
F U L L - L E NG TH PA P E R

Improved coarse-grained model for studying sequence
dependent phase separation of disordered proteins

Roshan Mammen Regy1 | Jacob Thompson1 | Young C. Kim2 | Jeetain Mittal1

1Department of Chemical and
Biomolecular Engineering, Lehigh
University, Bethlehem, Pennsylvania
2Center for Materials Physics and
Technology, Naval Research Laboratory,
Washington, District of Columbia

Correspondence
Young C. Kim, Center for Materials
Physics and Technology, Naval Research
Laboratory, Washington, DC 20375.
Email: youngchan.kim@nrl.navy.mil

Jeetain Mittal, Department of Chemical
and Biomolecular Engineering, Lehigh
University, Bethlehem, PA 18015.
Email: jeetain@lehigh.edu

Funding information
Division of Materials Research, Grant/
Award Number: 2004796; National
Institute of General Medical Sciences,
Grant/Award Numbers: R01GM136917,
R01NS116176; National Science
Foundation, Grant/Award Number: TG-
MCB-120014; U.S. Naval Research
Laboratory; Office of Naval Research

Abstract

We present improvements to the hydropathy scale (HPS) coarse-grained

(CG) model for simulating sequence-specific behavior of intrinsically disor-

dered proteins (IDPs), including their liquid–liquid phase separation (LLPS).

The previous model based on an atomistic hydropathy scale by Kapcha and

Rossky (KR scale) is not able to capture some well-known LLPS trends such as

reduced phase separation propensity upon mutations (R-to-K and Y-to-F).

Here, we propose to use the Urry hydropathy scale instead, which was derived

from the inverse temperature transitions in a model polypeptide with guest

residues X. We introduce two free parameters to shift (Δ) and scale (μ) the

overall interaction strengths for the new model (HPS-Urry) and use the experi-

mental radius of gyration for a diverse group of IDPs to find their optimal

values. Interestingly, many possible (Δ, μ) combinations can be used for typical

IDPs, but the phase behavior of a low-complexity (LC) sequence FUS is only

well described by one of these models, which highlights the need for a careful

validation strategy based on multiple proteins. The CG HPS-Urry model

should enable accurate simulations of protein LLPS and provide a microscopi-

cally detailed view of molecular interactions.
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1 | INTRODUCTION

Liquid–liquid phase separation (LLPS) of intrinsically
disordered proteins (IDPs) has been shown to be the fun-
damental mechanism driving the formation of
membraneless organelles in the cell, which are crucial
for organizing and maintaining spatiotemporal balances
of protein concentrations.1–5 Recent experimental6–14 and
computational studies15–21 have indicated that non-
specific interactions between amino acids driven by their
hydrophobic, aromatic, or electrostatic character play the
leading role in driving the protein LLPS. To study how
these various interactions come into play for a specific

IDP sequence one must conduct extensive experimental
studies and use computational methods for gaining an
in-depth understanding of the phase separation mecha-
nism at the molecular level.9,11,22 All-atom simulations
can provide detailed information on molecular interac-
tions16,23 but cannot be used currently to study the LLPS
of IDPs.

Coarse-grained (CG) modeling techniques have been
quite successful in assisting and leading studies on
drivers of phase separation and assembly of IDPs previ-
ously.8,17,19–21,24–29 The CG simulations can be conducted
with off21,30–33 or on lattice19 models with varying resolu-
tions33,34 and the interactions between the CG amino
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acids can be informed by physics- or knowledge-based
potentials.35 We have previously proposed a one bead per
amino acid CG model30 using the Kapcha-Rossky
(KR) hydropathy scale36 referred to as the HPS-KR model
hereafter which has been successfully used in numerous
previous studies of IDP LLPS.8,9,17,26–28,37,38 Specifically,
the transferable HPS-KR model has been used to study
the phase separation of several IDP sequences like the
intrinsically disordered region (IDR) of DEAD-box heli-
case LAF-1 protein also referred to as LAF-1 RGG,9 the
low complexity (LC) domain of the Fused in Sarcoma
(FUS) protein8,28,38–40 and disordered C-terminal domain
(CTD) of the TAR DNA binding protein (TDP-43).26 We
also recently extended the HPS-KR model to capture
thermoresponsive LLPS behavior of IDPs,31 the role of
post-translational modifications in perturbing LLPS,37

and the multicomponent LLPS of IDP and polynucleotide
mixtures17; the simulations results were in very good
agreement with the experimental observations.39,41,42

