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Abstract: Multiple coincidence events from charge-sharing and fluorescent cross-talk are typical
drawbacks in room-temperature semiconductor pixel detectors. The mitigation of these distortions in
the measured energy spectra, using charge-sharing discrimination (CSD) and charge-sharing addition
(CSA) techniques, is always a trade-off between counting efficiency and energy resolution. The energy
recovery of multiple coincidence events is still challenging due to the presence of charge losses after
CSA. In this work, we will present original techniques able to correct charge losses after CSA even
when multiple pixels are involved. Sub-millimeter cadmium–zinc–telluride (CdZnTe or CZT) pixel
detectors were investigated with both uncollimated radiation sources and collimated synchrotron X
rays, at energies below and above the K-shell absorption energy of the CZT material. These activities
are in the framework of an international collaboration on the development of energy-resolved photon
counting (ERPC) systems for spectroscopic X-ray imaging up to 150 keV.

Keywords: CZT pixel detectors; charge sharing; charge-sharing correction; semiconductor pixel detectors

1. Introduction

A large variety of room temperature semiconductor detectors (RTSDs) with sub-
millimeter pixel electrodes was widely proposed for the next generation X-ray and gamma
ray spectroscopic imagers [1–6]. Generally, RTSDs are represented by X-ray and gamma ray
detectors based on high-Z and wide-bandgap compound semiconductors, with the goal to
measure high-resolution energy spectra near room-temperature conditions. Currently, thin
cadmium telluride (CdTe) and cadmium–zinc–telluride (CdZnTe or CZT) pixel detectors,
with thickness up to 3 mm are considered the best choice up to 150 keV [7,8], while thicker
detectors (up to 15 mm), based on CZT [9–12] and thallium bromide (TlBr) [13], are very
appealing up to 1 MeV. RTSDs with small pixels represent a key choice for energy resolution
improvements, which is in agreement with the small pixel effect [7] and potentially to obtain
high spatial resolution. However, the presence of multiple coincidence events among
neighboring pixels, due to charge-sharing and cross-talk phenomena [14–16], often results
in spectroscopic and spatial degradations. A single interacting photon can induce charges
in two or more pixels, generating multiple coincidence events with multiplicity m ≥ 2.
Typically, the energy of these events is recovered by using charge-sharing addition (CSA)
techniques, which consist of summing the energies of the coincidence events. However, as
widely shown in both CdTe and CZT pixel detectors, charge losses at the inter-pixel gap
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often create incomplete energy recovery after CSA [17–19]. Recently, an energy-recovery
technique for double charge shared events (m = 2) was proposed by our group [20] and
successfully applied to several CZT and CdTe pixel detectors [20–25]. Despite the benefits
on detector performance, this technique can only be applied to shared events involving
only two adjacent pixels (m = 2) and, therefore, multiple coincidences with m > 2 and
coincidences with diagonal pixels are rejected from the measured energy spectra. In order
to recover the energy of multiple coincidence events and enhance the counting efficiency,
we developed new correction techniques able to use all coincidence events in the measured
energy spectra.

In this work, we will present new energy-recovery techniques for charge loss compen-
sation after the application of CSA in CZT pixel detectors. Experimental investigations,
taking into account the multiplicity of the coincidence events, were performed with both
uncollimated and collimated synchrotron X-ray sources.

2. Charge-Sharing, Cross-Talk Phenomena and Correction Techniques

Intense investigations have been made on the effects of charge-sharing and cross-talk
phenomena in CZT and CdTe pixel detectors [14–25]. Charge-sharing events are generated
by the splitting of the charge cloud created by a single interacting event and collected by
two or more pixels. The charge cloud collected by pixels is mainly due to the drifting
electrons, which is in agreement with the small pixel effect [7]. The spatial region covered by
the broadened electron cloud depends upon charge diffusion, Coulomb charge repulsion, K-
shell X-ray fluorescence, and Compton scattering. Figure 1 shows the simulated evolution
of the electron charge cloud size (FWHM) in a CZT detector vs. the drift distance, which is
generated by photoelectrons in the energy range of 25–662 keV. The simulation involves
the physical processes of Coulomb repulsion and charge diffusion [26]. It consists of three
main procedures: (i) the radiation–semiconductor interaction with Monte Carlo methods
(Geant4), (ii) electric and weighting field calculation by the finite element method (FEM)
with COMSOL Multiphysics, and (iii) the calculation of the charge carrier transport and
pulse formation in a MATLAB environment. The details of the simulation procedures
are reported in a previous work [26]. The results are presented at two different electric
field configurations: (a) 5000 V/cm representing the current state-of-art electric field in
CZT detectors, while (b) the electric field of 10,000 V/cm was recently obtained in new
high-bias voltage CZT pixel detectors [23,27]. For example, at 60 keV, the size of the charge
cloud is about 60 µm and 45 µm over a drift distance of 2 mm, with 5000 V/cm and
10,000 V/cm, respectively.

