at a given temperature, we cal-
culated the interfacial tension according to the
Kirkwood-Buff method.30 We noted already that, in
either the particle case or the chain case, the two pure
systems (at xR = 0 and 1) are identical except that the
interaction energies are at a ratio of 0.9. As can be seen
by their units (i.e., ε/kB and ε/σ2, respectively), both of T
and γ scale with the interaction strength. Therefore we
expect that the values for the pure driver systems, (TD,
γD), should equal the counterparts for the pure regulator

FIGURE 3 Binodals of (a) particle and (b) chain systems. The driver-regulator interaction strength, εDR, is listed near the bottom of

each panel; the mole fraction of the regulator species is listed at the top right. Symbols are densities of the two phases at a given

temperature, determined by fitting the density profile to a hyperbolic tangent function. The curves are fits of the binodals to Equation [3].

Given the greater uncertainties near the critical region, we successively removed data closest to Tc, until the fitted values of Tc and ρc were

stable.15 Note that at εDR = 1.2 the results at xR = 0.2 and 0.6 are very close to each other, especially for the particle systems
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systems, (TR, γR), when the latter quantities are both
scaled up by a factor of 1/0.9. That is, γD = γR/0.9 when
TD = TR/0.9. The results of our MD simulations indeed
agree with this expectation (Figure S2).

Figure 5(a) displays illustrative results for a mixture,
comprising Lennard-Jones particles at εDR = 1.2 and xR
= 0.4. In all cases, γ gradually decreases toward 0 as T
increases toward Tc. The dependence of γ on T fits well
to the scaling relation28,29

γ¼ γ0 1�T=Tcð Þμ ð4Þ

with μ = 1.255 (Figures 5(a) inset, 6(a), and 6(b)). This fit
provides a second route to the determination of Tc. The
resulting values are in very close agreement with those
determined by fitting the binodals (Figure 5(b)).

Comparing the interfacial tensions of the particle sys-
tems and the corresponding chain systems, we find that
they are approximately equal at matching temperatures,
especially at T close to Tc (Figure 5(c)). By matching

temperatures, we mean that a temperature T for a parti-
cle system is equivalent to a temperature αTT for the
corresponding chain system. The similarity in interfacial
tension between corresponding particle and chain sys-
tems will be further discussed below.

Combining Equations [3b] and [4], we obtain a third
scaling relation

γ¼CΔρμ=β ð5Þ

The exponent is expected to be 3.92, based on the above β
and μ values. Our data fit well to this scaling relation,
with exponents very close to the expected value (mean
and standard deviation of exponents at 3.93 ± 0.07;
Figure S3). The last scaling relation indicates that, other
things being equal, γ grows with increasing difference
in density between the dense and bulk phases. This
density difference and hence γ decrease toward 0 as T
approaches Tc.

2.3 | Regulatory effects on Tc and on γ
match each other

At a given temperature, the overall mole fraction, xR, of
the regulator species affects the composotions (Figure 3)
and interactions of the two coexisting phases and there-
fore the interfacial tension. The dependence of γ on xR
for Lennard-Jones particles was reported by Stephan
et al25 at a single temperature. Here we studied the inter-
facial tensions of both particle and chain systems over a
range of temperatures. The results are illustrated in
Figure 4 for the particle systems at T = 0.95 and the
chain systems at T = 2.2. Interestingly, the effects of reg-
ulator particles and chains on γ at a fixed T match almost
perfectly with the corresponding effects on Tc. Simple
reasoning as presented in the Introduction gave us an
inkling for a correlation between γ and Tc, but the degree
of correlation exhibited by the data is somewhat
surprising.

Given the high degree of correlation between Tc and
γ, the trends described above for Tc at different εDR also
translate into those for γ. That is, at εDR = 0.8, regulators
decrease γ, even to values below γR when xR is at 0.6 and
0.8; at εDR = 1.2, regulators initially increase γ but at xR
= 0.6 reverse the trend, though γ is still higher than γD
even at xR = 0.8; at εDR = 1.0, the regulatory effects on γ
are close to a linear interpolation between γD and γR but
with a small downward curvature.

We find that the match in the regulatory effects on Tc

and on γ is better when T is closer to Tc. While Figure 4
(a) compares Tc with γ at T = 0.95 for particle mixtures,

FIGURE 4 Regulatory effects on Tc and on γ. (a) Particle

systems. (b) Chain systems. Tc values are determined by fitting

binodals. Curves are parabolic fits to guide the eye. Data at εDR
= 1.2, 1.0, and 0.8 are displayed from top to bottom in each panel
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when a similar plot is made for γ at T = 0.65 we see
larger deviations of the γ trends from the Tc trends
(Figure S4a). For the chain mixtures at εDR = 0.8, we
even see γ values at xR = 0.4 and 0.6 that buck the trend
set by Tc (Figure S4b; see also Figure S3b). We will elabo-
rate below on this anomalous behavior.

