The Journal of Neuroscience, June 9, 2021 - 41(23):5069-5079 - 5069

Behavioral/Cognitive

Volume of f-Bursts, But Not Their Rate, Predicts Successful
Response Inhibition

Nadja Enz,' “Kathy L. Ruddy,’ ““Laura M. Rueda-Delgado,' and Robert Whelan'?
'School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland, and *Global Brain Health Institute, Trinity
College Dublin, Dublin, D02 PN40, Ireland

In humans, impaired response inhibition is characteristic of a wide range of psychiatric diseases and of normal aging. It is
hypothesized that the right inferior frontal cortex (rIFC) plays a key role by inhibiting the motor cortex via the basal ganglia.
The electroencephalography (EEG)-derived f-rhythm (15-29 Hz) is thought to reflect communication within this network,
with increased right frontal ff-power often observed before successful response inhibition. Recent literature suggests that aver-
aging spectral power obscures the transient, burst-like nature of B-activity. There is evidence that the rate of f-bursts follow-
ing a Stop signal is higher when a motor response is successfully inhibited. However, other characteristics of f-burst events,
and their topographical properties, have not yet been examined. Here, we used a large human (male and female) EEG Stop
Signal task (SST) dataset (n=218) to examine averaged normalized f-power, B-burst rate, and f-burst “volume” (which we
defined as burst duration X frequency span X amplitude). We first sought to optimize the B-burst detection method. In
order to find predictors across the whole scalp, and with high temporal precision, we then used machine learning to (1) clas-
sify successful versus failed stopping and to (2) predict individual stop signal reaction time (SSRT). f-burst volume was sig-
nificantly more predictive of successful and fast stopping than f-burst rate and normalized -power. The classification model
generalized to an external dataset (n=201). We suggest f-burst volume is a sensitive and reliable measure for investigation
of human response inhibition.
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The electroencephalography (EEG)-derived S -rhythm (15-29 Hz) is associated with the ability to inhibit ongoing actions. In
this study, we sought to identify the specific characteristics of 3 -activity that contribute to successful and fast inhibition. In
order to search for the most relevant features of S -activity, across the whole scalp and with high temporal precision, we
employed machine learning on two large datasets. Spatial and temporal features of 3 -burst “volume” (duration x frequency
span X amplitude) predicted response inhibition outcomes in our data significantly better than S -burst rate and normalized
B -power. These findings suggest that multidimensional measures of S -bursts, such as burst volume, can add to our under-
standing of human response inhibition. /

ignificance Statement

Introduction

The ability to inhibit unwanted or inappropriate behaviors relies
on effective response inhibition in the brain. The Stop Signal task
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(SST) measures this cognitive process (Logan and Cowan, 1984)
by requiring the participant to cancel an already initiated motor
response following an infrequent Stop cue. If the response is
withheld following the Stop cue then the trial is classified as a
“success.” If a response is made then the trial is classified as a
“failure.” The stop signal reaction time (SSRT) is an estimation
of the covert latency of the action cancellation process
(Verbruggen et al., 2019). The SSRT is ~200-250 ms in healthy
adults, and slower SSRT's are characteristic of several psychiatric
diseases (Lijffijt et al., 2005; Luijten et al., 2011) and normal aging
(Hsieh and Lin, 2017).

Many previous studies have suggested that right inferior fron-
tal cortex (rIFC) is involved in response inhibition through a
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rIFC-basal ganglia-motor cortex pathway (Aron et al, 2014;
Wessel and Aron, 2017). Jana et al. (2020) recently supported the
role of this pathway in action stopping by suggesting an exact
temporal cascade: rIFC activation at 120 ms after Stop signal,
global motor suppression at 140 ms, muscle inhibition at 160 ms,
and SSRT at 220 ms. Communication in this pathway may be
facilitated through brain oscillations in the B-frequency band
(15-29 Hz), and several studies have reported an increase in
averaged [B-power over the rIFC at the moment of stopping a
movement (Swann et al.,, 2009; Wagner et al,, 2018; Schaum et
al., 2020).

Recent literature suggests that the cortical 8 -rhythm is by na-
ture characterized by short-lasting, transient bursts and only
appears to change in sustained amplitude if it is averaged over
multiple trials (Feingold et al., 2015; Sherman et al., 2016).
Various characteristics of B-bursts have been analyzed in previ-
ous studies, such as rate, timing, probability, peak power, dura-
tion, and interval time (Feingold et al., 2015; Sherman et al,,
2016; Shin et al., 2017; Tinkhauser et al., 2017; Errington et al.,
2020; Hannah et al., 2020; Jana et al., 2020; Seedat et al., 2020;
Wessel, 2020). Three recent studies have investigated the role of
B -bursts in human response inhibition using electroencephalog-
raphy (EEG) and have reported mixed findings. Wessel (2020)
found a larger frontocentral S-burst rate for successful com-
pared with failed action stopping whereas Jana et al. (2020) did
not find a significant difference. Another study reported that
earlier right frontal B-bursts were associated with faster
CancelTime, a measure of stopping latency using electromyogra-
phy (EMG; Hannah et al., 2020).

Here, we aimed to further quantify the role and nature of
B-bursts in human response inhibition in two large SST EEG
datasets (n=419) by using machine learning to search a wide
range of spatial and temporal features. First, we sought to opti-
mize the B-burst detection method. In a second step, we con-
ducted two different single-trial analyses to (1) classify successful
versus failed Stop trials and (2) predict an individual’s SSRT. We
investigated two B-burst characteristics: rate and volume (a
composite measure of burst duration, frequency span and ampli-
tude) and also compared them to averaged normalized 3 -power.
Given the high dimensional nature of the data, we employed a
machine-learning approach, employing best-practice for quanti-
fying the generalizability of our results (Poldrack et al., 2020).
We trained the models on 60% of our data (internal validation
set; n=130) and subsequently applied the resulting models on
the remaining, unseen 40% of our data (holdout validation set;
n=2388). We then aimed to validate results on an external dataset
(n=201; Wessel, 2020). We hypothesized that -burst features
will be more predictive than averaged normalized f3-power for
classifying successful versus failed Stop trials, and for predicting
individual SSRTs. We also hypothesized that -bursts over the
right frontal scalp region would be most predictive.