Although the HPS-KR model (in tandem with experi-
mental studies) has advanced our understanding of the
sequence-dependent LLPS of IDPs, several potential
shortcomings in the model have also been identified.43,44

For example, the radius of gyration (Rg) of many IDPs in
this model is significantly different from their values esti-
mated from experimental observables.43 Also, this model
is not able to account for qualitative differences in LLPS
when mutating Arg and Tyr residues to Lys and Phe,
respectively.6,7,9,45 It was proposed that the nonbonded
interactions parameters in the HPS-KR model can be
refined using a combination of maximum entropy opti-
mization and least-squares regression to better capture
experimental Rg values.

43 Recently, Das et al.44 also pro-
posed another parameter refinement strategy focusing on
modifying interaction strengths of certain residue pairs
based on the expected behavior from experimental stud-
ies and guided by bioinformatics-based potentials such as
the Kim-Hummer (KH) model which uses the statistical
contact potential derived by Miyazawa and Jernigan
(hereafter referred to as MJ).46

In this paper, we use a different model refinement
strategy to address the aforementioned issues, while pre-
serving the transferability of our CG framework by
avoiding overfitting of parameters based on limited
experimental data. To accomplish this, we replace the
hydropathy scale used to inform nonbonded interactions
between the CG beads from KR to the Urry scale.47 As
the Urry scale was derived based on the LLPS of elastin-
like model polypeptides, we believe it is more appropriate
for parameterizing a CG model to study protein phase
separation. We also use a modified approach to tune the
free parameters of the CG model to obtain an excellent
match between the simulated and experimental Rg values

for 42 IDPs covering an extensive range of sequence
properties. Furthermore, the new model termed as HPS-
Urry can provide near-quantitative prediction of coexis-
tence densities for well-studied IDP sequences, FUS LC
and DDX4 at room temperature.

2 | RESULTS AND DISCUSSION

2.1 | Comparison between the KR and
Urry hydropathy scales

There are over 100 hydropathy scales of 20 naturally
occurring amino acids reported in the literature.48

Although straightforward, it is time and resource con-
suming to examine all the hydropathy scales for building
an IDP CG model. Instead, in this study, we focus only
on two hydropathy scales, namely the KR scale,36 which
was used in the previous models,17,30,37 and the scale pro-
posed by Urry et al.47 (hereafter denoted as the Urry
scale). We also compared the ability of these hydropathy
scales to estimate single-chain IDP properties with the
210 parameters MJ statistical contact potential used in
the KH model we used previously to capture IDP phase
behavior. The KR hydropathy scale is an atomistic scale
that assigns each atom as hydrophilic or hydrophobic
depending on their partial charges based on an all-atom
forcefield and it has one advantage over other scales since
it is straightforward to account for nonnatural amino
acids or amino acids modified via post-translational mod-
ifications. The HPS model with the KR scale has also
been applied to study the effects of posttranslational
modifications on IDP phase behavior.37 On the other
hand, the Urry hydropathy scale is based on the inverse
transition temperature of a polypeptide (VPGXG)n with
n = 11, where X stands for the guest residue to be evalu-
ated. This polypeptide was derived from the repeat
elastin-like sequence VPGVG (where the second valine
residue is replaced by a guest residue) that undergo the
lower critical solution temperature (LCST) transition in
which the proteins transition from water-soluble state to
self-assembled state upon increasing the temperature.
The inverse transition temperature is defined as the tem-
perature at which the polypeptide undergoes the LCST
transition. This temperature depends on the hydropho-
bicity of constituent amino acid residues, and thus is well
correlated to the hydrophobicity of the guest residue X.

Figure 1 presents the KR and Urry hydropathy scales
rescaled from zero for the least hydrophobic residue to
unity for the most hydrophobic residue. The biggest dif-
ference between the two scales occurs for Arg where it is
the least hydrophobic (0) in the KR scale but is in the
middle (0.56) for the Urry scale. It has been pointed out
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that the KR scale enhances the LLPS of IDPs upon
replacing Arg by Lys (R2K mutation) in contrast to exper-
imental observations.44 This is due to the increase in the
interaction strength for the modified IDPs since
the hydropathy scale of Lys (0.51) is larger than that of
Arg. In fact, this short-coming of the KR scale has led us
to examine the Urry scale, since it can be expected that
the Urry scale would predict the weakening of the LLPS
for such modified IDPs in agreement with experiments as
the hydropathy scale of Lys (0.38) is smaller than that of
Arg. Other residues that exhibit significant differences
(Table S2) between the two scales are Glu (0.46 for KR
vs. 0 for Urry), Pro (1.0 for KR vs. 0.76 for Urry), Leu
(0.97 for KR vs. 0.72 for Urry), and Ile (0.97 for KR
vs. 0.71 for Urry).

