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Abstract

Dubowitz syndrome (DubS) is considered a recognizable syndrome characterized by a distinctive 

facial appearance and deficits in growth and development. There have been over 200 individuals 

reported with Dubowitz or a “Dubowitz-like” condition, although no single gene has been 

implicated as responsible for its cause. We have performed exome (ES) or genome sequencing 

(GS) for 31 individuals clinically diagnosed with DubS. After genome-wide sequencing, rare 

variant filtering and computational and Mendelian genomic analyses, a presumptive molecular 

diagnosis was made in 13/27 (48%) families. The molecular diagnoses included biallelic variants 

in SKIV2L, SLC35C1, BRCA1, NSUN2; de novo variants in ARID1B, ARID1A, CREBBP, 

POGZ, TAF1, HDAC8 and copy-number variation at1p36.11(ARID1A), 8q22.2(VPS13B), Xp22 

and Xq13(HDAC8). Variants of unknown significance in known disease genes, and also in genes 

of uncertain significance, were observed in 7/27 (26%) additional families. Only one gene, 

HDAC8, could explain the phenotype in more than one family (N=2). All but two of the genomic 

diagnoses were for genes discovered, or for conditions recognized, since the introduction of next-

generation sequencing. Overall, the DubS-like clinical phenotype is associated with extensive 

locus heterogeneity and the molecular diagnoses made are for emerging clinical conditions sharing 

characteristic features that overlap the DubS phenotype.
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1. INTRODUCTION

Dubowitz syndrome (DubS) was first clinically described in 1965 (Dubowitz, 1965) as a 

disorder characterized by mild short stature, microcephaly, eczema, as well as mild delays in 

development and cognition (Grosse, Gorlin, & Opitz, 1971; Opitz, Pfeiffer, Hermann, & 

Kushnick, 1973). A susceptibility to malignancy and hematological disorders was also 

observed in early cases (Sauer & Spelger, 1977; Walters & Desposito, 1985). A recognizable 

pattern of facial dysmorphology includes a sloping forehead, ptosis, telecanthus, 

blepharophimosis, facial asymmetry, and micrognathia (Dubowitz, 1965; Grosse et al., 

1971). Since its original description, a significant degree of phenotypic variability has been 
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recognized to be part of DubS (Innes, McInnes, & Dyment, 2018; Stewart et al., 2014; 

Tsukahara & Opitz, 1996). In the absence of a laboratory diagnostic biomarker or 

pathognomonic feature, the phenotypic expansion associated with the syndrome has led to 

discussion regarding its existence as a single unifying diagnosis (Dyment et al., 2018; 

O’Donnell-Luria et al., 2018). Nevertheless, with over 200 individuals reported in the 

literature with this clinical diagnosis, DubS is an important disease phenotype under 

consideration for many clinicians as they formulate their differential diagnoses. A better 

understanding of the underlying biology, and potential disease gene(s) and variant alleles 

contributing to DubS, may provide further insights for the individuals, families and caring 

physicians.

The observation of affected siblings in some families has suggested a potential autosomal 

recessive disease trait; however, no single gene, group of related genes, or common pathway 

has been identified to explain DubS (Innes et al., 2018). Biallelic variants in LIG4 have been 

identified in two families with a clinical diagnosis of DubS (Gruhn et al., 2007; Stewart et 

al., 2014). These children experienced mild cognitive delays and an increased risk of 

malignancy in adulthood. Other genes implicated in single individuals clinically diagnosed 

with DubS include NSUN2, PCNT, RNU4ATAC, ACTB, and STAT3 (Beitzke et al., 2011; 

Dieks, Baumer, Wilichowski, Rauch, & Sigler, 2014; Johnston et al., 2013; Kariminejad et 

al., 2017; Krøigård et al., 2016; Martinez et al., 2012). In each case, these genes are linked to 

known multisystem genetic disorders that present with some clinical phenotypic similarity to 

DubS. The routine use of chromosomal microarray analysis has also identified pathogenic 

copy number variants (CNV) in individuals diagnosed with DubS-like phenotypes; in 

particular, deletions at chromosome 13q31, 14q32, 17q24.2-q24.3, and 19q13 show 

phenotypic overlap with DubS, though only the deletion on chromosome 17 has been 

reported in more than one family (Hancarova et al., 2018).

By leveraging the genomics resources, exome and genome sequence data (ES/GS), and 

clinical phenotypic information from two international gene-discovery programs, we sought 

to identify the underlying genetic cause(s) for DubS. We used a family-based genomics 

approach and studied 31 individuals clinically diagnosed with DubS from 27 families and, 

when possible, their unaffected parents and/or affected relatives.

2. MATERIAL AND METHODS

The Centers for Mendelian Genomics (CMG), and the FORGE/Care4Rare Canada 

Consortium (FORGE/C4R) are collaborative research projects with the goal of identifying 

pathogenic variants responsible for rare childhood diseases. Local institutional research 

ethics board approval for Care4Rare was obtained prior to enrollment of any participant. 