Materials and Methods

Participants

The internal and holdout validation dataset consisted of 282 healthy
adult human volunteers [age: 35.03 * 14.72years (mean * SD); 175
females] who were pooled from four studies conducted in University
College Dublin and Trinity College Dublin, Ireland. The studies were
approved by the ethics committees of University College Dublin School
of Psychology and Trinity College Dublin School of Psychology.
Participants provided written informed consent. The raw data from this
dataset formed the basis of another study that did not focus on spectral
properties (Rueda-Delgado et al, 2021). The inclusion and exclusion
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criteria of each project are available in Rueda-Delgado et al. (2021; their
Supplementary Material).

The external validation dataset consisted of 214 healthy adult human
volunteers [age: 22.51 * 6.67 years (mean * SD); 121 females]. This
dataset was published as part of another study investigating 8 -bursts in
response inhibition (Wessel, 2020) and is openly available on the Open
Science Framework (https://ost.io/v3a78/).

Task
The task used for this study is described in detail in Rueda-Delgado et al.
(2021). Briefly, participants underwent an adaptive visual SST. Each trial
lasted 1000 ms and was preceded by a fixation cross (1000-ms duration).
Participants were then presented with arrows pointing either to the right
or left (Go stimulus) and they were instructed to respond with their right
or left index finger, respectively, as fast as possible via an Xbox 360 game
controller. In one of four Go trials, the Go stimulus was followed by an
arrow pointing upwards (Stop signal) after a varying stop-signal delay
(SSD). The participants were instructed to inhibit their button press on
these Stop trials. The SSD was adjusted by a tracking algorithm, aiming
to achieve a task difficulty resulting in 50% successful and 50% failed
Stop trials. After a successful Stop trial, the SSD was increased, making
the task harder and after a failed Stop trial, the SSD was decreased, mak-
ing the task easier. The initial SSD was 250 ms and was subsequently
adjusted using a double-limit algorithm (see Richards et al., 1999). The
SSD could vary between 50 and 450 ms. Following a Stop trial, the subse-
quent SSD value was chosen randomly between the current SSD and a
pair of limits (higher or lower, as appropriate). These limits were
designed to converge on the SSD that produced a 50% success rate and
to be robust to fluctuations on individual trials. If a participant
responded to the Go stimulus before Stop signal presentation, then the
SSD was decreased for subsequent trials. The task consisted of 135 Go
trials and 45 Stop trials and was presented in three blocks of 60 trials.
Participants in the external dataset performed a slightly differ-
ent version of the SST which is described in Wessel (2020). The
main differences were a higher Stop trial probability (0.33), a dif-
ferent visual Stop signal (arrow turned from white to red), differ-
ent response buttons (q and p buttons on a QWERTY keyboard),
the tracking algorithm (%50 ms) was implemented independently
for leftward and rightward Go stimuli, and a larger number of tri-
als (six blocks of 50 trials).

SSRT analysis

The SSRT was calculated using the integration method with replacement
of Go omissions by the maximum reaction time (RT) (Verbruggen et al.,
2019). All Go trials were included in the Go RT distribution, including
Go trials with choice errors. Premature responses on failed Stop trials
were included when calculating the probability of responding on a Stop
trial [p(respond|signal)] and mean SSD. Participants with SSRT <
125 ms and >98th percentile of total SSRT distribution (303.7 ms) were
excluded from the analysis (n=47). The same criteria were applied to
the external dataset [SSRT < 125 ms and >98th percentile SSRT distri-
bution (385.7 ms)], and 11 participants were excluded.

EEG recording and preprocessing

64-Channel EEG data in the 10-5 system were recorded during the SST
in a soundproof, darkened room using the ActiveTwo Biosemi system.
Four additional electrodes recorded the electrooculogram from ~2cm
below the eyes (vertical eye movements) and from the outer canthi (hori-
zontal eye movements). Two further electrodes recorded from bilateral
mastoids.

EEG data were digitized with a sampling rate of 512 Hz. EEG data
preprocessing was conducted using the EEGLAB toolbox (Delorme and
Makeig, 2004; http://sccn.ucsd.edu/eeglab) in conjunction with the Fully
Automated Statistical Thresholding for EEG artifact Rejection plug-in
(FASTER; Nolan et al., 2010; http://sourceforge.net/projects/faster). The
data were initially bandpass filtered between 0.1 and 95 Hz, notch filtered
at 50 Hz and average referenced across all scalp electrodes. Data were
subsequently epoched from 500ms before Go/Stop stimulus onset to
2000ms after Go/Stop stimulus onset for Go trials and Stop trials,
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respectively. FASTER identified and removed artefactual (i.e., non-neu-
ral) independent components, removed epochs containing large artefacts
(e.g., muscle twitches) and interpolated channels with poor signal qual-
ity. The remaining EEG data were then visually inspected by trained
raters to ensure good quality and that any remaining noisy data were
removed. Specifically, trained raters identified any remaining artefacts in
independent components (e.g., eyeblinks), epochs containing idiosyn-
cratic muscle/movement or transient electrode artifacts, high amount of
a-activity and interpolated any channels that were noisy throughout all
epochs of a participant. Datasets with a large amount of artefacts (e.g.,
because of chewing) and/or with >40% of epochs removed were
excluded from further analysis. The remaining datasets were further
checked for noisy data by calculating each dataset’s event-related poten-
tial (ERP) and calculating z scores across all ERPs. Datasets with z
scores >15 were excluded. After exclusion of these, new z scores were
calculated and datasets with z scores >3 were excluded from further
analysis. Fifteen participants were rejected from further analysis because
of these artefacts or noisy data (in accordance with the exclusion criteria
in Rueda-Delgado et al,, 2021). The remaining 220 participants were
subjected to further analysis. Details for EEG recording and preprocess-
ing steps of the external dataset can be found in the original publication
(Wessel, 2020). The external data were recorded using a different 62-
channel array. We therefore interpolated the channel locations from the
preprocessed external data to match our 64-channel locations using the
EEGLAB function pop_interp.

