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Abstract

Background: Radiomics analysis usually involves, especially in multicenter and large
hospital studies, different imaging protocols for acquisition, reconstruction, and
processing of data. Differences in protocols can lead to differences in the quantification
of the biomarker distribution, leading to radiomic feature variability. The aim of our study
was to identify those radiomic features robust to the different degrading factors in
positron emission tomography (PET) studies. We proposed the use of the standardized
measurements of the European Association Research Ltd. (EARL) accreditation to
retrospectively identify the radiomic features having low variability to the different
systems and reconstruction protocols. In addition, we presented a reproducible
procedure to identify PET radiomic features robust to PET/CT imaging metal artifacts. In
27 heterogeneous homemade phantoms for which ground truth was accurately defined
by CT segmentation, we evaluated the segmentation accuracy and radiomic feature
reliability given by the contrast-oriented algorithm (COA) and the 40% threshold PET
segmentation. In the comparison of two data sets, robustness was defined by Wilcoxon
rank tests, bias was quantified by Bland–Altman (BA) plot analysis, and strong correlations
were identified by Spearman correlation test (r > 0.8 and p satisfied multiple
test Bonferroni correction).

Results: Forty-eight radiomic features were robust to system, 22 to resolution, 102 to
metal artifacts, and 42 to different PET segmentation tools. Overall, only 4 radiomic
features were simultaneously robust to all degrading factors. Although both
segmentation approaches significantly underestimated the volume with respect to the
ground truth, with relative deviations of −62 ± 36% for COA and −50 ± 44% for 40%,
radiomic features derived from the ground truth were strongly correlated and/or robust
to 98 radiomic features derived from COA and to 102 from 40%.

Conclusion: In multicenter studies, we recommend the analysis of EARL accreditation
measurements in order to retrospectively identify the robust PET radiomic features.
Furthermore, 4 radiomic features (area under the curve of the cumulative SUV volume
histogram, skewness, kurtosis, and gray-level variance derived from GLRLM after
application of an equal probability quantization algorithm on the voxels within lesion)
were robust to all degrading factors. In addition, the feasibility of 40% and COA
segmentations for their use in radiomics analysis has been demonstrated.
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Introduction
Radiomics is defined as the extraction and analysis of a large amount of quantitative

image features from standard-of-care images, known as radiomic features (RF). Radio-

mics studies have four main steps to be considered [16]: image acquisition and recon-

struction, volume segmentation and preprocessing, radiomic features extraction, and

development and validation of descriptive models. The descriptive models resulted

from radiomics analysis are expected to be generalizable. Therefore, the radiomic fea-

tures involved in the process require a high level of robustness [35].

Quantitative analysis of positron emission tomography (PET) images is considered an

established method for diagnosis, staging, and evaluation of tumor response to therapy

[32]. Unfortunately, the lower spatial resolution and poor statistics of PET images have

a negative impact on the variability of radiomic features, in comparison with other im-

aging modalities such as computed tomography (CT). In addition, previous studies have

reported that PET radiomic feature variability also increased due to the differences in

image acquisition parameters, image reconstruction algorithms, and lesion segmenta-

tion procedures [24, 34]. Consequently, PET radiomic feature variability should be

properly addressed in order to avoid misinterpretation of the developed descriptive

models when using PET images.

Retrospective analysis of clinical data usually involves, especially in multivendor and

multicenter studies, different imaging systems, system updates, reconstruction proto-

cols, and segmentation methods. A solution to minimize radiomic feature variability

due to this pipeline heterogeneity could be to restrict the data to those patients follow-

ing exactly the same protocols (in both acquisition and image processing), as in clinical

trials. However, these constraints will reduce the number of patients and would com-

promise the generalizability of the model. In order to avoid the subsample size bias, an

alternative approach is to identify those radiomic features robust to the different ven-

dors, protocols, and methods in the pipeline.

For some cancer locations, such as the prostate or head and neck, the presence of

metallic implants (dental fillings and orthopedic prostheses) leads to artifacts in CT im-

ages. As the attenuation correction is required in PET/CT systems for PET quantifica-

tion, the accuracy of the PET radiomic features could be degraded by CT artifacts due

to metallic implants. It is therefore of interest to identify PET radiomic features robust

to the presence of metallic implants.