2.4 | γ and Tc have a linear relation

The foregoing results show that regulatory effects on Tc

can predict the corresponding effects on γ at any temper-
ature, and vice versa. Figure 4 even suggests a linear rela-
tion between γ and Tc. To provide a justification, let us
manipulate the scaling relation given by Equation [4]
(see Figure 6(a), (b)), for T close to Tc. Let δ = Tc�T.
Expressing Tc in terms of δ and carrying out a Taylor
expansion, we obtain

γ ≈ γ0 δ=Tð Þμ ¼ γ0 Tc=T�1ð Þμ ð6Þ

This expression suggests that we plot γ against Tc/T� 1
and fit the resulting relation to a power law. Such fits
yield exponents that are very close to 1, or an approxi-
mate linear relation between γ and Tc,

γ ≈ γ1 Tc=T�1ð Þ ð7Þ

Figure 6(c), (d) display this linear relation, for Tc/T� 1
< 0.5. For the particle systems, the slope γ1 falls within
the range of 1.01 to 1.31; the corresponding range for the
chain systems is 0.85 to 1.15.

The similar slopes of the particle and chain systems
are supported by the finding made clear above by
Figure 5(c), which is that corresponding particle and
chain systems have nearly equal interfacial tensions at
matching temperatures close to their respective Tc values.
When matching temperatures, we scale both Tc and T by
the same factor αT, thus leaving Tc/T the same for the
particle and chain systems. If both γ and Tc/T� 1 are
the same, then the slope γ1 has to be the same for
corresponding particle and chain systems.

FIGURE 5 Temperature dependence of interfacial tension. (a) Results for a mixture of Lennard-Jones particles at εDR = 1.2 and xR
= 0.4. The curve is a fit to Equation [4]. The inset displays a similar plot but with both γ and 1�T/Tc on a logarithmic scale. (b) Comparison

of critical temperatures determined via two different routes, by fitting either binodal or interfacial tension. Data points at the lower left and

at the upper right are for particles and chains, respectively. The line represents perfect agreement between the two routes. (c) Comparison of

interfacial tensions of the corresponding particle and chain systems at εDR = 1.2 and xR = 0.4. For the chain system, the abscissa represents

temperature scaled down by a factor αT= 2.3
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A linear relation, or indeed any one-to-one relation,
between Tc and γ is highly significant. It means that,
when a condensate-forming system experiences a change
in macromolecular composition or a change in inter-
molecular interactions (e.g., by mutation or posttransla-
tional modification, or by a perturbation in solvent
conditions such as temperature, pH, or salt), the resulting
change in Tc can be used to predict the change in γ and
vice versa.

2.5 | Disparity in self- and cross-species
interactions drives multiphase coexistence

Finally let us focus our attention to the anomalous inter-
facial tension observed on the chain mixtures at εDR

= 0.8, xR = 0.4 and 0.6, and T below 2.2 (Figures 6(b),
(d), S3b, and S4b). Inspecting snapshots from the simula-
tions, we were surprised to discover that the dense phase
is not a homogeneous mixture of the two components
(Figure 7(a)). Instead, driver chains and regulator chains
demix to form two distinct dense phases: a driver-rich
region at the center, bordered by two regulator-rich
regions on the two sides (Figure 7(b)). Instead of a single
interface between the dense and bulk phases in each half
of the simulation box (Figure 2(d)), we now see two inter-
faces, the first between the driver-rich and regulator-rich
regions, and the second between the regulator-rich region
and the bulk phase. For T≥ 2.2, even though the interfa-
cial tension does not appear anomalous, the driver and
regulator species are not homogeneously distributed in
the dense phase, but not to such an extent as to yield a

FIGURE 6 Scaling of interfacial tension with T or with Tc. (a) Scaling of γ with 1�T/Tc for the particle systems, displayed on a log–log
scale. The fits to Equation [4] for two sets of data near the borders are shown as lines. (b) Corresponding plots for the chain systems.

(c) Scaling of γ with Tc/T� 1 for the particle systems. Fits to Equation [7], with Tc fixed at the values from fitting interfacial tensions, for two

sets of data (each for a given mixture in a range of T) near the borders are shown as lines. (d) Corresponding plots for the chain systems.