After channel interpolation, both internal and external EEG data
were analyzed identically. The analysis was applied to individual
successful and failed Stop trial epochs (=500 to +2000 ms with
respect to the Stop signal) using custom scripts in MATLAB 2017b
and 2018b (MathWorks). After preprocessing, EEG data were
transformed using the current source density method (CSD;
Kayser and Tenke, 2006; https://psychophysiology.cpmc.columbia.
edu/software/CSDtoolbox/index.html) which is a reference-free
montage to attenuate the effect of volume conduction in scalp
EEG.

Time-frequency transformation

For all epochs, two-dimensional representations of each electrode’s time
frequency were estimated using a complex Morlet wavelet (range of log-
arithmically spaced 4-10 cycles for 15 linearly spaced frequencies across
15-29 Hz). The squared magnitude of the convolved data was calculated
to obtain power estimates. 3 -bursts were extracted from time-frequency
power estimates without baseline normalization. Baseline normalization
was separately performed to compute averaged normalized 3 -power.
Time-frequency power estimates were converted to decibel (dB) using a
100-ms baseline before the Stop signal. B-power was estimated over
whole epochs and was only later subdivided into smaller time bins. It
therefore does not matter if time bin sizes are smaller than the B-cycle

length.

p-burst detection

B-burst detection was performed using the same general method as
described in Wessel (2020), originally reported in Shin et al. (2017). For
each time-frequency power matrix, local maxima were detected using
the MATLAB function imregionalmax, from —25 to +1000ms with
respect to the Stop signal. The imregionalmax function identifies data
with higher values that are surrounded by data with lower values (start-
ing at —25ms is necessary to inspect lower values for maxima located
close to 0 ms). B -bursts were then defined as local maxima that exceeded
a defined threshold. While Wessel (2020) and Shin et al. (2017)
employed a B-burst detection threshold of 6 x median power calculated
from —500 to +1000 ms with respect to the Stop signal (across all trials
per subject), we used machine learning to search across six different
thresholds ranging from 1x to 6x median power of each individual
time-frequency power matrix. We also tested two different baselines to
calculate median power from, either using the whole epoch including
stopping (—500 to +1000 ms with respect to the Stop signal) or using
300 ms during the fixation cross period. The purpose of this was to es-
tablish an optimal burst detection method for detecting B-bursts in
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human EEG that yielded the highest predictive ability for the behavior
under investigation (the 6x median power threshold employed by Shin
et al. (2017) was decided following a search procedure through a range
of thresholds based on prestimulus 3 -power derived from murine local
field potentials and human magnetoencephalography).

p-features extraction

The time-frequency power matrices of each participant were epoched
from —125 to +100 ms with respect to each participant’s SSRT, calcu-
lated for each of the 64 scalp electrodes. For each individual 225-ms
time-frequency power matrix, features were individually extracted for ei-
ther 25-, 45-, or 75-ms time bins (i.e., nine, five, or three bins, respec-
tively). Three types of B-band activity features were extracted in each
time bin (Fig. 1): (1) B-burst rate, the sum of the number of supra-
threshold bursts; (2) B-burst volume, the area under the curve of supra-
threshold datapoints, individually calculated for each frequency and sub-
sequently summed up over all frequencies within each time bin to obtain
volume (3 -burst volume was calculated per time bin, and not per burst,
so that each trial would have the same number of features for inclusion
in the regression models); (3) normalized B-power, the mean of the
baseline normalized power estimates.

Data preparation for the machine learning analysis

Our internal dataset (n=218) was divided into two groups: the internal
validation set (n=130) and the holdout validation set (n=88). In order
to balance the internal and holdout validation sets with respect to gen-
der, participants were assigned to each set randomly but the assignment
was iterated until the female:male ratio fell within the range 1.545:1-
1.655:1 in each set. Data from Wessel (2020) served as the external vali-
dation set (n=201).

The goal of the analysis was to predict individual trial outcomes (suc-
cessful or failed stopping) and, separately, individual SSRTs from EEG
data. Thus, each trial was regarded as an independent observation. This
resulted in 2546 successful Stop trials and 2087 failed Stop trials for the
internal validation set, 1814 successful Stop trials and 1454 failed Stop
trials for the holdout validation set and 7809 successful Stop trials and
6449 failed Stop trials for the external validation set. For each trial, we
obtained a value for each electrode and time bin for each of the three
B -features as described in S -features extraction.

Experimental design and statistical analysis

Behavioral analysis

In addition to the SSRT analysis described earlier, means and SDs were
extracted for each subject for the following behavioral SST measures: Go
trial RT, failed Stop trial RT, SSD, number of successful Stop trials, num-
ber of failed Stop trials, probability of successful stopping, probability of
Go omissions, probability of choice errors. These measures were com-
pared between the internal and the holdout as well as the external valida-
tion sets using a two-sample f test. Go trial RT and failed Stop trial RT
were compared within each validation set using a paired t test and effect
sizes were estimated using Cohen’s d. Participants were excluded from
analysis if their failed Stop trial RT was larger than Go trial RT (Bissett et
al.,, 2019; Verbruggen et al., 2019), violating an assumption of the horse-
race model.