2.2 | Optimization of interaction
parameters

The LJ interaction model contains two free parameters, μ
and Δ, that account for the strength of non-electrostatic
contributions and the affinity between amino acids rela-
tive to that of solvent, respectively. To obtain the optimal
values for these parameters, we first determine the

optimal Δ value for a given μ by simulating Rg values for
42 IDP sequences (compared with 12 sequences previ-
ously used30) listed in Table S1. The scoring function to
be minimized is given by the standard chi-square
function

χ2 ¼ 1
N

XN
i¼1

Ri,exp
g �Ri,sim

g

� �2

Ri,exp
g

� �2 , ð1Þ

where Ri,exp
g and Ri,sim

g are experimental and simulated Rg

values for an ith IDP sequence. Figures 2a and S1 show
the behavior of χ2 for the Urry scale as a function of the
offset parameter Δ for four different μ values. For a given
μ, χ2 exhibits a minimum close to 0.02, which suggests
that the simulated Rg values deviate overall less than
�14% from the experimental Rg values at this parameter
value. Interestingly, the minimum χ2 values are almost

FIGURE 1 The normalized (0 to 1) Kapcha-Rossky (KR) and

Urry hydropathy scales used in the HPS CG modeling framework

for IDPs. Aromatic residues (Trp, Tyr, Phe, and His) are colored

red, Hydrophobic residues (Leu, Ile, Met, Val, and Ala) are colored

blue, Polar residues (Asn, Ser, Thr, and Gln) are colored green,

other residues (Pro, Cys, and Gly) are colored gray and charged

residues (Arg, Lys, Asp, and Gln) are colored yellow

(a) (b)

(c) (d)

FIGURE 2 (a) Fits to chi-square values (χ2) from comparison

of experimental and simulated Rg data on 42 IDP sequences on a

range of shift (Δ) for a selected scale (μ) allows for locating the
offset providing minimum chi square value. (b) Scale and offset for

optimum chi-square change linearly with respect to each other for

Urry, Kapcha Rossky (KR), and Miyazawa Jernigan

(MJ) interaction parameters. (c) Scatter plot of experimental and

simulated Rg for 42 IDPs using an optimal model, Black (dot-dash)

lines represent 20% deviation in Rg. (scale (μ) = 1.0, offset (Δ)
= 0.08) (d) Tθ versus scale (μ) for FUS LC and DDX4 sequences

shows a scenario where unique sequences might show drastic

changes in behavior between different optimal models (μ,Δ)
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independent of the scale parameter μ, remaining close to
0.02 for 0.5≤ μ≤ 2. For the KR hydropathy scale and MJ
contact potentials, similar trends are observed with mini-
mum χ2 between 0.015 and 0.02. The set of optimal (μ,Δ)
values, at which χ2 is minimum, is then obtained by
fitting the scoring function via polynomial curve and is
shown in Figure 2b. For all three scales considered (KR,
Urry, and MJ), the optimal μ and Δ exhibit a linear rela-
tionship given by

Δopt ¼ aμoptþb, ð2Þ

where aUrry = 0.58, aKR = 0.69, and aMJ = 0.39, while
b = � 0.5 independent of scales used.

Figure 2c shows the comparison between simulated
and experimental Rg values for an optimal parameter set
of μ = 1.0 and Δ = 0.08 for the Urry scale. The model
shows excellent agreement between simulated and exper-
imental Rg values for many IDP sequences. For most
sequences the simulated Rg values lie within 20% of the
experimental values (dot-dashed lines). The largest dis-
crepancy occurs for an16 (5.0 nm for experiment
vs. 3.2 nm for simulation), where the model predicts
more compact structures compared with the experimen-
tal observation. For protein-L and hcyp, the trend is oppo-
site where the simulated Rg values are about 35% higher
than the experimental values (Figure S2). Comparing the
amino acid compositions of these IDP sequences with
the entire set, we do not observe any significant differ-
ences that could explain these discrepancies (Figure S3).
However, in the absence of explicit backbone potentials,
such as pseudo-angle potential between three neighbor-
ing beads and pseudo-dihedral angle potential between
four neighboring beads, as well as considering possible
differences in simulation and experimental conditions,
the Urry scale captures the configurations of many IDP
sequences very well. The KR and MJ scales after appro-
priate optimization based on Equation (8) also give the
Rgvalues with similar accuracy to the experimental values
(data not shown).