Cases recruited through the CMGs were enrolled through individual research studies with 

local institutional research ethics board approval followed by research ethics approval for 

sequencing and analysis of de-identified samples at a CMG.

Recruitment

FORGE/Care4Rare: The Finding of Rare Disease Genes Canada Consortium (FORGE; 

2010–2014), which subsequently became the Care4Rare Canada Consortium (Care4Rare; 
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2014–2022), is a national consortium funded by Genome Canada, the Canadian Institutes of 

Health Research, and other funders, to rapidly identify pathogenic variants responsible for a 

wide spectrum of rare, pediatric and adult-onset diseases using ES and emerging 

technologies. The consortium comprises over 170 members (clinical geneticists, clinical 

subspecialists, bioinformaticians and molecular biologists) from 21 genetics centers and 3 

science and technology innovation centers from across Canada (Beaulieu et al., 2014). A call 

to the members of the Canadian consortium was made for any individuals with a clinical 

diagnosis of DubS or with a diagnosis of DubS strongly considered as part of the differential 

diagnosis by an experienced clinical geneticist or pediatrician. DubS was one of the initial 

recognizable malformation syndromes selected for investigation as part of the original 

FORGE gene discovery project in 2010. The initial call took place in 2010 and has 

subsequently repeated every 1–2 years. While most of the families recruited were from 

Canadian centers, families from outside of Canada with a DubS diagnosis considered by a 

geneticist or pediatrician (two probands in this series) were also included. In total, 11 

individuals from 11 families were recruited into the FORGE/Care4Rare arm of the study.

Centers for Mendelian Genomics: The CMGs are a National Institutes of Health-

funded initiative in the United States established in 2012 and renewed in 2016, formed to 

identify novel genes underlying Mendelian phenotypes using exome- and genome-level 

sequencing (Bamshad et al., 2012; Posey et al., 2019). The current iteration of the CMGs 

includes centers based at Baylor College of Medicine/Johns Hopkins University (BH-CMG), 

the Broad Institute (B-CMG), the University of Washington (UW-CMG), and Yale 

University (Y-CMG). Independent investigators may apply for research sequencing and data 

analysis support through site-specific web portals. In 2017, the CMG Data Analysis 

Working Group put out a coordinated call for any previously sequenced CMG cases with a 

clinical diagnosis of DubS. No strict phenotypic criteria were applied aside from a physician 

having made, or strongly considered, the diagnosis of DubS. In total, 20 individuals from 16 

families were identified for this cohort study.

Free and informed consent was provided by all probands with DubS and family members 

participating in the FORGE/Care4Rare or CMG associated studies.

Sequencing and analysis: Exome capture and high-throughput sequencing of genomic 

DNA was performed for the proband and parents/siblings/relatives of each kindred when 

available. For the families recruited by FORGE/Care4Rare, targeted exon capture was 

performed using the Agilent SureSelect All Exon 50 MB (V5) exome enrichment kit and 

sequenced on an Illumina Hi-Seq 2000 using 2×100bp chemistry. Read alignment, variant 

calling, and annotation were done as outlined for previous FORGE and Care4Rare projects 

(Beaulieu et al., 2014; Srour et al., 2012) with a pipeline based on Burrows-Wheeler Aligner 

(BWA) (Li & Durbin, 2009), Picard (http://picard.sourceforge.net/), ANNOVAR (Wang, Li, 

& Hakonarson, 2010), and custom annotation scripts. Analyses were performed under X-

linked, recessive, and dominant modes of inheritance. The variants were prioritized by allele 

frequency (less than 1% in our local Care4Rare database). One individual had their 

sequencing performed by a commercial company (GeneDx) and BAM files were re-

analyzed with the Care4Rare annotation pipeline.
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Each of the four CMGs contributed sequence data which were collected over the course of 

several years. Multiple exome capture platforms were used, including Roche/Nimblegen 

SeqCap EZ v2.0 2×75bp (UW-CMG, Y-CMG), Nimblegen core design (BH-CMG) and 

Nextera DNA Exome 2×75bp (B-CMG, BH-CMG) and IDT xGen 2×101bp (Y-CMG). 

Similarly, sequencing was performed on different sequencers including the HiSeq2500 (BH-

CMG, UW-CMG), HiSeq2000 (BH-CMG) and HiSeq4000 (B-CMG, Y-CMG). Genomes 

were sequenced on a HiSeqX (B-CMG). Joint variant calling was performed using 

Haplotype Caller from GATK (V3.2), with a detailed description available online (http://

uwcmg.org/#/instruction), and shared with each CMG. Each CMG analyzed the data in 

parallel through their standard pipelines and results were compared and discussed for 

consensus. Here, we briefly summarize the UW-CMG approach as a representative example, 

noting that each CMG applied similar strategies with different software such as seqr (B-

CMG; https://github.com/macarthur-lab/seqr). Sample quality control, including ancestry 

and pedigree checks, were performed with peddy (Pedersen & Quinlan, 2017). Sequence 

variants were annotated by Variant Effect Predictor (VEP; v83) (McLaren et al., 2016), then 

loaded into a GEMINI (v0.19.1) database (Paila, Chapman, Kirchner, & Quinlan, 2013). 