Machine learning analysis of the internal validation set

The detailed method for the machine learning used in this study is
described in Rueda-Delgado et al. (2021) and is briefly explained here.
We used logistic regression to classify successful versus failed Stop trials
(Stop trial classification) and, separately, linear regression to predict
individual SSRT for each trial (SSRT prediction). For both analyses we
used a form of penalized regression (specifically, the Elastic Net; Zou
and Hastie, 2005) to attenuate overfitting (Jollans et al., 2019). The
Elastic Net constrains the size of regression coefficients and can also set
regression coefficients to zero (i.e., it is a form of feature selection). A
modification for this study was that the range of the two hyperpara-
meters (a and A ) were expanded, and the search grid altered. For logistic
regression, « ranged from 0.01 to 1 across 10 logarithmically-spaced val-
ues and A ranged between 0.2 and 1 across 10 linearly-spaced values
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A Single trial time-frequency spectrum
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Figure 1.  SB-feature extraction from a representative single trial. A, Each trial consisted
of a 15 (frequencies) x 117 (time points; 225 ms, 512 Hz) time-frequency power matrix. The
117 time points were divided into nine 25-ms time bins, from —125ms before SSRT to
+100 ms after SSRT. 3-bursts were defined as local maxima which exceeded a predefined
threshold. B, B-burst rate. Shown are all datapoints exceeding the threshold (2x median
power). Each local maximum (indicated with red dashed circle) exceeding the threshold was
counted as one 3-burst for the time bin where it occurred. ¢, 3-burst volume. All time-
points exceeding the threshold (2x median power) were included for the volume calcula-
tion. The volume was spread across the different time bins and frequencies. D, Normalized
B3-power. The normalized power values over all frequencies were averaged for each time
bin (means per time bin are indicated with black line).

(i.e., a search grid of 100 parameter-pair values). For linear regression, o
ranged from 0.3 to 1 in 10 linearly-spaced values and A ranged from 3 to
7 in 10 linearly-spaced values. Model hyperparameters were determined
using nested cross-validation. In contrast to Rueda-Delgado et al. (2021),
here, we used 5-fold rather than 10-fold cross-validation. The main folds
and subfolds were assigned across subjects. In each subfold, the data
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were z scored and then Winsorized (i.e., values >|3| were replaced with
a value of +3). The entire analysis was iterated 100 times for each model,
with a new random assignment of training and test sets on each
iteration.

We adjusted for age and sex by adding them as additional features to
each model (Rubia et al., 2013; Hsieh and Lin, 2017). For the internal
and holdout validation sets we additionally controlled for the four differ-
ent data collection projects by adding three dummy-coded regressors.

To quantify the model performance, the entire procedure was
repeated using random-label permutation (ie., to generate a “null”
model) where trial outcomes were randomly shuffled (i.e., the successful
or failed Stop trial label for the logistic regression, or SSRT for the linear
regression). Note that covariates were not shuffled for null models,
thereby quantifying their contribution to the actual model (Dinga et al.,
2020). That is, any increase in performance between the actual and null
models can be attributed to the contribution of the EEG data. The per-
formance metrics for the logistic regression consisted of the area under
the receiver operating characteristic curve (AROC; chance=0.5) and
Brier score (i.e., mean squared error between predicted probabilities and
expected values; Dinga et al., 2019). The performance metrics for the lin-
ear regression consisted of mean absolute error (MAE) and coefficient of
determination (R? Poldrack et al., 2020). Results reported for the inter-
nal validation are mean values across all 100 iterations of the analysis. To
assess the significance of the actual model predictions we calculated P
which is equal to the fraction of iterations on which the performance
metrics of the null model were more predictive than the performance
metrics of the actual model (compare Greene et al., 2018).

We sought to first determine the optimal S -burst detection method
by using the internal validation dataset. For this, we tested two parame-
ters: (1) six different thresholds (1x, 2x, 3, 4X, 5%, or 6X median
power) and (2) two different baselines to calculate median power of, ei-
ther using the whole epoch including stopping (—500 to + 1000 ms with
respect to the Stop signal) or using 300 ms during the fixation cross pe-
riod. In addition to these burst detection parameters, we also tested a
third parameter: (3) three different time bin sizes to partition the 225-ms
time-frequency power matrix (9 x 25, 5 x 45, or 3 x 75 ms). We tested
all 36 possible combinations of these three parameters using a “burst fea-
tures” model that consisted of B-burst rate and S-burst volume.
Depending on the time bin size, this model consisted of 1152, 640, or
384 spatiotemporal features (two burst features x 64 channels X nine,
five, or three time bins). The analysis was iterated 100 times for each
combination. We ran this analysis both for the Stop trial classification
and for the SSRT prediction. We then determined the most predictive
parameter combination across both analyses.