Furthermore, automatic algorithms for lesion segmentation on PET images are pref-

erable in order to minimize the inter- and intra-user variability and their invested time.

However, the simplicity and velocity of PET segmentation algorithms are usually in ex-

penses of a loss in segmentation accuracy, especially for heterogeneous lesions [6, 14].

Any loss in the segmentation accuracy implied by simple automatic PET segmentation

approaches could translate into PET radiomic features not being reliable enough for an

accurate quantification of lesion heterogeneity. Consequently, the reliability of hetero-

geneity quantification by PET segmentation approaches should be proved before trans-

lation into clinical use.

In this study, we firstly proposed a simple procedure to retrospectively identify those

PET radiomic features robust enough to the heterogeneous protocols conveyed in a

multicenter-multivendor patient cohort. We also proposed a reproducible procedure to

identify PET radiomic features robust to CT metallic artifacts due to implants. In
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addition, we developed homemade heterogeneous phantoms to evaluate the segmenta-

tion accuracy and radiomic feature reliability given by two simple commonly used seg-

mentation approaches.

Materials and methods
PET/CT imaging

PET/CT one-bed acquisition protocols were performed on three different systems (all

from Philips Healthcare/Philips Medical Systems B.V, The Netherlands): GEMINI TF

TOF 64 (TF64), GEMINI TF 16 Big Bore (BB), and Vereos (V). The first two systems

(TF64 and BB) employed analog detectors, which is the conventionally and more com-

monly used design. Vereos system has a novel signal readout design based on digital

detectors.

All scanners fulfilled the requirements indicated in the European Association of Nu-

clear Medicine (EANM) imaging guidelines and obtained the EANM Research Ltd.

(EARL) accreditation during acquisition. The transverse spatial resolutions at 1 cm

from the central axis of the scanner were 4.8 mm for TF64 and BB [28] and 4.2 mm for

V [23] machines. PET data were corrected for random coincidences as well as for scat-

ter and attenuation, based on the corresponding CT dataset. For TF64 and BB, the re-

construction methods for all scanners were a LOR-based ordered-subset iterative time-

of-flight algorithm using spherical coordinates (BLOB) with three iterations, 33 subsets,

and 0.35 relaxation parameter for smoothing. For V, 3 iterations with 9 subsets without

smoothing and resolution recovery were used.

An additional attenuation correction was applied for PET images involved in the

evaluation of CT artifacts on PET quantification. This attenuation correction was based

on the use of the metal artifact reduction for orthopedic implant (OMAR) reconstruc-

tion algorithm. It is a commercial product available from Philips Healthcare, which im-

plements an algorithm to mitigate artifacts caused by metal objects in CT images. For

better comparison, all PET images were normalized by background noise, so that the

mean phantom background SUV was equal to 1 [2].

Segmentation

Different segmentation approaches were employed as follows:

– CT threshold. Properties of alginate, i.e., direct correspondence between alginate

and the distribution of the radiotracer, permitted to define the ground truth

contour of the lesion by a Hounsfield units (HU) threshold on the corresponding CT.

Concretely, we employed the region-growing algorithm provided by the Medical

Imaging Interaction Toolkit (MITK) 2016.11 [33], after CT image denoising with a

Gaussian filter (radius = 2 voxels) and an initialization window of 50–150 HU.

– PET 40% threshold. A fixed threshold of 40% of the maximum intensity within the

simulated lesion [3].

– PET contrast-oriented algorithm (COA). An adaptive threshold taking into account

the contrast between tumor concentration (mean value for a 70% isocontour of

maximum intensity within the simulated lesion) and background (automatically
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derived from the whole image). This segmentation algorithm was previously

validated by experimental phantoms and lung cancer patients [6].

Experimental phantom measurements

Our study was divided into three main analyses. For each analysis, a different setup was

employed.

EARL accreditation measurements with NEMA-phantom

EARL accreditation is a protocol developed by the EANM in order to ensure compar-

able scanner performances across multiple sites. Once the PET system is accredited,

the most commonly used SUV parameters (first-order statistics) could be compared,

combined, and exchanged. The accreditation protocol involves imaging of the National

Electrical Manufacturers Association (NEMA) NU 2-2012 Image Quality Phantom

(NEMA-Phantom). In multicenter trials involving PET/CT imaging, this accreditation

is usually considered as a prerequisite. In our study, we proposed an extended analysis

in order to additionally ensure the comparability of more complex radiomic features,

i.e., not only the first-order statistics but also second- or higher-order statistics (texture

features).