Analyses were performed under recessive, de novo dominant, X-linked, and dominant 

models depending on pedigree information, and variants were required to meet the following 

criteria: minimum depth ≥6, minimum genotype quality ≥ 20, GATK FILTER value of 

“PASS” or “SBFilter”, maximum alternate allele frequency (AAF) ≤ 0.005 across the 

subpopulations represented in the 1000 genomes (Auton et al., 2015), Exome Sequencing 

Project (Exome Variant Server, NHLBI GO Exome Sequencing Project (ESP), Seattle, WA 

(URL: http://evs.gs.washington.edu/EVS/) [January, 2018]), UK10K (Walter et al., 2015), 

and the Exome Aggregation Consortium and Genome Aggregation Database (Karczewski et 

al., 2020; Lek et al., 2016) reference sets, UW-CMG AAF ≤ 0.05, and VEP impact severity 

of “MED” or “HIGH”. Strong candidate variants passing these filtering criteria were 

evaluated with the Integrative Genomics Viewer (Thorvaldsdóttir, Robinson, & Mesirov, 

2013) for evidence of genotyping error. Genes containing variants passing the filtering 

criteria were evaluated for evidence of related phenotypes in humans or model organisms 

using the Monarch Initiative (Mungall et al., 2017), ClinVar (Landrum et al., 2018), and 

DECIPHER databases (Firth et al., 2009). Novel candidate disease genes were submitted to 

the Matchmaker Exchange through GeneMatcher, matchbox, or MyGene2 nodes (Arachchi 

et al., 2018; Chong et al., 2016; Philippakis et al., 2015; N. Sobreira, Schiettecatte, Valle, & 

Hamosh, 2015). Copy-number variant (CNV) analysis on exome data was performed with 

GATK-gCNV best practices. Briefly, read coverage was first calculated for each exome 

using GATK CollectReadCounts and samples batched based on a principal components 

analysis of sequencing read counts and then a model trained for the batch. All raw CNVs 

were aggregated across all batches and post-processed using quality- and frequency-based 

filtering to produce a final CNV callset that was annotated with known disease genes. Any 

identified CNVs were confirmed by chromosomal microarray analysis using the Illumina 

Infinium CoreExome-24 (v1.2) platform in GenomeStudio. The mean LogRRatio of markers 

within the CNV position was consistent with heterozygous parents, homozygous affected 

siblings and wild type unaffected sibling in a family with known consanguinity.
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Pathway and Network analyses

We hypothesized that the genes implicated by our analyses share biological pathways with 

each other and the genes underlying single gene disorders previously implicated in 

individuals diagnosed with DubS). The novel candidate genes, the genes driving alternative 

diagnoses among our cases and the genes implicated in the literature for individuals 

clinically diagnosed with DubS (Innes et al., 2018) were provided to STRING-db (v11.0) 

(Szklarczyk et al., 2019) to assess for common pathways or interactions. This was performed 

by using human reference data, only the queried proteins, protein-protein interaction (PPI) 

data from known interactions (curated databases, experimentally determined), predicted 

interactions based on gene fusions and gene co-occurrence, co-expression, protein homology 

and text mining; medium confidence (0.400) was the minimum required for interaction 

scores. The gene list was tested for protein-protein interaction enrichment, and functional 

enrichment in Gene Ontology (GO) biological processes.

3. RESULTS

It was apparent that the presentation of the 31 individuals showed a significant degree of 

clinical variability, and that these individuals likely represented several clinical entities 

despite sharing core features of DubS (Table 1 and Supplemental Table 1). This was in 

contrast to several other recognizable malformation syndrome cohorts studied in parallel by 

both CMG and FORGE consortia that showed marked homogeneity, such as Nager 

syndrome (Bernier et al., 2012), Kabuki syndrome (Ng et al., 2010) and Floating Harbor 

syndrome (Hood et al., 2012). Nevertheless, elements of the common facial gestalt (a 

sloping forehead, hypertelorism/ptosis/blepharophimosis and micrognathia) were shared 

among all individuals included for study (Table 1). Other features of the DubS phenotype 

were also common: 11/25 (44%) were observed to be less than 2 standard deviations for 

height, 20/25 (80%) were reported to be microcephalic and 20/21 (95%) presented mild to 

severe deficits in cognitive abilities (Table 1 and Supplemental Table 1). There were four 

instances of a familial recurrence, including three concordant sibling pairs and a concordant 

aunt-niece pair (Supplemental Table 1). Eczema was observed in 17/27 (63%) and a high-

pitched voice was also reported in several individuals, 9/20 (45%; Table 1). No individuals 

in the cohort presented with all of the commonly observed “core” elements previously 

reported (IUGR, short stature, microcephaly, cognitive deficits, hyperactivity, a high-pitched 

voice, eczema, and the facial gestalt) (Grosse et al., 1971).