At energies greater than the K-shell absorption energy of the CZT material (26.7, 9.7, and
31.8 keV for Cd, Zn, and Te, respectively), the broadening of the charge cloud size can be also
increased by the presence of fluorescent X rays, whose emission probability is very high in CZT
materials (≈85% of all photoelectric absorptions) [25,28]. The emission of fluorescent X rays of
23.2 keV (Cd-Kα1) and 27.5 keV (Te-Kα1) is more probable, with attenuation lengths of 116 and
69 µm, respectively. As shown in our previous works [19,20], 2 mm thick detectors with pixel
pitches of 250 µm and an inter-pixel gap of 50 µm showed an increase of the coincidence
percentage from 50% to 80% at 22 keV and 60 keV, respectively; this demonstrates as
fluorescent X rays, present at 60 keV, give a great contribution to charge sharing.

Moreover, fluorescent X rays, escaping from the pixels, can also produce cross-talk
events between pixels. Cross-talk events can be given by the collected-charge pulses; i.e., they
are created by the charge carriers really collected by the pixels (e.g., fluorescent X rays) or
by induced-charge pulses generated on neighboring non-collecting pixels [9,16,18]. These
pulses, also called transient pulses, are due to the weighting potential cross-talk [9–11,18,20];
they are characterized by both positive and negative polarities and different shapes [9]. In
our investigated energy range (up to 140 keV), a very low number of these transient pulses
was detected. This is due to the low investigated photon energies that produce very small
transient pulses, which are often below our detection energy threshold (4 keV). Transient
pulses are clearly visible at higher energies (e.g., at 662 keV) [9,10]; these pulses measured
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in temporal coincidence with the collected pulses are strongly used for both spatial and
energy resolution improvements in gamma-ray detectors [9,10].

Sensors 2021, 21, x FOR PEER REVIEW 3 of 13 
 

 

  
(a) (b) 

Figure 1. Evolution of electron cloud size (FWHM) vs. the drift distance in CZT detectors generated by photoelectrons in 
the energy range of 25–662 keV; Coulomb repulsion and charge diffusion are used in the simulation [26]. (a) Electric field 
of 5000 V/cm; (b) 10,000 V/cm. 

Moreover, fluorescent X rays, escaping from the pixels, can also produce cross-talk 
events between pixels. Cross-talk events can be given by the collected-charge pulses; i.e., 
they are created by the charge carriers really collected by the pixels (e.g., fluorescent X 
rays) or by induced-charge pulses generated on neighboring non-collecting pixels [9,16,18]. 
These pulses, also called transient pulses, are due to the weighting potential cross-talk [9–
11,18,20]; they are characterized by both positive and negative polarities and different 
shapes [9]. In our investigated energy range (up to 140 keV), a very low number of these 
transient pulses was detected. This is due to the low investigated photon energies that 
produce very small transient pulses, which are often below our detection energy thresh-
old (4 keV). Transient pulses are clearly visible at higher energies (e.g., at 662 keV) [9,10]; 
these pulses measured in temporal coincidence with the collected pulses are strongly used 
for both spatial and energy resolution improvements in gamma-ray detectors [9,10]. 

The effects of charge-sharing and fluorescence cross-talk in the measured energy 
spectra are typically represented by a worsening of the energy resolution, the presence of 
low energy tailing below the photopeaks, fluorescence and associated escape peaks, and 
an increase of the low-energy background. The state-of-art on the mitigation of these ef-
fects is represented by the simple rejection of charge-sharing events (CSD: charge-sharing 
discrimination), which is detected in temporal coincidence with the events of the neigh-
boring pixels; however, the high number of rejected events, often greater than 50% of all 
detected events, gives a strong reduction of the throughput and the counting efficiency of 
the detectors. To avoid this, the rejected events after CSD can be recovered through the 
charge-sharing addition (CSA) technique, which consists of summing the energies of the 
coincidence events [16–18]. Unfortunately, as documented in the literature [17–21], the 
energy recovered after CSA is often lower than true photon energy, which is due to the 
presence of charge losses near the region of inter-pixel gap. These losses are related to the 
presence of distorted electric field lines at the inter-pixel gap [14]. In fact, due to the surface 
conductivity at the inter-pixel gap, the electric field lines can intersect the surface of the 
inter-pixel gaps, where some charges can be trapped [14,20,23–25,]. Generally, the charge 
losses depend on the interaction position within the gap, with high effects near the center. 