In this section, we focused on the impact of different systems and different voxel sizes

on radiomic feature variability. On each PET image, 10 spheres (5.7–8.4 cc) were

manually segmented within the background of NEMA-Phantom, and the 6 fillable

spheres (0.5–25 cc) were segmented by a 40% threshold (Fig. 1). First, the two analog,

TF64 and BB, and one digital, V, PET/CT systems were compared. Then, the same re-

construction protocol with different voxel size, 2 × 2 × 2 mm3 against 4 × 4 × 4mm3,

was compared for the BB.

Cheese-phantom

TomoTherapy Cheese-Phantom (Gammex RMI, Middleton, WI, USA), or equivalent

phantoms from other commercial companies, are phantoms for the calibration of CT

scanners available at most of the radiotherapy departments. Concretely, the Cheese-

Phantom (CP) consists of an 18-cm-thick solid water cylinder with a diameter of 30

cm. The cylinder presents 20 holes with 28mm of diameter, in which inserts represent-

ing the range of densities observed in the clinical environment (tissue inserts) could be

placed (Table 1). In our study, for the evaluation of the impact of CT artifacts, three

different materials (aluminum, titanium, and steel) were considered. For the simulation

Fig. 1 Setup employed for the identification of radiomic features robust to system and reconstruction
protocol. PET images derived from the EARL accreditation measurements of NEMA-Phantom
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of the PET lesions, 6 fillable inserts were developed with a transparent material of dens-

ity 1.2 g/cm3: 3 large tubes (TL) and 3 small tubes (TS) with volumes 33 and 11ml, re-

spectively. Metallic, fillable, and tissue inserts were placed in Cheese-Phantom

following two configurations: head and neck and prostate carcinoma (Fig. 2). The 6

homemade inserts were filled with gallium-68 for the PC configuration and with

fluorine-18 fluorodeoxyglucose (18F-FDG) for the head and neck configuration. The

choice for the activity concentrations, volumes, and location of the fillable inserts was

based on a previous quantification study of 21 prostate and 16 head and neck PET le-

sions. In this section, the PET/CT system employed for the 10-min scans was BB, and

the segmentation of the 6 fillable spheres on PET images was performed with the 40%

algorithm.

Table 1 Densities of the commercially available (tissue and metallic) placed on the Cheese-
Phantom

Material of the insert Density (g/cm3)

Lung LN-450 0.480

Solid water 1.000

Inner bone 1.136

CB2-30% 1.332

Cortical bone 1.882

Metallic inserts

Aluminum 2.800

Titanium 4.500

Stainless steel 7.700

Fig. 2 Setup employed for the identification of radiomic features robust to metal artifacts in PET/CT.
Metallic (gray), tissue (brown), and fillable (large tubes (TL) and small tubes (TS), blue) inserts were placed in
Cheese-Phantom following the head and neck and prostate carcinoma configurations
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Experimental heterogeneous simulated lesions

Twenty-seven heterogeneous simulated lesions, based on a mixture of FDG and algin-

ate [6, 7, 17], were placed in the NEMA-Phantom filled with a background concentra-

tion (CBg). FDG concentrations for lesions and background were within the range

reported by a previous publication in lung cancer patients [5].

The simulated lesions could be divided into two groups. In the first group, all the 18

simulated lesions had a diameter longer than 3× full width half maximum (FWHM) in

order to minimize the partial volume effect (PVE) [25]. For the development of these

18 lesions, we consider six different spatial distributions within the lesions (L1–L6 in

Fig. 3a) with 3 different 18F-FDG high (CH), medium (CM), and low (CL) concentra-

tions. For each of these 6 spatial distributions, the following 3 ratios between the con-

centration layers within the lesion were considered: (CH/CL = 10, CM/CL = 5), (CH/CL

= 8, CM/CL = 4), and (CH/CL = 4, CM/CL = 2). For the second group, lesions 6 (L6 in

Fig. 3a) and 8 additionally developed cylindrical lesions (V1 to V8) were employed (Fig.