Following determination of the optimal B-burst detection method
and time bin size, the internal validation analysis was tested on five final
main models using the most predictive parameter combination (see
Results): (1) full features model (B -burst rate, 3 -burst volume, normal-
ized B-power; 1728 spatiotemporal features); (2) burst features model
(B -burst rate, 3 -burst volume; 1152 spatiotemporal features); and three
single feature models: (3) B -burst rate (576 spatiotemporal features); (4)
B-burst volume (576 spatiotemporal features); and (5) normalized
B-power (576 spatiotemporal features). The performance metrics of the
five main models were compared using a one-way repeated measures
ANOVA test (omnibus p threshold=0.05) and a post hoc t test with
Bonferroni correction to determine whether the performance metric
means of the models were significantly different. Effect sizes were esti-
mated using 7>

Validation analysis of the holdout and external validation sets

The results of the five main models from the internal validation were
tested on the holdout and external validation sets. This involved apply-
ing the optimum burst detection parameters and time bin size as well as
regression weights from the internal set to the external and holdout sets
(neither the optimum burst detection parameters and time bin size nor
the regression weights could be derived from the holdout and external
sets as this would violate the independence between training and test
sets; Poldrack et al., 2020). The holdout and external validation sets were
scaled to the internal validation data by z scoring and Winsorizing using
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Table 1. Electrode labels (64 channels, 10-5 system) grouped into eight differ-
ent brain regions

Brain area Electrode labels

Left parietal (P5, TP7, P3, P5, P7, P9, P03, PO7
Left sensorimotor FG3, 17, G5, @3, (1, Z, CP1, CP3
Left frontal FP1, AF7, AF3, F7, F5, F3, FT7, FC5
Frontocentral FPZ, AFZ, FZ, F1, F2, FC1, FC2, F(Z
Centroparietal/occipital Pz, P1, P2, POZ, 0Z, 01, 02, IZ
Right frontal FP2, AF8, AF4, F8, F6, F4, FT8, F(6
Right sensorimotor FC4, 17, (6, (4, 2, CPZ, (P2, (P4
Right parietal (P6, TP8, P4, P6, P8, P10, P04, P08

This step reduced spatial features to aid data interpretation.

the mean and SD of the internal validation set. The mean SSRTs of the
holdout and external validation sets were 5 and 51 ms longer, respec-
tively. Therefore, for the SSRT prediction, the SSRTs in the holdout and
external validation sets were scaled to the same mean and SD of the in-
ternal validation set SSRT. For each model, the average regression coeffi-
cients from the 100 iterations of the internal validation were then
applied to the holdout and external validation data. The same metrics to
evaluate model performance were utilized for holdout and external vali-
dation sets. This procedure was again repeated using random-label per-
mutation (null model).

Data interpretation

To further interrogate the data and identify the most predictive features
in successful models, we calculated the “selection frequency” of each
individual feature. This was calculated by summing each feature’s non-
zero count in each main fold and subsequently averaging across the 100
iterations. Features were then ranked first by selection frequency and
second by the absolute regression coefficient. Solely to aid interpretation,
we applied spatial and temporal feature reduction to summarize the
results. We created boxplots by grouping data from 64 electrodes into 8
different regions (Table 1) and amalgamated the data into three time
bins (—125 to —50 ms before SSRT, —50 to +25 ms around SSRT, +25
to +100 ms after SSRT).

Code accessibility
Custom written scripts can be downloaded on the Open Science
Framework at https://osf.io/4tznd/.

Results

Behavioral results

The behavioral data and statistical comparisons of all three vali-
dation sets are displayed in Table 2. Failed Stop RT was larger
than Go RT for two participants in the internal validation set,
zero participants in the holdout validation set, and two partici-
pants in the external validation set. These data were therefore
excluded from further analysis. Within each validation set, failed
Stop RTs were significantly faster than Go RTs (internal:
ta20)=28.51, p=1.6 x 107”7, d=2.50; holdout: tg =23.74,
p=9.0 x 10 %, d=2.53; external: £500)=33.54, p=4.6 x 10 %,
d=2.37), in accordance with the horse-race model assumption.
There were no significant differences in the behavioral measures
between internal and holdout validation sets. There were signifi-
cant differences between every behavioral SST measure except
the SSD when comparing internal and external validation sets,
which used slightly different versions of the SST.

Machine learning results

Optimal B-burst detection method and time bin size

The results of the analyses to determine the optimal S-burst
detection method and optimal time bin size are displayed in
Figure 2. The differences in performance metrics across the 36
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models were small. Both the Stop trial classification and the
SSRT prediction yielded most predictive results using 1 x median
power as the burst detection threshold. However, after visual
inspection of the data it was apparent that thresholds below 2x
median power occasionally misregistered background f3-oscilla-
tory activity as bursts. For interpretability (i.e., to distinguish
between averaged [B-power and S-burst events), therefore, we
used 2x median power as the burst detection threshold for both
Stop trial classification and SSRT prediction. Further, there was
no difference between using either baseline method to calculate
median power. This was further supported when correlating the
data coming from either baseline which showed that these data
correlated (for B-burst rate: r=0.83, for B-burst volume:
r=0.99). Therefore, we chose —500 to +1000ms as a baseline
for compatibility with previous studies (Shin et al., 2017; Wessel,
2020). Finally, there was little difference among different time
bin sizes. We therefore chose the 25-ms time bin size because it
afforded greater temporal precision.

Stop trial classification (logistic regression results of five main
models)

Figure 3A displays the results for the Stop trial classification for
all five main models plus corresponding null models for internal,
holdout, and external validation sets.

We aimed to find the features that best classified successful
versus failed Stop trials. The mean AROCs of the five models
were unequal according to a one-way repeated measures
ANOVA (F(4306 = 1185, p=8.1 x 107>'%, n* = 0.92). Post hoc
comparisons (Bonferroni corrected at 0.05/10 =0.005) indicated
that mean AROC of the single feature (-burst volume model
(mean AROC =0.57, mean Brier score =0.244) was significantly
larger than mean AROC of the full features model (mean
AROC =0.56, mean Brier score = 0.245) and of the burst features
model (mean AROC =0.56, mean Brier score =0.246). The full
features model and the burst features model were the only two
models which were not significantly different from each other.
The single feature 3 -burst volume model outperformed the null
model on every iteration (Psroc = 0, Pprer = 0). The holdout
(mean AROC =0.58, mean Brier score =0.243) and the external
(mean AROC=0.57, mean Brier score=0.244) validations
yielded similar results when applying the regression coefficients
from the internal validation single feature B-burst volume
model. As a next step, we compared the mean AROCs of the
three single feature models and the post hoc test revealed that
they were all significantly different from each other. The B-burst
rate model showed the worst classification accuracy (mean
AROC=0.51, mean Brier score =0.248) although generally out-
performed the null model (Psroc = 0.24, Ppyier = 0.25). The null
model results of the Stop trial classification (AROCs around 0.5,
ie., chance level) indicate that the model accuracies did not
depend on the inclusion of the covariates.