Recently, an interesting technique for charge loss recovery after CSA was proposed 
by our group [20]. This technique, involving double-shared events (m = 2) between adja-
cent pixels, is based on the modeling of the charge losses vs. the interaction position within 
the inter-pixel gap. In particular, we modeled the relation between the summed energy 
ECSA for two adjacent pixels (m = 2), which are affected by the energy deficit, and the 
charge-sharing ratio R. As is well known, the charge-sharing ratio R, calculated from the 
ratio between the energies of two adjacent pixels R = (pixel A − pixel B)/(pixel A + pixel B), 

Figure 1. Evolution of electron cloud size (FWHM) vs. the drift distance in CZT detectors generated by photoelectrons in
the energy range of 25–662 keV; Coulomb repulsion and charge diffusion are used in the simulation [26]. (a) Electric field of
5000 V/cm; (b) 10,000 V/cm.

The effects of charge-sharing and fluorescence cross-talk in the measured energy
spectra are typically represented by a worsening of the energy resolution, the presence
of low energy tailing below the photopeaks, fluorescence and associated escape peaks,
and an increase of the low-energy background. The state-of-art on the mitigation of
these effects is represented by the simple rejection of charge-sharing events (CSD: charge-
sharing discrimination), which is detected in temporal coincidence with the events of the
neighboring pixels; however, the high number of rejected events, often greater than 50% of
all detected events, gives a strong reduction of the throughput and the counting efficiency
of the detectors. To avoid this, the rejected events after CSD can be recovered through the
charge-sharing addition (CSA) technique, which consists of summing the energies of the
coincidence events [16–18]. Unfortunately, as documented in the literature [17–21], the
energy recovered after CSA is often lower than true photon energy, which is due to the
presence of charge losses near the region of inter-pixel gap. These losses are related to the
presence of distorted electric field lines at the inter-pixel gap [14]. In fact, due to the surface
conductivity at the inter-pixel gap, the electric field lines can intersect the surface of the
inter-pixel gaps, where some charges can be trapped [14,20,23–25]. Generally, the charge
losses depend on the interaction position within the gap, with high effects near the center.

Recently, an interesting technique for charge loss recovery after CSA was proposed by
our group [20]. This technique, involving double-shared events (m = 2) between adjacent
pixels, is based on the modeling of the charge losses vs. the interaction position within
the inter-pixel gap. In particular, we modeled the relation between the summed energy
ECSA for two adjacent pixels (m = 2), which are affected by the energy deficit, and the
charge-sharing ratio R. As is well known, the charge-sharing ratio R, calculated from
the ratio between the energies of two adjacent pixels R = (pixel A − pixel B)/(pixel A +
pixel B), follows the interaction position of the events in the inter-pixel gap. Two key
features characterize this technique: (i) first, the modeling does not depend on the photon
energy, but it is only related to the physical and geometrical characteristics of the electrode
layout; (ii) second, it can be easily obtained even with uncollimated photon beams. This
approach was successfully applied to several CZT and CdTe pixel detectors [20–25] with
improvements in energy resolution and counting efficiency. However, since this technique
is applied to shared events involving only two adjacent pixels (m = 2), multiple coincidences
with m > 2 are still rejected from the measured energy spectra.
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The goal of this work is to propose new approaches for the correction of the energy of
multiple coincidence events.