3b). Each cylindrical lesion had 2 concentration layers (external cylinder with CL and

Fig. 3 Experimental heterogeneous simulated lesions with cylindrical areas of different activity concentrations
developed for the evaluation of the segmentation accuracy and the radiomic feature reliability given by
automatic PET segmentation approaches. a Eighteen simulated lesions with a diameter longer than 3× FWHM.
b Eight cylindrical lesions (V1 to V8) with 2 concentration layers (external cylinder with CL and inner cylinder
with CH, CH/CL = 6)
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inner cylinder with CH), see Fig. 3b. From V1 to V8, the volumes of both cylinders (in-

ternal and external) were progressively increased resulting in lesion volumes ranging

from V1 = 1 ml to V8 = 15.6 ml. The smaller lesion would be affected by the PVE. The

contrast within the lesion was CH/CL = 6. For both groups, the contrast between the

lower concentration layer and the background remained constant CL/CBg = 10. In this

section, 10-min scans were performed with the BB PET/CT system. Three different

segmentations were used: ground truth on CT, 40%, and COA.

Feature extraction

A total of 133 features were computed with an open-source code [30] based on MATL

AB® (The MathWorks Inc., Natick, MA, USA). For the radiomic feature computation,

SUV values of the voxels within the contour were discretized with a fixed bin width (W

= 0.01), according to the recommendation from previous publications [8, 19] and with

a fixed number of bins of 64 (Nbisn = 64). Texture features were derived from four

matrices: the 3D version of the gray-level co-occurrence matrix (GLCM), the gray-level

run length matrix (GLRLM), the gray-level size zone matrix (GLSZM), and the neigh-

borhood gray tone difference matrix (NGTDM). In addition, on the voxel intensities

within the contour, we applied:(i) a wavelet band-pass filtering (WF), with a weight ra-

tio of 1:2 between band-pass sub-bands and other sub-bands and (ii) an equal probabil-

ity quantization algorithm (Q), by using the histeq function of MATLAB®. The

radiomic features used in this study are listed in SM Table 1 of supplementary

material.

Statistical analysis

The statistical analysis was performed using an in-house software based on Wolfram

Mathematica v 11.2. The Bonferroni correction method was applied to correct for mul-

tiple test comparisons: the significance level was lowered to a value p < α/K, where K is

the number of comparisons and α is the significance level set to 0.05. When comparing

two data samples, robustness was defined by the Wilcoxon signed rank test and bias

quantified by Bland–Altman analysis [12]. The criterion for the significant difference

was p > 0.05 for the Wilcoxon signed rank test and the mean of differences relative to

the mean and its 95% confidence interval (CI) for Bland–Altman analysis. In the

Bland–Altman analysis, the mean difference of comparable data sets trend to null and

the 95% CI must comprise zero. Correlations were analyzed in terms of Spearman’s

correlation tests, and a strong correlation was identified by p < 0.05/K (Bonferroni cor-

rection mentioned above) and r > 0.8. We were interested in the radiomic features

which met one of the following criteria (Fig. 4):

(i) Radiomic features were robust, under the assumption that they will be

interchangeable, and models could be therefore developed employing radiomic

features derived from both protocols

(ii) Radiomic features showed a strong correlation, under the assumption that they

lead to the same heterogeneity lesion classification, and therefore, they lead to

equivalent radiomics models.
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Results
Procedure for retrospective identification of radiomic features robust to different

systems and reconstruction protocols

The main results are presented in Table 2. There were 48 radiomic features con-

sidered robust (Wilcoxon signed rank test) to all the different PET/CT systems,

while 69 features showed significant strong correlations (r > 0.8, p < 0.05/133).