Genomic diagnoses:

Fourteen of the 31 (45%) individuals from 27 families were diagnosed with other disorders 

by the genomic studies of microarray or ES/GS data (Table 2). Three individuals were 

diagnosed based on re-analysis of previous microarray findings that were not initially 

appreciated to be the explanation for the clinical presentation, including a duplication of 

ARID1A, a deletion of HDAC8 and a deletion of several contiguous X-linked genes (STS, 

VCX, PUDP, PNPLA4). An additional 11 diagnoses were made based on the ES/GS 

analyses (Table 2). The molecular diagnoses included pathogenic biallelic variants 

(VPS13B, SKIV2L, SLC35C1, BRCA1, and NSUN2), de novo and inherited dominant 
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variants (ARID1B, CREBBP and POGZ) and de novo X-linked variants (HDAC8 and 

TAF1) (Table 2). Only variation at HDAC8 was seen in more than one family in this series.

Variants of unknown clinical significance in known disease genes:

Compelling variants of unknown significance (VUS) were observed in 4 individuals from 3 

families, implicating FRY, KCNQ5,and FANCL(Supplemental Table 2). Proband DubS27 

had biallelic variants in FRY, ENST00000380250.3:c.2647C>G, p.Arg883Gly and 

c.4338G>C, p.Glu1446Asp. Recessive variants in FRY have been reported to be responsible 

for a rare intellectual disability syndrome in 3 families to date (Paulraj et al., 2019; 

Riazuddin et al., 2017). The variant seen in DubS27 has not been reported before. Probands 

DubS19 and 20 carry a rare missense variant in the channel gene, KCNQ5 
(ENST00000342056.2:c.1829C>T; p.Thr610Ile) and have been reported previously to have 

Dubowitz syndrome (Grosse et al., 1971; Jones, 1997; Jones, 2006; Swartz et al., 2003). The 

parent of the niece (and sister of the aunt) is unaffected and incomplete penetrance would be 

necessary to explain the inheritance pattern. KCNQ5 has been associated with a 

neurodevelopmental disorder in 4 individuals who reportedly did not show evidence for 

growth restriction, microcephaly or dysmorphic features (Lehman et al., 2017) as observed 

in DubS19 and 20. There are no images of individuals with variants in either FRY or 

KCNQ5 in the literature for comparison with the individuals studied in this series. Lastly, a 

homozygous VUS within the 3’ UTR of FANCL (NM_001114636.1:c.*83dup) was also 

observed in proband DubS23. Biallelic pathogenic variation in FANCL results in Fanconi 

Anemia (Vetro et al., 2015). Chromosomal breakage studies were planned to aid in variant 

interpretation; however, the individual was subsequently lost to follow-up.

Genes of uncertain significance:

Candidates for novel disease genes, or a novel mechanism in a known disease-associated 

gene, were observed in 5/31 (16%) individuals (Supplemental Table 2), although no 

candidate gene was implicated in multiple families. These genes included biallelic variants 

in CDK11B and CTTNBP2, and monoallelic variants in DVL2 and TOP2A. Biallelic 

variants observed in CDK11B segregated in two sisters, DubS8 and DubS9, that had 

previously been reported as having brachymorphism-onychodysplasia-dysphalangism 

syndrome (Ounap, Justus, & Lipping-Sitska, 1998). Murine knock-out models for CDK11B 
show embryonic growth arrest and abnormal skin, while Drosophila models are small and 

have neuroanatomy phenotypes (Mungall et al., 2017). Proband DubS25 had biallelic 

missense variants in CTTNBP2, a gene in which de novo dominant variants have been 

previously associated with autism (Guo et al., 2018). Proband DubS4 carried a de novo 
missense variant in TOP2A, a gene in which animal models share features with DubS: 

zebrafish null mutants have abnormal retinas, body shape, head/brain morphology, and a 

central nervous system phenotype, while Drosophila mutants have neuroanatomy defects 

and small body size (Mungall et al., 2017). Proband DubS2 had a de novo frameshift variant 

in DVL2. This heterozygous frameshift was present in the last exon and is predicted to 

escape nonsense mediated decay, similar to the loss-of-function variants in the last exon of 

DVL1 and DVL3 causing Robinow syndrome, an autosomal dominant skeletal dysplasia 

characterized by distinctive facial features with some phenotypic overlap with DubS 

(hypertelorism, long philtrum, small chin) (J. White et al., 2015; J. J. White et al., 2016). 
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Similar variants in DVL2 cause a Robinow-like phenotype in dogs (Mansour et al., 2018), 

while knockout/knockdown models cause microcephaly in zebrafish (Carvalho et al., 2014) 

and neural tube defects in mice (Hamblet et al., 2002; Mungall et al., 2017). Furthermore, a 

homozygous nonsense variant in DVL2 has been reported in a child described as having 

short stature, ptosis, developmental delay, facial dysmorphism and a cardiomyopathy 

(Monies et al., 2017).