Anomalous γ values due to multiphase coexistence are shown as open symbols in panels (b) and (d)
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new interface between the driver-rich and regulator-rich
region (Figure S5a). Rather, the inhomogeneous distribu-
tions are best described as regulator enrichment at the
interface of the dense and bulk phases. This interfacial
enrichment of the regulator (i.e., lower Tc) species was
also observed in the particle systems with εDR = 0.8 at T
= 0.65 (Figure S5b, but not at T > 0.8), and has been
reported in previous studies of mixtures of Lennard-Jones
particles.24,25,31,32 (As εDR was further decreased for the
particle systems, we also observed their demixing to form
distinct dense phases.) This type of multiphase coexis-
tence has been reported in many experimental stud-
ies1,7,9,10 and in some recent computational studies,10,33,34

and may underlie the organization of many
membraneless organelles.1,4–6,8 It is interesting that our
highly simplified model systems recapitulate this com-
plex phenomenon, affording us an opportunity to eluci-
date its general physical basis. In fact, our initial
observations on the model systems are qualitatively in
line with Steinberg's suggestion (back in 1962)35 that
intermixing, interfacial enrichment of the regulator spe-
cies (''spreading''), and demixing occur at high, intermedi-
ate, and low εDR, respectively.

Our initial observations already allow us to draw
some tentative conclusions. First, in the ranges of param-
eters studied, driver-regulator demixing occurred only at
low εDR (and low T). Demixing means that the driver spe-
cies wants to stay with itself and the regulator species
wants to stay with itself. A εDR that is lower than both
εDD and εRR would explain why that happens, as doing so
would minimize the less favorable cross-species interac-
tions and maximize the more favorable self-interactions

of each species. Low T would accentuate the disparity
between the cross-species interaction strength εDR and
the self-interaction strengths εDD and εRR, as the contrast
between the corresponding Boltzmann factors would be
magnified at low T. Second, demixing was observed most
readily at xR = 0.4 and 0.6, namely close to a 1:1 ratio
between the driver and regulator species. The 1:1 M
ratio is where the two species would have the highest
chance of interacting with each other if they were homo-
geneously mixed. That demixing was observed readily
around this molar ratio directly indicates that demixing
results from the avoidance of cross-species interactions.
A full investigation into the physical basis of multiphase
coexistence will be carried out in the future.

Multiphase coexistence creates problems for the anal-
ysis methods that are designed for two-phase systems.
For example, the profiles of the component densities or
even the total density are no longer a single transition as
a function of z (compare Figure S1a and Figure S1b).
There is an additional mini-transition between the
driver-rich region and the regulator-rich region. When
we fit the profile of the total density to a hyperbolic tan-
gent function, the high-density plateau represents the
average density of the two dense regions. Moreover,
instead of a single type of interface (i.e., between the
dense and bulk phases), we now have two types of inter-
faces, one between the driver-rich phase and the
regulator-rich phase, and one between the regulator-rich
phase and the bulk phase. The interfacial tension deter-
mined by the Kirkwood-Buff method is probably some
kind of average of the surface tensions at these interfaces,
but the exact nature remains to be clarified.

FIGURE 7 Multiphase

coexistence observed for the

chain systems. (a) A snapshot of

the system at εDR = 0.8, xR
= 0.6, and T = 2.0. Driver and

regulator chains are in red and

blue, respectively. (b) Density

profiles for the driver species,

regulator species, and both

species combined
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3 | CONCLUSION

The results for both mixtures of Lennard-Jones particles
and mixtures of Lennard-Jones chains have demon-
strated that, when intermolecular interactions are
perturbed (by, in particular, a compositional variation),
the resulting changes in critical temperature and in inter-
facial tension are highly correlated. Our previous studies
have shown that, depending on the relative strength εDR/
εDD, Tc as a function of xR follows distinct trends, and the
predicted trends have been validated by experiments.15,18

Now we can predict that γ as a function of xR follows
exactly the same trends. Extending the experimental test
to the predictions on γ will be very interesting. Beyond
this experimental test, the results obtained here deepen
our general understanding of how interfacial tensions of
biomolecular condensates are affected by macromolecu-
lar compositions or interactions, and therefore how bio-
molecular condensates mediate cellular functions. While
the present work focused on changes in Tc and γ brought
by compositional variations, the correlation between
them should extend to other kinds of perturbations in
intermolecular interactions, for example, by mutation or
posttranslational modification, or by a variation in sol-
vent conditions such as temperature, pH, or salt. The
close correlation between Tc and γ allows the data for
one property to be used to predict the other property.
Lastly, the observation that the highly simplified model
systems studied here exhibit multiphase coexistence puts
us in a position to learn what drives this phenomenon. A
tentative conclusion is that the multiphase coexistence
observed here is driven by disparity in self- and cross-
species interactions; that is, the two species demix in
order to minimize the less favorable cross-species interac-
tions and maximize the more favorable self-interactions
of each species. Much more can be learned in future
studies.