2.3 | Effects of interaction parameters
on IDP single-chain properties

The optimal set of parameters μ and Δ shows high degen-
eracy in the (μ,Δ) parameter space where the scoring
function, χ2, has minima of similar magnitude along a
“critical” line. In order to narrow the range of the param-
eters for the model, we investigate the effects of the
parameters along the critical line on the phase behavior
of two IDPs, DDX4 IDR49 and FUS LC proteins.6,8,16

They are quite different in their amino acid compositions

(Figure 3a,c, sequences in Supporting Information) and
have been well studied for their phase separation making
them excellent candidates for testing the model's ability
to predict the IDP phase behavior. It has been shown that
the coil-to-globule transition temperature, Tθ, of a single-
chain IDP is highly correlated with its critical tempera-
ture of phase separation, Tc.

15 Since computing Tθ is com-
putationally less expensive, we calculated Tθ as a first
step for these IDPs using REMD simulations along the
critical line in the parameter space. Figure 2d presents Tθ

values for the DDX4 and FUS LC at different μ values
along the critical line from the Urry scale. The coil-to-
globule transition temperature of the DDX4 depends
weakly on μ, while that of FUS LC increases sharply from
�330 K at μ = 0.5 to �420 K at μ = 2.

The large difference in the behavior of these two
sequences arises from their amino acid compositions.
Using Equations (7) and (1), one can express λij in terms
of the optimal μopt as

λij ¼ λ0ij�a
� �

μopt�b, ð3Þ

where, as μopt increases, λij increases for λ0ij > a , but
decreases for λ0ij < a. For the Urry scale with aUrry = 0.58,
the amino acids, Glu, Asp, and Lys, contribute to the

FIGURE 3 (a) Amino acid composition of DDX4 sequence

used for this simulation. (b) Coexistence concentrations of DDX4 at

100 mM salt and room temperature from simulations (Red, circles)

and experiments (Black, triangles). (c) Amino acid composition of

FUS LC sequence used for this simulation. (d) Coexistence

concentrations of FUS LC at 100 mM salt and room temperature

from simulations (Green, circles), and experiments (Black,

triangles)
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decrease in the interaction energy when μopt increases,
while Trp, Tyr, Phe, Pro, His, Ile, Leu, Met, and Val con-
tribute to the increase in the interaction energy. Since the
DDX4 contains a significant number of Asp, Glu, Phe,
Met, and Pro residues, the competition between opposing
contributions from these residues leads to the fact that Tθ

is almost independent of μopt. On the other hand, FUS
LC is a protein mostly consisting of Ser, Gln, Gly, and
Pro residues. The normalized hydropathy scales of Ser,
Gln, and Gly are about 0.57 resulting in λij among them-
selves remaining close to 0.49 for 0.5≤ μopt≤ 2. On the
other hand, λij for Pro-Pro varies from 0.58 at μopt = 0.5
to 0.86 at μopt = 2. Also λij between Pro and other resi-
dues (Ser, Gln, and Gly) increases, albeit to a lesser
degree, as μopt increases. Consequently, the intramolecu-
lar interactions for FUS LC become more attractive as
μopt increases, resulting in the increase of Tθ values.

For the KR scale, the hydropathy scales of most resi-
dues lie below aKR = 0.69, resulting in Tθ decreasing for
both DDX4 and FUS LC as μopt increases (see Figure S4).
For the MJ scale, the Tθ of both DDX4 and FUS LC also
decreases with increasing μopt. Since Tθ is highly corre-
lated with the critical temperature of LLPS, these obser-
vations suggest that the KR and MJ scales predict
undesirably low Tc values for these two proteins.