Each of these candidate genes require additional evidence to demonstrate, definitively, that 

they contributed to their respective clinical presentations of the DubS phenotype. Sharing 

candidate genes through the Matchmaker Exchange (N. L. M. Sobreira et al., 2017) has not 

yet provided additional cases with sufficiently similar phenotypes, although this work is 

ongoing.

Network and Pathway analyses—The combined set of 6 novel candidate genes 

(Supplemental Table 2), 16 genes offering an alternative diagnosis (Table 2), and 8 DubS 

genes from the literature (Innes et al., 2018) exhibited significant protein-protein interaction 

(PPI) enrichment: 29 observed edges, 12 expected, PPI enrichment p-value = 4.5e-05. The 

network, shown in Figure 2, captures four clusters: the two smallest clusters connecting our 

novel candidate genes to genes previously implicated in DubS under a recessive model: 

CDK11B to PCNT and VPS13B to UBE3B (Dieks et al., 2014; Innes et al., 2018); a second 

cluster driven by the genes within the chromosome X deletion observed in one case (note 

HDHD1 is another name for PUDP); and a large cluster capturing many genes underlying 

syndromes similar to DubS and one of our novel candidate genes, TOP2A. This set of 27 

genes is significantly enriched in 37 GO:Biological Processes (Supplemental Table 3). The 

top 10 GO:Biological Processes are listed in Table 3. We observe particular enrichment in 

GO:Biological Processes related to cell cycle, cellular and chromosomal organization, and 

gene regulation. These results suggest that the genes underlying the phenotype of DubS and 

related disorders share dysregulation of basic biological processes.

4. DISCUSSION

No single gene was identified as responsible for the majority, or even a significant minority, 

of the individuals clinically diagnosed with DubS. Potential explanations for the lack of a 

common cause are that we have sequenced a clinically heterogeneous cohort, DubS is 

genetically heterogeneous, or DubS as a clinical entity is a nonspecific collection of 

relatively common clinical features. Historically, the key features of DubS are mild 

intellectual disability, short stature, microcephaly, sloping forehead, ptosis, telecanthus, 

eczema and a high-pitched voice (Table 1) (Grosse et al., 1971). However, there are no 

formal phenotypic criteria to diagnose this syndrome. We recognize that the lack of strict 

phenotypic criteria for diagnosis and the reliance on the clinical impression of the referring 

physician is a limitation to any study involving DubS. Nonetheless it is a well-studied 

syndrome and present in several editions of Smith’s Recognizable Patterns of Human 

Malformation and thus should be familiar to most clinical geneticists.

We also recognize that none of the historical clinical features of DubS would be considered 

an overly specific, or ‘hard-handle’, and hence the clinical presentation may show overlap 
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with atypical or mild forms of different syndromes associated with intellectual disability 

(Innes et al., 2018). Furthermore, over the decades since its original description, an 

extremely broad phenotypic expansion has occurred such that the published clinical features 

of DubS now range from normal stature to dwarfism, normal intellect to severe intellectual 

disability, microcephaly to macrocephaly, the absence of ptosis to the presence of bilateral 

ptosis (Tsukahara & Opitz, 1996). Upon inspection of the clinical features seen in this 

cohort (Figure 1; Table 1), we observe most cases report elements of the DubS facial gestalt, 

microcephaly, and developmental delay, but the short stature, eczema and high-pitched voice 

features of DubS were relatively less likely to be shared.

The molecular diagnoses made and candidate genes nominated in this study offer insight in 

shared disease mechanisms and pathways between DubS cases and other syndromes. We see 

the DubS phenotype may be explained by the alternative diagnoses of Fanconi anemia, 

Coffin-Siris syndrome, or Cornelia de Lange syndrome. Individual DubS cases in our cohort 

may be explained by other syndromes sharing core biological processes, including DNA 

repair and chromatin remodeling. Three families in our cohort may be explained by genetic 

variants influencing DNA repair. One and possibly two additional individuals were 

diagnosed with rare forms of Fanconi anemia (Types S and L). The first child carried 

biallelic pathogenic variants in BRCA1 and has been published previously (Sawyer et al., 

2015). The biallelic variants result in an intellectual disability syndrome with dysmorphic 

features, early onset of breast cancer and functional studies consistent with defective DNA 

repair (Sawyer et al., 2015). A second case may represent FANCL due to homozygous 

variant in the 3’UTR; however, the child was lost to follow-up despite multiple attempts to 

re-contact and chromosomal breakage studies were not performed. In the literature, LIG4 
has been highlighted as a DubS gene (O’Driscoll et al., 2001). While it is not a gene in the 

Fanconi Anemia DNA repair pathway, it does function to repair double strand breaks in 

DNA by non-homologous end joining and biallelic variants were observed in one of the 

original families with DubS (Gruhn et al., 2007; Stewart et al., 2014). These individuals with 

biallelic LIG4 variants are also prone to malignancy in adulthood. Given the phenotypic 

overlap between DubS and Fanconi Anemia types S and L, we suspect that DNA breakage 

and repair mechanisms may represent a shared pathway to these shared phenotypic features 

in a subset of individuals.