4 | COMPUTATIONAL METHODS

4.1 | Molecular dynamics simulations

Binodals and interfacial tensions were calculated from
MD simulations, using the open-source software package
HOOMD-blue (version 2.5.0) on graphics-processing
units.36 We largely followed Silmore et al26 but studied
two sets of binary mixtures: one comprising Lennard-
Jones particles and the other comprising chains of
10 Lennard-Jones particles (Figure 1(b)). The two species
of particles have different self-interaction strengths
(Figure 1(c)). The interaction strength of the ''driver'' spe-
cies, εDD, is set to ε, which is the unit of energies. The

''regulator'' species has an interaction strength of
εRR = 0.9ε. Several values of the cross-species interaction
strength, εDR, are studied. Driver chains are homopoly-
mers of driver particles whereas regulator chains are
homopolymers of regulator particles. All the particles
have the same diameter σ, which is the unit of lengths,
and the same mass m. The units for number density, tem-
perature, interfacial tension, and time are σ�3, ε/kB, ε/σ

2,
and τ� ffiffiffiffiffiffiffiffiffiffiffiffiffi

mσ2=ε
p

, respectively.
Periodic boundary conditions were applied in the

simulations. In the unit cell, the total number of particles
was 20,000 for the particle systems and correspondingly
the total number of chains were 2000 for all the chain
systems. The mole fraction, xR, of the regulator species
was varied to span the entire range, from pure drivers (xR
= 0) to pure regulators (xR = 1). The Lennard-Jones
interactions were truncated and shifted, with a cutoff 3σ
for all the particle systems and 6σ for all the chain sys-
tems. For chains, Lennard-Jones interactions were not
applied between neighboring particles. Instead, they were
constrained by a harmonic potential with a spring con-
stant 75,000ε/σ2 and an equilibrium length σ. In addition
to volume, the temperature of the system was also kept
constant by running Langevin dynamics with a friction
coefficient of 0.1m/τ. The integration timestep was 0.005τ
for the particle systems and 0.001τ for the chain systems.

The procedure to prepare the system for phase separa-
tion is illustrated in Figure 2. To start, particles or chains
of particles were randomly placed in a cubic box with
dimensions Lx = Ly = Lz = 60σ (corresponding to a low
initial density of 0.093; Figure 2(a)), and energy mini-
mized to relieve clashes. The particles were then linearly
compressed at a high temperature of T = 4ε/kB for 5,000
timesteps, to reduce the cubic box to half of its original
dimension in each direction (density at 0.74; Figure 2(b)).
Finally, the box, but not the particles, was elongated in
the z direction to Lz = 150σ, creating empty space on
both sides of the compressed particles (Figure 2(c)). Here-
after, we set the temperature to a desired value (below
Tc) and started the simulation to allow the system to
relax and reach a phase-separated equilibrium (Figure 2
(d)). The total simulation length was 10 million steps; the
second 5 million steps were used for calculating average
properties, as described next.

4.2 | Determination of densities in the
dense and bulk phases

500 snapshots in the equilibrated portion of the simula-
tion were saved (at intervals of 10,000 timesteps). The
density profile, ρ(z), along the z direction was calculated
by dividing the simulation box of each snapshot into
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slabs of thickness 0.5σ along z. The total number of parti-
cles (or particles of a given species) in each slab divided
by the slab volume gave an estimate for the density at
that particular z. This estimate was then averaged over
the 500 snapshots to yield ρ(z).

To obtain the densities, ρd and ρb, in the dense and
bulk phases, we fitted the density profile for z between
0 and 75σ (covering half of the simulation box) to the fol-
lowing hyperbolic tangent function

ρ zð Þ¼ ρdþρb
2

�ρd�ρb
2

tanh z� z0ð Þ=w½ Þ ð8Þ

where z0 represents the midpoint of the interface
between the two phases, and w is a measure of the width
of the interface. As illustrated in Figure S1a, the fitting
works very well. The corner leading to the ρb plateau
given by the tanh function can be a bit too gradual, but
that does not affect the accuracy of the value determined
for ρb.

4.3 | Determination of interfacial
tension

The interfacial tension was determined according to the
Kirkwood-Buff method,30 in which γ is expressed as

γ¼ Lz
2
⟨pzz�

pxx þpyy
2

⟩ ð9Þ

where pxx, pyy, and pyy are the diagonal elements of the
pressure tensor, and the brackets indicate an equilibrium
average. We calculated these diagonal elements on snap-
shots separated by 10 timesteps and averaged them over
the 0.5 million such snapshots in the equilibrated portion
of the simulation. We also verified that the results by the
Kirkwood-Buff method agree with those by the method
of Irving and Kirkwood.37
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