SSRT prediction (linear regression results of five main models)
Figure 3B displays the results for the SSRT prediction for all five
main models plus corresponding null models for internal, hold-
out, and external validation sets.

The mean MAEs of the five models were unequal according
to a one-way repeated measures ANOVA (F4 396) = 36.23, p=8.3
x 1072, n* = 0.27). Post hoc comparisons (Bonferroni corrected
at 0.05/10=0.005) indicated that mean MAEs of the full features
model (mean MAE =28.77, mean R = 0.02), the burst features
model (mean MAE = 28.78, mean R” = 0.02) and the single fea-
ture B-burst volume model (mean MAE =28.82, mean R =
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Table 2. Characteristics and statistical comparison of the internal, holdout, and external validation sets

Internal—holdout Internal—external

Internal Holdout External Statistical Statistical

validation set validation set validation set test (df) p value test (df) p value
Sex (female:male) 78:52 55:33 120:81 X1 =014 0.71 X(1)=001 0.96
Age (years) 35.39 (14.41) 33.78 (15.35) 22.70 (6.83) t216)=0.79 0.43 t(329)=10.76 244 x 1075
SSRT (ms) 190 (36) 195 (34) 241 49) torg = —1.13 0.26 r(m, =—1031 8.55 x 10™%
Mean Go RT (ms) 486 (62) 479 (71) 535 (1 ) t(216)=0.85 0.40 t329) = 479 2.55 x 107°
Mean failed Stop RT (ms) 421 (58) 409 (66) 460 (92) to1e =142 0.16 taae) = —4.25 279 x 107°
Number of successful Stop epochs 22.68 (3.49) 22.78 (3.69) 38.85 (4.46) te) = —0.22 0.83 f329) = —35.00 598 x 107"
Number of failed Stop epochs 19.63 (3.70) 20.16 (3.95) 32.09 (5.11) f16 = —1.01 0.32 f320) = —24.02 230 x 1077
Probability of successful Stop 0.54 (0.07) 0.53 (0.09) 0.52 (0.03) ta16 = 0.51 0.61 t29)=3.17 0.002
Probability of Go omission 249 (3.53) 2.27 (4.16) 0.03 (0.04) t16)=0.43 0.67 {3209 = 9.93 165 x 1072
Probability of choice errors 233 (2.00) 257 (3.37) 0.01 (0.02) t16 = —0.67 0.50 f(320) = 16.46 820 x 10°%

For all analyses, ¢ tests were used, except for sex comparisons, for which we used a y? test. Means and SDs are reported, except for sex. df, degrees of freedom.

0.01) were not significantly different, however, they were signifi-
cantly more predictive than the single feature models S-burst
rate and normalized 8 -power. There was a modest performance
improvement in comparison to the null model: full features
model (Pyag = 0.27, Pr, = 0.28), burst features model (Pyar =
0.29, Pr, = 0.23) and single feature B-burst volume model
(Pmag = 0.34, Pg, = 0.36). The respective holdout and the exter-
nal validations yielded similar results. The mean MAEs of the
two remaining single features models, B-burst rate (mean
MAE =29.18, mean R* = 0.00) and normalized B -power (mean
MAE=29.17, mean R* = 0.01), were not significantly different.
Neither model outperformed the null models (3-burst rate:
Pyiag = 0.52, Py, = 0.54); normalized S -power: Pyag = 0.49, Py,
= 0.49). The coefficients of determination (R?) of the null models
of the SSRT prediction are slightly above zero, showing an addi-
tional, but quite small, effect of the covariates on the SSRT
prediction.

Spatial and temporal dynamics of ff-burst volume

The B -burst volume model could predict Stop trial classification.
We therefore present the spatial and temporal dynamics for this
model in more detail. The models did not robustly predict SSRT
and therefore we do not interpret their detailed spatial and tem-
poral dynamics here.

Stop trial classification

Figure 4 shows the spatial and temporal dynamics of S-burst
volume for classifying successful versus failed Stop trials. Larger
B -burst volume in right frontal, frontocentral and bilateral sen-
sorimotor was predictive of successful stopping —125 to —50 ms
before SSRT. In centroparietal and occipital sites smaller 3 -burst
volume was predictive of successful stopping (from the other
perspective; larger 3 -burst volume was predictive of failed stop-
ping). A similar pattern was observed from —50 to +25ms
around the SSRT where smaller -burst volume in centroparie-
tal and occipital sites was predictive of successful stopping. After
the SSRT (425 to +100ms), larger B-burst volume in bilateral
sensorimotor areas was predictive of successful stopping.

Spatial and temporal dynamics of response inhibition across
validation sets

Figure 5 presents topoplots of successful minus failed Stop trials.
The three main rows show the data for each B -feature (i.e., burst
rate, burst volume and normalized power). Topoplots are shown
for each validation set (i.e., internal, holdout, and external)

separately in sub-rows. The pattern of activation across time for
[B-burst volume and normalized S-power is broadly similar
across all three validation sets. B-burst rate is less consistent
across validation sets because of the low frequency of burst
detection.

Discussion

Here, we investigated the role of 3 -bursts for successful response
inhibition and their impact on the speed of stopping (SSRT). We
used machine learning to search across a wide span of temporal
and spatial features on a large dataset, and employed best prac-
tice for validation, including external validation. Results partially
supported our hypothesis. 8 -burst volume, but not rate, was the
superior predictor for Stop trial classification. However, normal-
ized B-power was a better predictor than (3 -burst rate. Stop trial
classification (success vs fail) generalized to an external dataset,
but prediction of individual SSRT did not.