3. Detectors and Electronics

Charge-sharing investigations were performed on several CZT pixel detectors. We
used CZT detectors characterized by the same anode layout but with different CZT crystals
and thicknesses. The anode layout is characterized by four arrays of 3 × 3 pixels with
pixel pitches of 500 and 250 µm (inter-pixel gap of 50 µm), while the cathode is a planar
electrode (Figure 2). Different CZT crystals were used. Some detectors are based on the
traveling heater method (THM) [19–21] and boron oxide encapsulated vertical Bridgman (B-
VB) [23,27,29] CZT crystals. In addition to the standard or low flux LF-THM CZT crystals,
we also tested high-flux HF-THM CZT crystals [20,30], which were recently produced
by Redlen Technologies and characterized by enhanced hole charge transport properties
to minimize radiation-induced polarization at high fluxes. The detectors were flip-chip
bonded directly to analog charge-sensitive preamplifiers (CSPs) and processed by using
digital pulse processing electronics [17,19]. The analog CSPs were based on a fast- and
low-noise application specific integrated circuit (PIXIE ASIC) developed at RAL (Didcot,
UK) [31]. The output waveforms from the CSPs are digitized and processed on-line by a
16-channel digital electronics, which were developed at DiFC of University of Palermo
(Italy) [17,19]. The digital electronics is based on commercial digitizers (DT5724, 16-bit,
100 MS/s, CAEN SpA, Italy; http://www.caen.it, accessed on 24 May 2021), where an
original firmware was uploaded [32]. Uncollimated radiation sources (109Cd, 241Am, 57Co)
and collimated synchrotron X-rays (25 and 40 keV) were used for the measurements.
In particular, collimated micro-beams were also used at the B16 test beamline at the
Diamond Light Source synchrotron (Didcot, U.K.; http://www.diamond.ac.uk/Beamlines/
Materials/B16, accessed on 24 May 2021). All detectors showed the effects of charge losses
after CSA, which were successfully recovered after the application of the new techniques
presented in the next sections. To simplify the presentation, we preferred to show the
results of charge-sharing investigations for only one detector (2 mm thick HF-THM CZT
detector) and some correction results even for the others. Generally, the detectors are
characterized by room-temperature energy resolution less than 2 keV at 60 keV.
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Figure 2. Anode layout of the investigated CZT pixel detectors. Each detector is characterized by
four arrays of 3 × 3 pixels with pixel pitches of 500 and 250 µm.

4. Multiple Coincidence Measurements and Corrections

In this section, we will present the results from time coincidence measurements and the
effects of charge-sharing and fluorescence cross-talk in the energy spectra. Special attention
will be given to the multiplicity m of coincidence events and the related energy recovery
techniques. The coincidence measurements are always referred to the coincidence events
of the central pixel with the eight neighboring pixels. We will start with the presentation
of the energy spectra typically showed after charge-sharing investigations. In particular,
Figure 3 presents three different energy spectra of uncollimated 59.5 keV photons from
241Am source, which are related to the central pixel of the 250 µm array of the 2 mm

http://www.caen.it
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thick CZT detector. The black line represents the energy spectrum of all events (raw
spectrum), and the red line is the spectrum of the events in temporal coincidence with all
eight neighboring pixels.
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Figure 3. Charge-sharing measurements for the central pixel of the 250 µm array. The blue line repre-
sents the uncollimated 241Am spectrum after charge-sharing discrimination (CSD). The raw spectrum
(black line) of all events and the spectrum of the coincidence events with all eight neighboring pixels
(red line) are also shown. The yellow inset shows the layout of the anode of the detector.

The percentage of coincidence events is very high (79%), and the typical distortions
related to charge-sharing and fluorescent cross-talk are clearly visible: the fluorescent peaks
at 23.2 and 27.5 keV, the escape peaks at 36.3 and 32 keV, the low-energy background
and tailing. The blue line is the spectrum after charge-sharing discrimination (CSD), i.e.,
after the rejection of coincidence events (79%). The coincidence analysis was performed
with a coincidence time window (CTW) of 200 ns, ensuring the detection of all events;
typically, about 90% of coincidence events are detected in a CTW of 30 ns. The CSD works
well, allowing the rejection of all charge-sharing distortions, even if it produces a strong
reduction of the pixel throughput and counting efficiency (79% rejected events). The tailing
below the main photopeak is not mitigated; these events are not in temporal coincidence
with neighboring pixels due to their energies being below the detection energy threshold
(4 keV). Moreover, escape peaks are also present in the spectra even after CSD due to
fluorescence events escaping from the cathode or absorbed on the guard-ring.

The multiplicity m of the coincidence events, i.e., the number of the involved pixels
within a coincidence detection, was also measured (Figure 4). We estimated the multiplicity
of the events of the central pixel (pixel no. 5) for both arrays and at different energies: 109Cd
(main energy line at 22.1 keV), 241Am (main energy line at 59.5 keV), and 57Co (main energy
line at 122.1 keV). Generally, the presence of coincidence events with m > 2 is increased for
energies (241Am and 57Co sources) greater than the K-shell absorption energy of the CZT
material, due to the fluorescence X-ray events.
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Figure 4. The multiplicity m of the coincidence events of the central pixels for the 250 and 500 µm
arrays. The multiplicity m is referred to the number of pixels involved in a coincidence detection.