2.4 | Urry scale captures the IDP phase
behavior

The single-chain properties of DDX4 and FUS LC (see
Figure 2d) suggest that the Urry scale may be more
appropriate to study the phase behavior of these IDPs.
Recently, experimentally derived coexistence densities
were used to scale the interaction strengths in the MAR-
TINI CG forcefield34 for capturing the LLPS of the FUS
LC sequence.50 We want to test if our optimized Urry
scale-based CG model above can capture the concentra-
tions of coexisting phases of FUS LC and DDX4 without
any further modifications. We simulated the coexistence
densities of these two proteins using the Urry scale with
the optimal parameter set of μ = 1, and Δ = 0.08.
Figure 3b,d show the temperature-concentration phase
diagrams of DDX4 and FUS LC together with the experi-
mentally measured coexisting concentrations at 300 K.
We see excellent agreement between simulated and
experimental coexistence densities of both DDX449

(Figure 3b) and FUS LC8 (Figure 3d) with the differences
at condensed phases less than 7% for both DDX4 and
FUS LC. Upon varying model parameters, we observe
large fluctuations in the coexistence concentrations for
FUS LC at 300 K (Figure S5) which corresponds to the
higher sensitivity of FUS LC phase behavior on model

parameters observed earlier with the coil-to-globule tran-
sition temperature in the previous section. Hence, this
warrants a careful validation strategy for model parame-
ters in our CG framework as certain sequences based on
their amino acid composition could be more prone to
dramatic changes in phase behavior between various
model parameters which were deemed optimal for cap-
turing IDP phase behavior based solely on only compar-
ing Rg values. Using the same parameter set
(μ = 1,Δ = 0.8), we then investigated the model's ability
to capture the effect of certain bulk mutations to the IDP
sequence (sequences in SI) on its phase separation pro-
pensity. As mentioned earlier, the Urry scale would pre-
dict that the replacement of arginine residues with
Lysine residues (R2K) on a protein sequence reduces
phase separation propensity since the hydropathy value
of Arg is larger than that of Lys. Figure 4a shows this
anticipated behavior for the bulk R2K mutation of DDX4
showing the loss in phase separation propensity for two
sequences DDX4 (Figure 4a, R2K, red lines joining Δ)
and LAF-1 RGG (Figure 4b, R2K, red lines joining Δ).
We see the phase boundary shrinking and the critical
temperature decreasing for the mutated sequences com-
pared with the wild type (WT) (Figure 4a,b, WT, black
lines joining O) in agreement with experimental observa-
tions.49 On the other hand, the KR scale yielded the
opposite trend on phase separation upon this mutation,

(a)

(b)

FIGURE 4 Phase diagrams for DDX4 (a) and LAF-1 RGG

(b) sequence variants show shifts in phase separation propensity

upon bulk mutations as expected from experimental data
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which led to the proposed modifications in the interac-
tion strengths of Arg and Lys residues based on experi-
mental and bioinformatics studies.44

In addition to studying the effects of the Arg to Lys
(R2K) mutation, we also tested the model for the effects
of mutations of aromatic residues on phase separation
propensity, for example, the Phe to Ala (F2A) mutation,
which is also supposed to reduce phase separation pro-
pensity according to experimental studies.6,7,45,49 For the
DDX4 sequence we see the F2A mutation reducing phase
separation propensity in agreement with experimental
studies (Figure 4a, F2A, orange lines joining ⊲). The
model was also able to predict the decrease in phase sepa-
ration propensity upon replacement of Tyr with Phe
(Y2F) residues for the LAF-1 RGG sequence (Figure 4b,
Y2F, blue lines joining r) as seen in experiments, which
is not captured in the KR and the MJ scales.32 Other
mutations such as Tyr to Trp (Y2W) in LAF-1 RGG
(Figure 4b, Y2W, green lines joining ⊲) showed increased
phase separation propensity in agreement with the exper-
imental data for the LAF-1 RGG sequence.9

3 | CONCLUSION

We propose a new CG model for studying IDP phase
behavior, called the HPS-Urry model which attempts to
improve the previous HPS-KR model using the hydropathy
scale proposed by Urry et al.47 We also apply a rigorous
parameterizing and testing strategy to tune the parameters
by comparing easily measurable quantities like the radius
of gyration and coexistence densities with their known
experimental values. The use of the Urry hydropathy scale
for informing nonbonded interactions between amino acids
to study liquid–liquid phase separation is supported by the
fact that this scale was derived from the transitions of poly-
peptides from a water-soluble state to an assembly of pro-
teins into a condensed phase. We are able to capture
experimentally observed phase behavior of IDPs and effects
of bulk mutations without requiring any additional param-
eter refinements to the HPS-Urry model. Future work will
focus on extending this model to capture sequence-
dependent LCST and UCST transitions in IDPs, similar to
what was proposed earlier for the HPS-KR model.31