To the best of our knowledge, this study is the first to intro-
duce B-burst volume as a key behaviorally relevant measure of
human action stopping. Burst volume is a composite measure,
capturing in single metric features previously studied in isola-
tion: burst peak amplitude (Feingold et al., 2015; Sherman et al.,
2016; Shin et al., 2017; Tinkhauser et al., 2017; Little et al., 2019),
burst duration (Feingold et al., 2015; Sherman et al., 2016; Shin
et al,, 2017; Tinkhauser et al., 2017; Little et al., 2019), and burst
frequency span (Shin et al,, 2017). Burst amplitude increases in
proportion with burst duration (Tinkhauser et al.,, 2017), sug-
gesting a single generating mechanism and therefore suitable to
be combined. The inclusion of a third dimension (frequency
span) allows a compact assessment across the entire set of
B-range frequencies (Zich et al, 2020). The B-rhythm likely
inhibits neural processing (Sherman et al,, 2016) and the brevity
of B-bursts may be critical for intact messaging in the brain
(Feingold et al, 2015). In patients with Parkinson’s disease
shorter B-burst duration was related to improved motor func-
tion (Tinkhauser et al., 2017). Taken together, these findings sug-
gest burst volume better captures the multifaceted nature of the
[3-bursts rather than merely their presence or rate.

Machine learning facilitates a data-driven approach, search-
ing a large area of scalp and wide temporal window. Increased
right frontal 3 -burst volume from —100 to —50 ms before SSRT
was predictive of successful stopping. This is spatially and tem-
porally consistent with 8 -rhythm findings using electrocorticog-
raphy (ECoG; Swann et al., 2009, 2012), EEG (Wagner et al.,
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Legend for model names:
Burst detection threshold:

Time bin size:

‘T1’ = 1x median power threshold (etc. for 1-6x median power)
Baseline to calculate median power: ‘Full’ = -500 ms to +1000 ms with respect to Stop signal

‘Fix’ = 300 ms during fixation cross

‘25’ =25ms; ‘45’ =45 ms; ‘75 =75 ms

Figure 2.

Machine learning results for Optimal /3-burst detection method and time bin size (see section in Materials and Methods; 36 parameter combination models: burst detection

threshold x baseline for median power calculation x time bin size). A, Logistic regression results over 100 iterations for the Stop trial classification are shown. Two performance metrics are
reported: AROC and Brier score. The models are sorted by AROC from most predictive to least predictive. Respective null models of each model are indicated with an asterisk symbol. B, Linear
regression results over 100 iterations for SSRT prediction are shown. Two performance metrics are reported; MAE and 2. The models are sorted by MAE from most predictive to least predictive.
Respective null models of each model are indicated with an asterisk symbol. Arrows below each performance metric indicate the direction for higher prediction.

2018; Hannah et al., 2020; Jana et al., 2020), and MEG (Schaum
et al., 2020). The rIFC is thought to act as a brake for motor out-
put that can be triggered by a unexpected event (Aron et al.,
2014; Schaum et al,, 2020). We used scalp EEG, which cannot
identify the source generator. However, studies using ECoG
(Swann et al., 2009, 2012), MEG/functional magnetic resonance
imaging (fMRI; Schaum et al., 2020), and fMRI-guided repetitive
transcranial magnetic stimulation (Sundby et al., 2021) have
empirically demonstrated the link between right frontal scalp ac-
tivity and rIFC. The larger B -burst volume recorded from right
frontal scalp therefore likely indicates rIFC-related motor

braking triggered by the Stop signal. Additionally, we found that
early increased bilateral sensorimotor S-burst volume from
—125ms to the time of SSRT predicted successful stopping. This
is consistent with B-burst studies (Jana et al., 2020; Wessel,
2020) that related this finding to global motor suppression dur-
ing non-selective movement stopping (Badry et al., 2009; Wessel
and Aron, 2013). An unexpected result occurred in most time
bins: a relative decrease in 8 -burst volume in centroparietal and
occipital areas for successful Stop trials, potentially indicating rel-
atively more focused activity in successful stopping. Finally, +75
to +100ms after the SSRT, there was a clear sensorimotor
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Figure 3.

Machine learning results for interal, holdout, and external validation and the corresponding null models of the five main models. A, Logistic regression results over 100 iterations

for the Stop trial classification are shown. Two performance metrics are reported: AROC and Brier score. B, Linear regression results over 100 iterations for the SSRT prediction are shown. Two
performance metrics are reported: MAE and R”. Dotted lines represent chance level for the respective metric. Arrows beside each performance metric indicate the direction for higher prediction.
The holdout and external validations are indicated with a single cross (instead of a distribution over 100 iterations) because mean regression coefficients from the internal validation were
applied to the holdout and external data, which resulted in a single performance metric. Norm., normalized.

signature where decreasing B-burst volume predicted failed
stopping, consistent with the well-known /3 -desynchronization
over motor cortex during motor preparation, which occurs dur-
ing failed Stop trials where a button press takes place (Zhang et
al., 2008; Swann et al., 2009; Fonken et al., 2016).

In contrast to the findings relating to burst volume, burst rate
was not a robust predictor of stopping behavior. Similarly, Jana
et al. (2020) found no difference in right frontal g-burst rate
between successful versus failed Stop trials, but Wessel (2020;
i.e., our external dataset) did at a single frontocentral electrode
(FCz). The external dataset SST had a higher Stop trial proba-
bility than the internal dataset (0.33 vs 0.25). Increased Stop
trial probability may recruit a more proactive response inhi-
bition (Castro-Meneses et al., 2015). Some studies suggested
that presupplementary motor area (pre-SMA) is more
strongly activated during proactive response inhibition
(Sharp et al., 2010; Hu et al., 2015), potentially explaining a

more frontocentral signature in the external dataset (also
compare Leunissen et al., 2020).