In addition, 22 radiomic features were robust to the variation in the voxel size of the re-

construction, and 67 showed significant strong correlations. The results are provided separ-

ately for the comparisons of the system (BB vs V and TF64 vs V) (Table 2 of supplementary

material). Based on the Wilcoxon signed rank test, the simple first-order radiomic features

commonly used in clinical routine (SUVmean and volume) were not interchangeable. Conse-

quently, these parameters should not be recommended in studies involving different

Fig. 4 Example of radiomic features robust to different protocols (left) and radiomic features strongly
correlated (right). In our study the different protocols (A and B) were PET/CT system (analogic vs digital),
voxel size of reconstruction (8 mm3 vs 64 mm3), CT metal artifact (with vs without), and PET segmentation
approach (ground truth vs 40% vs COA)
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Table 2 Results of RF analysis. Filled box means positive result for the analysis described on the
first row (black is comparable, and gray is strongly correlated) and represents the property of
interest, like for example, RF robust to the different PET/CT systems (second column)
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reconstruction protocols. However, they showed a strong linear correlation, and we expect

therefore that a model based on SUVmean and/or volume derived from a patient cohort in-

volving 2mm reconstruction protocol could be applied on a second cohort with a recon-

struction protocol of 4mm.

In SM Table 3 of supplementary material, we additionally presented the variability of

the radiomic features computed after a discretization method with a fixed number of

bins (Nbins = 64). The impact of voxel resolution resulted in a similar number of ro-

bust radiomics, but the number of linear correlations significantly decreased for Nbins

= 64. The impact of the system resulted in more robust features for Nbins = 64, but a

lower number of features strongly correlated.

Reproducible procedure for identification of radiomic features robust to metallic artifacts

In the evaluation of CT artifacts, a reference image for each configuration was estab-

lished. The reference image resulted from imaging of the Cheese-Phantom where me-

tallic inserts were replaced by water equivalent solid water insert (Fig. 5).

On CT images, the presence of metallic inserts generated straight artifacts giving rise to

an inaccurate estimation of densities. Metallic inserts were also a degrading factor for CT

attenuation map image quality. The impact depended on the density of the insert, spatial

distribution of the sources of artifacts, and the size of metallic inserts (Fig. 5).

For the evaluation of the robustness of PET radiomic features with respect to CT artifacts,

the fillable inserts were segmented on the PET images by the 40% algorithm, and PET

radiomic features were computed. We compared PET radiomic features for Cheese-

Phantom with and without metallic inserts. Most radiomic features were robust to the pres-

ence of metallic elements: 125 for aluminum, 106 for titanium, and 108 for steel (Table 2 of

supplementary material). Overall, 102 radiomic features were comparable for all three

metals with respect to water (water insert instead metal insert), and 104 showed a strong

linear correlation (Table 2). A similar reproducibility pattern was observed for Nbins = 64.

For the fillable inserts segmented on PET images, the volume recovery coefficients with

respect to water (RCWater) were assessed. A significant volume underestimation was

Fig. 5 CT attenuation maps for the two prostate and head and neck Cheese-Phantom configurations
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observed for the two configurations (prostate and head and neck) with steel. The largest

volume underestimations were observed in the fillable inserts placed closest to the metal-

lic inserts: TL1 (RCWater = 0.64) and TS1 (RCWater = 0.85) for PC configuration and TL2

(RCWater = 0.82) and TS2 (RCWater = 0.82) for HN configuration. In Fig. 6a, RCWater for

the 6 fillable inserts in PC configuration with steel are shown: average 0.87 ± 0.11, against

1.00 ± 0.08 for aluminum and 0.96 ± 0.11 for titanium. OMAR reconstruction was applied

for the PC configuration, with the most significant volume underestimation (TL1 in the

Fig. 6 Cheese-Phantom in prostate configuration with steel inserts. a Recovery coefficients with respect to
water (RCwater) for the radiotracer fillable tubes. b CT attenuation maps and c PET contours for tube TL1
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presence of steel insert). Although no improvement in metal density estimation was ob-

tained, a reduction of straight artifacts was observed on both CT and CT attenuation

maps (Fig. 6b). Unfortunately, this artifact reduction did not translate into an improve-

ment neither in segmentation accuracy (Fig. 6c) nor in radiomic feature robustness: 119

were robust with OMAR and 116 without OMAR.

Evaluation of segmentation accuracy and radiomic feature reliability for simple

segmentation approaches

The threshold segmentation on CT defined the ground truth for each of the 27 hetero-

geneous phantoms. On PET images, two segmentation approaches (40% and COA)

were applied. Overall, similar contours were observed between 40% and COA, and both

of them significantly underestimated the volume with respect to the ground truth for

some heterogeneous lesions. Quantification of the underestimation of volume is shown

in the Bland–Altman plot analysis (Fig. 7b) for COA and 40% with respect to the

ground truth. Contours for the 6 heterogeneous phantoms with concentrations CH/CL

= 8 and CM/CL = 4 (Fig. 7a) showed that for the heterogeneous lesions having high

concentrations in inner regions (L04, L05, and L06), the peripheral voxels with low

concentration were erroneously rejected and labeled as non-tumor by 40% and COA.