4 | METHODS

In the HPS modeling framework developed earlier,30

each amino acid of an IDP is represented by a spherical
bead that is connected to neighboring beads via a har-
monic spring. The total interaction energy is given by

Utot ¼
X
i, j

ϕvdw
ij þ

X
i, j

ϕel
ij þ

XN�1

i¼1

kb ri,iþ1� r0ð Þ2, ð4Þ

where ϕvdw
ij , and ϕel

ij are the short-range van der Waals
(vdW) and long-range electrostatic interactions between
residues i and j, while ri,i+ 1 is the distance between two
neighboring residues, i and i+ 1, with the spring constant
kb = 20 kJ/Å2 and an equilibrium bond length r0 = 3.82
Å. The vdW interaction between residues i and j is
modeled using the Ashbaugh and Hatch functional form
given by51

ϕij rð Þ¼
ϕLJ
ij rð Þþ 1� λij

� �
ϵ,r ≤ 21=6σij

λijϕ
LJ
ij rð Þ,r>21=6σij,

(
ð5Þ

where ϕLJ
ij rð Þ is the standard Lennard-Jones

(LJ) potential shown below:

ϕLJ
ij rð Þ¼ 4ϵ

σij
r

� �12
� σij

r

� �6
� �

: ð6Þ

Here ϵ is set to 0.2 kcal/mol and σij = (σi+ σj)/2 where σi
is the van der Waals radius of residue i, while λij controls
the interaction strength between residues i and j and is
adapted from hydropathy scales or contact potentials.

The long-range electrostatic interactions between
charged residues are described by a simple Debye-Hückel
potential,

ϕel
ij rð Þ¼ qiqj

4πDr
e�κr ð7Þ

where qi is the charge of residue i located at the center of
the corresponding bead, D is the dielectric constant of the
solvent medium, and κ is the inverse Debye screening
length. Here we set D = 80, the dielectric constant of
water and κ = 1 nm�1, the inverse Debye length at physi-
ological salt concentrations of �100 mM. Residue charges
are set according to pH 7, such that qi = + e for Arg and
Lys, and �e for Asp and Glu, where e is the elementary
charge. Here the charge of His is set to zero instead of
+0.5e adapted by the KH model.32

In the previous model, λij values were fixed from the
KR hydropathy values scaled from 0 (Arg) to 1 (Phe, Pro)
while ϵ was optimized. In this study, λij values are opti-
mized against the experimentally measured radius of
gyration (Rg) of IDPs

52 from hydropathy scales or contact
potentials. Specifically, we set

λij ¼ μλ0ij�Δ ð8Þ
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where λ0ij values are contact potentials or hydropathy
scales scaled from 0 to 1, while μ and Δ are free parame-
ters. For hydropathy scales of 20 amino acids, the arith-
metic sum was used to obtain the cross-interaction
parameters, that is, λ0ij ¼ 1

2 λiþ λj
� �

, where λi is the rescaled
(from 0 to 1) hydropathy value of residue i. The parame-
ter μ scales the strength of the vdW potentials compared
with the physical electrostatic interactions, while Δ is the
offset parameter that balances the preference of residue–
residue interactions relative to residue-solvent interac-
tions. These two parameters are optimized using the
experimental Rg values of 42 IDP sequences (see
Table S1).

Replica Exchange Molecular Dynamics (REMD) sim-
ulations of single chain IDPs were performed to compute
Rgvalues and coil-to-globule transition temperatures (Tθ)
using the LAMMPS53 software package. A total of 16 rep-
licas were used with the temperature ranging from 200 to
600 K for IDPs with chain length less than 200. For lon-
ger IDP sequences, a total of 36 replicas with the temper-
ature ranging from 170 to 640 K were used. In addition,
coexistence simulations of several IDPs were conducted
to map their phase diagrams using the HOOMD-Blue
2.9.3 software package54,55 following the protocol pro-
posed in our previous work.30,56 A python code is
provided for readers to setup and simulate a given IDP
sequence with the optimized model using HOOMD-Blue
at the following location (https://bitbucket.org/jeetain/
hoomd_slab_builder).
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