Pathogenic variation was seen in several genes associated with chromatin remodeling within 

our DubS cohort. In fact, the only pathogenic variants seen in a single gene in more than one 

individual/family of the cohort was HDAC8 that encodes histone deacetylase 8. These 

children, one of whom was previously published, have a de novo X-linked dominant form of 

Cornelia de Lange syndrome (Deardorff et al., 2012). Clinical features (Figure 1) show 

overlap with DubS and, as might be expected in the context of X-inactivation, the 

intellectual disability can be mild to absent in female individuals. ARID1A and ARID1B 
encode subunits of the SWI/SNF complex involved in chromatin remodeling and Coffin-

Siris syndrome, and two diagnoses in the cohort were associated with these genes. The child 

with the pathogenic ARID1B variant did not have the characteristic fifth digit hypoplasia of 

classical Coffin-Siris syndrome, although certainly since the delineation of the molecular 

basis of this syndrome, it is recognized that this is not a mandatory feature and in particular 

is frequently absent in ARID1B-related Coffin-Siris syndrome (van der Sluijs et al., 2019). 
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The child with the ARID1A duplication was only recently determined to have this newly 

described syndrome as a result of the de novo duplication (Bidart et al., 2017). The 

functional impact of the duplication on chromatin remodeling has yet to be fully elucidated 

though downstream dysregulation of several canonical pathways have been observed (Bidart 

et al., 2017). CREBBP is another gene associated with transcription co-activation following 

chromatin remodeling. This individual has a variant in one of the final two exons of 

CREBBP, consistent with the emerging Menke-Hennekam syndrome, a disorder clinically 

distinct from Rubinstein-Taybi syndrome (Angius et al., 2019; Banka et al., 2019; Menke et 

al., 2016). Lastly, POGZ was observed in one individual who showed overlap with the 

previously described White-Sutton syndrome, but with relatively mild cognitive involvement 

and lacking the characteristic behavioral and gastrointestinal manifestations (Stessman et al., 

2016) POGZ is a heterochromatin protein 1 α-binding protein and it functions as a 

transcriptional regulator in neurons by modifying chromatin structure(Stessman et al., 2016).

NSUN2 has been presented, albeit cautiously, as a gene responsible for a DubS-like 

syndrome in sibling pairs (Martinez et al., 2012). The clinical diagnosis was based on the 

clinical overlap with the historical cases (mild microcephaly and ID, blepharophimosis and 

hypertelorism, broad nasal bridge); however, the siblings did not have all features (for 

example, voice differences, triangular face, or a round nose tip and prominent ears 

(Dubowitz, 1965; Grosse et al., 1971)). Furthermore, pathogenic variants in NSUN2 have 

been reported as an explanation for syndromic intellectual disability (Abbasi-Moheb et al., 

2012; Khan et al., 2012; Yavarna et al., 2015) and even as a gene responsible for a Noonan-

like syndrome (Fahiminiya et al., 2014). Given the extent of the phenotypic overlap, it is not 

surprising that at least one individual in the cohort who presented with moderate intellectual 

disability, short stature and microcephaly carried pathogenic NSUN2 variants (Supplemental 

Table 1).

We studied one aunt-niece pair that has been previously reported in the literature (Grosse et 

al., 1971; Swartz et al., 2003). Indeed these two individuals represent historically ‘typical’ 

examples of DubS as the aunt was published in one of the earliest publications and both the 

aunt and the niece have been included as representative individuals with DubS in Smith’s 

Recognizable Patterns of Human Malformation. These 2 individuals were found to share a 

rare missense variant of unknown clinical significance in the gene KCNQ5, associated with 

MRD46 (OMIM 617601). To date only 4 individuals with sequence variants in this gene 

have been published in the literature (Lehman et al., 2017) and while these individuals are 

described as non-dysmorphic, there are no published photographs. Affected individuals have 

mild to profound developmental impairment with OFC measurements between −1 and −2 

SD below the mean (Lehman et al., 2017).