The 42 radiomic features comparable between 40% and COA segmentations are

listed in the last column of Table 2. Furthermore, despite the abovementioned signifi-

cant underestimation of lesion volume, PET radiomic features derived from the ground

truth contours were strongly correlated and/or comparable for 98 derived radiomic fea-

tures from COA% and to 102 derived from 40%.

Fig. 7 Heterogeneous simulated lesions. a Images and contours resulted from the 3 segmentation
methods: a density threshold in the corresponding CT (ground truth), the 40% threshold PET segmentation
approach (40%), and the contrast-oriented algorithm (COA). b Bland–Altman plot analysis for volume
estimation by 40% and by COA with respect to volume estimated by GT
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Radiomic features robust to all degrading factors

From all radiomic features, only 3 histogram parameters and 1 second-order texture

feature were simultaneously robust (Wilcoxon rank test) to all degrading factors: sys-

tem, reconstruction voxel, artifact, and PET segmentation approach. These robust

radiomic features were area under the curve of the cumulative SUV volume histogram

(aucCSH), skewness (S), kurtosis (K), and gray-level variance derived from GLRLM

after application of an equal probability quantization algorithm on the voxels within le-

sion (QGLV2). These 4 radiomic features did not correlate among themselves.

Discussion
Fifty-five simulated lesions were employed to identify the most robust PET radiomic

features with respect to the design of the PET/CT system (BB, TF64, and V), the size of

the reconstructed isotropic voxel (2 mm and 4mm), the presence of metal artifacts

(aluminum, titanium, steel), and the segmentation method (40% and COA). Conse-

quently, in studies with the abovementioned differences in acquisition, protocols, and

processing, the results presented in Table 2 could be used to identify the radiomic fea-

tures that are not robust enough and therefore should not be included in clinical as-

sessments. In the following, we discuss in detail the novelty of our methodology and

the significance of our results.

In our study, two of the advantages implied by the use of experimental phantoms

were the possibility of comparing PET radiomics with and without the presence of

metal inserts and the availability of a ground truth for the segmentation of the lesions.

Previous publications evaluated the impact of segmentation methods in clinical data

[15, 20]; Altazi et al. 2017; [27], but only a few publications employed experimental

phantoms [1, 26]. The phantoms employed in these publications were homogeneous

and had crystal walls. These two characteristics of the phantoms differed from the clin-

ical scenario and facilitated the segmentation of the lesions. From our knowledge, apart

from the three heterogeneous phantoms evaluated in a previous publication [21], we

presented the first evaluation of radiomic variability with a large number of homoge-

neous and heterogeneous phantoms, 28 and 27, respectively. In addition, for a better

simulation of the clinical case, only phantoms without walls were employed for the

evaluation of the segmentation method.

Our results were in agreement with previous publications. In cervical cancer [Altazi

et al. 2017], RP, SZE, and LRE showed a high level of robustness to the chosen segmen-

tation method. For the heterogeneous phantoms in our study, these radiomic features

were also comparable between segmentation methods (last column in Table 2). In

addition, also in a previous evaluation with 25 patients and the 6 fillable spheres of the

NEMA phantom [26], the variation of the size of the reconstruction voxel showed the

most significant effect on radiomic feature variability. Furthermore, in agreement with

our results, a previous investigation [15] reported a non-statistically significant differ-

ence concerning the associated predictive value of radiomic features, which had shown

a high absolute difference between values derived from different delineation ap-

proaches. As expected based on previous results [6, 14], 40% and COA significantly

underestimated the volume of the lesions in our study; however, most of their radiomic

features showed a strong correlation and/or were comparable with respect to the radio-

mic features derived from the ground truth. For these radiomic features, we can
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therefore expect that models derived from 40% and COA segmentations will be equiva-

lent to the model expected if the true contour of the lesion was available. This implies

an important advantage for the use of radiomics in clinical routine, because both seg-

mentation approaches are simple and easy to implement. In addition, percentage

threshold segmentation is available in almost all image contouring software, including

open-source tools, such as IMTK and 3D-Slicer [11], and in commercial software, such

as the Eclipse treatment planning software (Varian Medical Systems, Palo Alto, CA,

USA).