The analysis of multiplicity was also performed on a sub-pixel level with collimated
synchrotron X-ray beams. We measured the multiplicity of the coincidence events between
two adjacent pixels at different beam positions. In particular, microscale line scans between
the centers of the adjacent pixels were performed with collimated (10 µm × 10 µm) syn-
chrotron X-ray beams at energies below (25 keV) and above (40 keV) the K-shell absorption
energy of the CZT material. During the line scanning between the two pixels, we acquired,
at each beam position (position steps of 25 µm), the data from all nine pixels of the investi-
gated array. Figure 5 shows an overview of the multiplicity m vs. the beam position for two
different line scans. The line scanning near the central region of both pixels (Figure 5a,c)
highlights the presence of coincidence events mainly near the inter-pixel gap, with a spatial
extension beyond the gap (50 µm) at 40 keV, due to fluorescence events; double coincidence
events (m = 2) represent the dominant contribution to the overall coincidence events. Near
the edge region of the pixels (Figure 5b,d), double coincidence events are present over all
the pixel area; the number of multiple coincidence events (m > 2) is strongly increased
near the inter-pixel gap, which is due to both charge-sharing and fluorescence cross-talk.
In the following, we will investigate the features of the various multiplicities, presenting
dedicated correction techniques.

4.1. Coincidence Events with Multiplicity m = 2

The predominant contribution to the overall coincidence events is represented by the
events with multiplicity m = 2, as clearly shown in Figure 4. Double coincidence events
are mainly due to charge-shared events near the inter-pixel gap, fluorescent cross-talk,
and mixed shared/fluorescent events. Pictures of typical fluorescent cross-talk and charge
shared events are shown in Figure 6a,b. To better highlight the different effects of the
two main contributes, we analyzed the double coincidences of two adjacent pixels for a
collimated irradiation (10 × 10 µm2) with synchrotron X rays at the center of one of the
two pixels (Figure 6). Here, the energy spectra of the central pixel (Figure 6c) and the
adjacent pixel (Figure 6d) are shown. All events of the adjacent pixel (green pixel no. 4)
are in double temporal coincidence with events of the central pixel (black pixel no. 5); the
shared events and fluorescent events are clearly visible, and the results after charge-sharing
addition (CSA) are presented in Figure 7. The effects of charge-sharing and fluorescent
cross-talk events after CSA are well distinguished. The energy of fluorescent cross events
is fully recovered after CSA, as shown by the energy peak and the two kinks at R = 0.160
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and R = 0.375 related to the 23.2 and 27.5 keV fluorescent X-rays, respectively; while
charge losses characterized the double-shared events after CSA, which are highlighted by
a reduction of the centroid of the main peak.
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energy below (25 keV) and (c,d) above (40 keV) the K-shell absorption energy of the CZT material. The multiplicity m at
various beam positions was measured: (a,c) near the central region of both pixels, (b,d) near the edge region.

To recover the energy of double coincidences, we proposed two separate procedures
for adjacent and diagonal pixels. The double coincidence events between adjacent pixels are
mainly dominated by charge-shared events and by a small contribute of fluorescent cross-
talk events. The energy of double shared events can be recovered through the correction
technique, termed double charge-sharing correction (double CSC), as presented in our previous
work [20].
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the charge-sharing ratio R, as shown in Figure 8a for uncollimated 109Cd source. This tech-
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Figure 6. Measurements of fluorescence cross-talk (a) and charge-sharing (b) events. Energy spectra at 40 keV of two
adjacent pixels: (c) pixel no. 5 and (d) pixel no. 4. We used a collimated X-ray synchrotron beam (10 × 10 µm2) interacting
at the center of the central pixel (black pixel no.5). All events of the adjacent pixel (green pixel no. 4) are in temporal
coincidence with the central pixel with multiplicity m = 2.
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energy ECSA after CSA versus the charge-sharing ratio R. (b) The energy spectrum after CSA.