The majority of the solved individuals had their initial diagnostic investigations performed 

and subsequent enrollment into these two gene discovery projects before the molecular 

causes had been well-established or recognized for their respective syndromes. As such, 

their diagnoses only became evident with time as additional cases with similar variants were 

reported. This is intuitive given that many of these cases were identified as suitable 

candidates for research-based gene discovery in the very early days of ES implementation, 

and it has been demonstrated that a significant proportion of all Mendelian gene discoveries 
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(and increasingly a proportion of novel phenotype reports) have occurred since 2010 

(Bamshad, Nickerson, & Chong, 2019). It follows that many of these novel gene discoveries 

from the “next-generation sequencing era” are, in contrast to earlier ‘phenotype-first’ 

syndrome delineations, in individuals with rather non-specific phenotypes that have been 

studied in ‘reverse’ following the gene discovery. Consistent with the rather non-specific and 

increasingly broad phenotypic spectrum of DubS in the published literature over the last 

three decades, it is understandable that pathogenic variants in any of a large and growing 

number of non-specific syndromic ID genes could be associated with such individuals. This 

speaks to the rapid increase in knowledge of underlying variants associated with the 

increasing use of next-generation sequencing.

Seventeen individuals did not receive a molecular or cytogenetic diagnosis. Subjectively, 

some of these individuals did show overlap with the historical cases though there were still 

no shared candidate variants to suggest a novel DubS gene. One could presume that by 

diagnosing 14 individuals we have reduced the heterogeneity of the entire series and perhaps 

further inspection of these individuals may further homogenize the cohort to a greater extent. 

However, this was not apparent when we reviewed the frequency of the component features 

of DubS though numbers were small (Table 1; Supplemental Table 1). Nevertheless it may 

be a useful strategy to subjectively identify the most representative cases mirroring historical 

DubS and pursue additional studies, such as GS or transcriptome sequencing to elucidate an 

underlying cause or pathway in these select cases.

The results of this work do show that if there is a clinical suspicion of DubS, then a 

chromosomal microarray analysis and ES should be considered as first-line investigations. 

These results suggest the diagnostic rate can be 48% or as high as 70–80% should the 

variant or gene of unknown significance be shown to be the explanations for the respective 

presentations. This diagnostic rate exceeds the published yield of clinical ES in diverse 

cohorts of individuals of 20–30% (Bowling et al., 2017; Lee et al., 2014; Retterer et al., 

2016; Yang et al., 2014). Other investigations that should be considered in those with DubS 

would include chromosomal breakage studies in those with microcephaly, malignancy, 

familial recurrence or consanguinity suggesting an autosomal recessive condition. 

Immunoglobulin or other immune-related studies may also be pursued if recurrent infections 

are present.

Another key message of this project is that the individuals we considered as having a clinical 

diagnosis of DubS were often found to have alternative diagnoses despite being diagnosed 

by experienced clinicians. In this study, these diagnoses tended to fall in broad categories 

that include genes of (1) chromatin remodeling and transcription, typically de novo 
dominant as well as (2) DNA repair genes, typically autosomal recessive. Should DubS be a 

consideration, a careful clinical assessment of these respective syndromes should also be 

undertaken. By providing alternative diagnoses by molecular means, we have ruled out the 

diagnosis of DubS in a large proportion of individuals. Furthermore, by not observing 

compelling variants in shared genes in the remaining individuals, we conclude that the 

majority of individuals diagnosed with DubS do not in fact have a shared syndrome.
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Figure 1. Images and alternative diagnoses for individuals with a clinical diagnosis of Dubowitz 
syndrome
Red font represents features of Dubowitz syndrome, black represents additional features 

seen in the individual
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Figure 2. 
Protein networks shared by candidate genes and genes offering alternative diagnoses among 

individuals sharing Dubowitz Syndrome diagnoses.
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Table 1:

Features reported in individuals diagnosed with Dubowitz syndrome

Feature Total Frequency (%)(n=31*) Those with a molecular 
diagnosis (n=14*)

Those without a 
molecular diagnosis† 

(n=8*)

Intrauterine growth restriction 16/26 (62%) 9/14 2/5

Short stature (less than -2SD) 11/25** (44%) 7/13 2/6**

Microcephaly (less than -2SD) 20/25 (80%) 11/13 4/5

Intellectual disability (includes mild, moderate, 
severe and profound when specified)

20/21 (95%) 13/13 4/5

Behavioral concerns (eg ADHD) 15/22 (68%) 8/12 4/4

Sloping forehead 7/23 (30%) 4/11 3/5

Telecanthus/hypertelorism/ptosis/ 
blepharphimosis

26/27 (96%) 14/14 4/5

High-pitched voice 9/20 (45%) 5/11 2/3

Micrognathia 17/23 (74%) 8/12 1/3

History of eczema 17/27 (68%) 7/13 6/6

Malignancy 1/23 (4%) 1/13 0/4

*
The denominator varies for each feature and is dependent on the available clinical information for the 31 reported individuals with the Dubowitz 

phenotype.

**
Two individuals were described as “short” with no measurements provided, 13/27 (48%).

†
This column is comprised of 8 individuals without (1) a formal diagnosis or without a compelling VUS in a known gene or without a compelling 

variant in a gene of interest.
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Table 2.

Alternative diagnoses in those individuals with a clinical diagnosis of Dubowitz syndrome.