Several methods for B-burst detection amid background
brain activity have been described (compare Shin et al,, 2017;
Tinkhauser et al., 2017; Little et al., 2019; Seedat et al., 2020).
There is no consensus on the methodology for optimal S -burst
detection and therefore we tested several thresholds. A threshold
of 2x median 3-power was most sensitive for investigation of
the brain’s stopping process, suggesting [-burst information
might be lost by using a higher detection threshold. Threshold
selection is also relevant to the relationship between burst rate
and volume. At higher thresholds, only the larger amplitude
bursts will be identified and burst rate will be somewhat con-
founded with burst volume. Additionally, we tested two different
baselines to calculate median power; there was no difference in
results and therefore it appears either method can be used for
burst threshold calculation.
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Figure 4. Spatial and temporal 3 -burst volume dynamics for the Stop trial classification. A, Boxplots display the machine learning feature ranking (ranked after selection frequency and
absolute regression coefficient). Low ranking means more predictive in the machine leaming analysis. These were averaged over three time bins (75 ms each) and for each time bin averaged
over eight different brain regions. B, 3-burst volume data (successful minus failed Stop trials, a.u.) from the top 75 features (over all time bins) are shown for each 25-ms time bin with the
rest of the electrodes masked. C, Regression coefficients from the machine learning logistic regression analysis from the top 75 features (over all time bins) are shown for each 25-ms bin with
the rest of the electrodes masked. SS, successful Stop trial; FS, failed Stop trial. * 3 -burst volume is burst duration x frequency span x amplitude.
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Figure 5.  Topoplots of each 3-feature (3-burst rate, B-burst volume, normalized [3-power) for the internal, holdout, and external validation sets. Topoplots are shown for each 25-ms
bin. B-band frequency range was 15-29 Hz. 3-bursts were calculated using 2x median power as burst detection threshold. Means are shown for 3 -burst rate and normalized 3 -power,
medians are shown for 3 -burst volume. Data are shown for successful minus failed Stop trials for each [3-feature. SS, successful Stop trial; FS, failed Stop trial. * 3 -burst volume is burst du-

ration x frequency span x amplitude.

Stopping behavior can be described by formal computational
models (compare Bissett et al., 2019). For example, the interac-
tive race (Boucher et al., 2007) and the blocked input (Logan et
al., 2015) models both characterize Stop and Go processes as

stochastic accumulators. For both models, the Stop unit should
be active on every successfully inhibited trial (Logan et al., 2015;
Errington et al., 2020) to either inhibit or block the Go unit.
Despite evidence for S-involvement in stopping, studies to date
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have not shown that 3 -bursts are causally linked as a mechanism
for the Stop unit. We consider a number of potential, not mutu-
ally exclusive, explanations (see also Errington et al., 2020;
Wessel, 2020). First, infrequency of -burst detection is because
of the low signal-to-noise ratio (SNR) in EEG (Jana et al., 2020).
However, Errington and colleagues demonstrated similar fre-
quency of B-burst detection using intracranial electrodes in
macaques, a method with better signal fidelity than EEG. It
therefore seems unlikely that poor SNR is the sole reason for the
low detection rate. Second, S -activity is produced by multiple
brain sources that reflect different processes: our results clearly
support this interpretation. 3 -activity topography changed over
time, and different scalp regions were predictive of stopping at
different times. Third, as suggested by Errington et al. (2020),
some informative (3-bursts may be subthreshold. Here, we uti-
lized a training dataset to optimize burst detection threshold,
which was lower than previous studies. There was an improve-
ment in prediction accuracy using this lower threshold, but it did
not approach the one-to-one mapping necessary to characterize
the Stop unit. We suggest that brain activity needs to be recorded
with improved SNR (perhaps recording many more trials for
EEG). In addition, more sophisticated methods (e.g., deep learn-
ing; Abrol et al., 2021) may improve detection of informative
bursts and could better integrate information from multiple
regions to adequately capture the complexity of B-band activity
in stopping behavior.

The internal validation for the SSRT prediction revealed a
weak model that did not generalize to the holdout and external
validation data. It is possible that 3 -band activity is unimportant
for speed of stopping. Another potential explanation is that we
relied on the stopping speed derived from a button press to mea-
sure SSRT. While this is a widely used measure in response inhi-
bition research, it has its drawbacks (Skippen et al., 2020). Most
importantly for our study, the SSRT is only a summary measure
for each participant and does not provide single trial informa-
tion. It is likely that using single trial EMG data to calculate
CancelTime (Jana et al,, 2020; also compare Thunberg et al,
2020) as the stopping outcome measure would have yielded a
more predictive model.

In conclusion, B -burst volume was superior to both SB-burst
rate and averaged normalized 3 -power for classifying successful
response inhibition. To date, several studies have shown a statis-
tical association between [ -band activity and stopping (Wagner
et al., 2018; Jana et al., 2020; Schaum et al., 2020; Wessel, 2020).
Here, a machine learning approach reliably showed that
[3-bursts are implicated in human action stopping. The models
significantly outperformed a random model suggesting a real
effect of B -activity and the classification models were validated
on unseen and independent external data. This first validation
of neural EEG SST data on a holdout and external dataset
therefore fulfils the requirement for establishing prediction
(Poldrack et al., 2020). These results support the emerging
view that transient B-bursts are a more accurate representa-
tion of oscillatory B -activity in the brain, and suggest an im-
portant role for B-bursts in human response inhibition.
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