It consists of the modeling of the 2D distribution of the energy after CSA (ECSA) vs. the
charge-sharing ratio R, as shown in Figure 8a for uncollimated 109Cd source. This technique
allows the energy reconstruction of double shared events from uncollimated and poly-
energetic sources [20]. Figure 8b presents the results after the application of standard CSA
and double CSC. After double CSC, the energy loss is recovered, and the energy resolution
is also improved. At energies greater than the K-shell absorption energy of the CZT
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material, the double coincidence events between adjacent pixels also contain fluorescent
cross-talk events, which can be easily corrected after standard CSA (Figure 7). The selection
of these events (fluorescent event and escape peak event) is simple for mono-energetic
X-ray sources, but it is challenging for poly-energetic sources. The dedicated selection of
these events, based on stripping procedures with simulated response functions [33], will
be investigated further in the future.
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Concerning the double coincidence events between diagonal pixels, we observed that
they are due to pure fluorescence cross-talk events. This is clearly shown in Figure 9. In
particular, the 2D scatter plot of Figure 9a highlights the energy recovery of the energy after
standard CSA at about R = ±0.22 and R = ±0.076, which are related to the fluorescent X rays
of 23.2 and 27.5 keV, respectively (241Am source). The same result is also confirmed through
the energy spectrum after CSA (Figure 9b). At energies below the K-shell absorption energy
of CZT (e.g., by using109Cd source), no double coincidence events were observed between
diagonal pixels.
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charge losses after CSA, demonstrating that the double coincidence events between diagonal pixels are mainly due to the
fluorescent/escape events.
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4.2. Coincidence Events with Multiplicity m > 2

The results of Figure 4 point out the presence of coincidence events with multiplic-
ity m > 2, especially for the 250 µm array. These events are created by mixed fluores-
cent/shared coincidence events at the inter-pixel gap. In particular, some triple coincidence
events (i.e., m = 3) can be often obtained from a true quadruple coincidence, where the
energy of the pulse of one pixel is below the detection energy threshold, e.g., of 4 keV in
our case. The recovery of the energy of multiple coincidence events is still challenging. In
Figure 10, we present the energy spectra of coincidence events after CSA at different multi-
plicities and energies. All energy spectra suffer from charge losses after CSA. However,
the linear behavior of the summed energy ECSA with the true photon energy (Figure 10d)
allows the recovery of the energy through a simple energy re-calibration procedure. We
point out that the 4 keV intercept of the linear function for m = 3 (the red line of Figure 10d)
highlights the possible measurement of triple coincidence events from true quadruple
coincidences, where the energy of one of the four pixels is below the detection threshold
(4 keV), and therefore, it is not detected.
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Figure 10. (a) 109Cd, (b) 241Am, and (c) 57Co spectra after CSA at various multiplicities. (d) The linearity of ECSA with the
true photon energy opens up to a correction of charge losses after CSA through a simple energy re-calibration.

Therefore, we applied the various proposed correction techniques for each related
multiplicity. In particular, we applied, for the central pixel of 500/250 µm arrays, the double
CSC technique on m = 2 events between adjacent pixels, the standard CSA for m = 2 events
between diagonal pixels, and the re-calibrated CSA for both m = 3 and m = 4 events. The
complete correction is termed multiple CSC technique. The results for two different CZT
detectors are shown in Figure 11.
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Figure 11. The raw energy spectra (black lines) and the corrected spectra (red lines) after the multiple charge-sharing
correction (CSC) of the central pixel of 500/250 µm arrays for different detectors: (a–c) the high-flux HF-THM CZT detector,
(d) the low-flux LF-THM CZT detector. We applied the double CSC technique on m = 2 events between adjacent pixels, the
standard CSA for m = 2 events between diagonal pixels, and the re-calibrated CSA for both m = 3 and m = 4 events. The
energy resolution was slightly improved.

5. Conclusions

Original techniques that are able to correct the charge losses after charge-sharing
addition (CSA) in CZT pixel detectors were presented. Different approaches were used
for adjacent and diagonal pixels, taking into account the number of involved pixels (i.e.,
the multiplicity m). One approach, exploiting the relation between the summed energy
after CSA and the charge-sharing ratio R of double coincidence events (m = 2), allowed
the recovery of charge losses between adjacent pixels. A second technique, based on
the linear behavior of charge losses after CSA with the true photon energy, was also
implemented to reconstruct multiple coincidence events with m > 2. The energy of double
coincidence events between diagonal pixels, mainly due to fluorescence cross-talk events,
was successfully recovered after the standard CSA.

Results on different CZT pixel detectors showed improved counting efficiency com-
pared to using only isolated events (i.e., after CSD) and improved energy resolution
compared to the standard CSA techniques.
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