Case ID Gene Variants Alternative Diagnosis 
(OMIM#)

Inheritance Year of first 
reference of 
gene to 
phenotype

DubS21 BRCA1 ENST00000357654.9 
c.594_597delTGTG;5095C>T, 
ENSP00000418960 
(p.Ser198ArgfsX35;Arg1699Trp)

Fanconi Anemia S 
(617883)

Autosomal 
recessive 
(compound 
heterozygous)

2013

DubS22 HDAC8 Arr chrXq13.1–13.2 (71632632–

72449647*)

Cornelia de Lange 5 
(33082)

X-linked de novo 2012

DubS24 CREBBP ENST00000262367.10,c.5612–5614del, 
ENSP00000262367, p.1871_1872del

Menke-Hennekam 
Syndrome 1 (618332)

De novo dominant 2016

DubS26 SLC35C1 ENST00000314134.4, c.887A>G, 
ENSP00000313318, p.His296Arg

Congenital disorder of 
glycosylation, type IIc 
(266265)

Autosomal 
recessive 
(homozygous)

2001

DubS28 ARID1B ENST00000350026.10, :c.5737C>T, 
ENSP00000344546, p.Arg1913Ter  

Coffin-Siris 1 (135900) De novo dominant 2011

DubS29 ARID1A Arr 1p36 (27,001,498–27,110,331)x3 ARID1A duplication 
associated intellectual 
disability syndrome

De novo dominant 2017

DubS30 SKIV2L ENST00000375394.7, c.235C>T, 
ENSP00000364543, p.Arg79Ter

Trichohepatoenteric 
syndrome 2 (614602)

Autosomal 
recessive 
(homozygous)

2012

DubS11 POGZ ENST00000271715.2:c.1679–3C>G 
(splice region variant)

White-Sutton syndrome 
(616364)

De novo dominant 2016

DubS12 TAF1 ENST00000276072.3:c.61A>T; 
ENSP00000276072.3:p.Met21Leu

X-linked syndromic 
intellectual disability Type 
33 (300966)

X-linked de novo 2015

DubS1 HDAC8 ENST00000373568.2:c.638–2A>G 
(splice acceptor variant)

Cornelia de Lange 5 
(30082)

X-linked de novo 2012

DubS18 VCX-
PUDP-
STS-
PNPLA4

Arr Xp22.31 (6454182–8115193)x1 X-linked deletion 
syndrome

X-linked 2013

DubS6 
and 
DubS7

VPS13B Arr 8q22.2 (99096530–99142877)x4 Cohen syndrome (216550) Autosomal 
recessive

2003

DubS2 NSUN2 ENST00000264670.6:c.1903A>G/
c.529C>T ENSP00000264670.6: 
p.Asn635Asp/p.His177Tyr

Autosomal recessive 
intellectual disability type 5 
(611091)

Autosomal 
recessive 
(compound 
heterozygote)

2012

*
Coordinates have been converted to GRCh37/Hg19 with liftover (available at https://genome.ucsc.edu/util.html)
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Table 3.

The top 10 GO:Biological Processes with significant evidence of enrichment among candidate genes and 

genes offering an alternative diagnosis. Significance: False Discovery Rate (FDR) value < 0.05. Complete 

table of 37 enriched terms is available in Supplemental Table 3.

GO:term Description Count Matching proteins found in network FDR

GO:0051276 chromosome organization 9 of 999 ARID1A, ARID1B, CREBBP, HDAC8, LIG4, POGZ, 
TAF1, TOP2A, VCX

0.0067

GO:0006996 organelle organization 14 of 3131 ACTB, ARID1A, ARID1B, BRCA1, CREBBP, FRY, 
HDAC8, LIG4, PCNT, POGZ, STAT3, TAF1, TOP2A, 
VCX

0.0089

GO:0007049 cell cycle 9 of 1263 BRCA1, CDK11B, HDAC8, LIG4, NSUN2, PCNT, 
POGZ, TAF1, TOP2A

0.0089

GO:0040029 regulation of gene expression, epigenetic 5 of 251 ACTB, ARID1A, ARID1B, BRCA1, STAT3 0.0089

GO:0051726 regulation of cell cycle 9 of 1129 ACTB, BRCA1, CDK11B, HDAC8, NSUN2, PCNT, 
STAT3, TAF1, TOP2A

0.0089

GO:0071417 cellular response to organonitrogen 
compound

6 of 485 ACTB, ARID1B, BRCA1, HDAC8, STAT3, TAF1 0.0102

GO:0045815 positive regulation of gene expression, 
epigenetic

3 of 51 ACTB, ARID1A, ARID1B 0.0107

GO:0071407 cellular response to organic cyclic 
compound

6 of 505 ACTB, ARID1A, BRCA1, HDAC8, STAT3, TAF1 0.0107

GO:0048096 chromatin-mediated maintenance of 
transcription

2 of 9 ARID1A, ARID1B 0.0150

GO:2000615 regulation of histone H3-K9 acetylation 2 of 11 BRCA1, HDAC8 0.0174
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