In the comparison of different scanners, a high-resolution PET/CT system [23] with

a novel digital detector design (Vereos from Philips Healthcare) was included. Although

recent publications have reported the improvement in lesion detectability conveyed by

PET/CT systems with digital detectors, their impact on the robustness of the radiomic

features has not been investigated previously.

Because partial volume effects compromise heterogeneous radiotracer distribution

quantification, a minimum lesion size has been suggested as a requisite for quantifica-

tion of intratumoral heterogeneity [4, 13]; however, there is still a lack of consensus

about the limiting size to be considered. In order to cover different cohort scenarios,

i.e., different range of volumes considered for the radiomics analysis, the robustness of

the radiomic features was analyzed separately for two groups: (i) 18 large lesions (diam-

eter longer than 3× FWHM) and (ii) 9 lesions with volume ranging from 1 to 16ml

(Table 2 of supplementary material). Consequently, for a given PET radiomics analysis

and applied lesion size criteria, we recommend referring to the results of our study re-

ported for the group of simulated lesions with a range of volumes more similar to the

range of volumes involved in the evaluation.

Previous publications [[19]; van Helden et al. 2016; [22] have investigated the impact

of the discretization method on the radiomic feature variability. In agreement with

these publications, our group also recommended the discretization method with a fixed

width [8]. Consequently, in the current study, our analysis focused on the radiomic fea-

tures computed after discretization with a fixed SUV width of 0.01. However, in SM

Table 3 of electronic supplementary material, we additionally presented the variability

observed for radiomic features after a discretization with a fixed number of bins (Nbins

= 64). The results confirmed that different discretization methods yielded different re-

producibility of the image features.

Our results confirm a non-negligible variability of radiomic features due to different

factors. The standardization of acquisition and post-processing protocols has been rec-

ommended in order to minimize this variability. The posteriori harmonization of the

data derived from different protocols has been also suggested as an alternative ap-

proach [9]. Harmonization has been employed in other imaging modalities such as

magnetic resonance, but it is still under investigation in PET. In this work, we proposed

the use of EARL accreditation to retrospectively reject the radiomic features which are

not robust enough. It could be of special interest in studies involving patients from dif-

ferent institutions or patients that underwent PET/CT acquisitions with systems which

are no longer in use at the department. In addition, in the evaluation of the impact of

CT artifacts on radiomic feature variability, the reproducibility of the proposed proced-

ure relied on the availability of the Cheese-Phantom at most radiotherapy departments.

Consequently, not only our results could be employed by other institutions, also the
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procedures proposed could be used for the evaluation of additional degrading factors in

large heterogeneous series of patients.

Furthermore, the use of experimental phantoms has the benefit of allowing a retro-

spective and reproducible analysis and ensuring that the variability observed in the

radiomic features is mainly due to image properties. However, the main limitation of

this study is that, as suggested in previous publications [10, 18, 29, 31], variability due

to non-stable physiologic processes should be also considered to reject radiomic fea-

tures not stable enough for a radiomics analysis. Our study provided PET radiomic fea-

tures that should be rejected. However, before using the remaining PET radiomic

features, a further analysis focused on the evaluation of their stability for the specific

cancer site and the concrete radiotracer involved in the corresponding patient cohort is

recommended. A second limitation is the fact that our reported results on robustness

are limited to the systems and protocols used in the study. Further analysis for the

transferability of results is recommended as the presented procedures can be easily

reproduced in other institutions.

Conclusion
The robustness of PET radiomic features based on experimental phantom measure-

ments has been provided. A reproducible methodology to retrospectively identify radio-

mic features robust to different factors with impact on their variability showed that 4

radiomic features were robust to all degrading factors and, therefore, of special interest

for PET quantification: area under the curve of the cumulative SUV volume histogram

(aucCSH), skewness (S), kurtosis (K), and gray-level variance derived from GLRLM

after application of an equal-probability quantization algorithm on the voxels within le-

sion (QGLV2). In addition, our results supported the use of 40% and COA segmenta-

tion approaches in radiomics analysis.
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