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Abstract

Nanoformulations of therapeutic drugs are transforming our ability to effectively deliver and treat 

a myriad of conditions. Often, however, they are complex to produce and exhibit low drug loading, 

except for nanoparticles formed via co-assembly of drugs and small molecular dyes, which display 

drug loading capacities of up to 95%. There is currently no understanding of which of the millions 

of small molecule combinations can result in the formation of these nanoparticles. Here, we report 

the integration of machine learning with high-throughput experimentation to enable the rapid and 

large-scale identification of such nanoformulations. We identified 100 self-assembling drug 

nanoparticles from 2.1 million pairings, each including one of 788 candidate drugs and one of 

2686 approved excipients. We further characterized two nanoparticles, sorafenib-glycyrrhizin and 

terbinafine-taurocholic acid, both ex vivo and in vivo. We anticipate that our platform can 

accelerate the development of safer and more efficacious nanoformulations with high drug loading 

capacities for a wide range of therapeutics.

Small molecular therapeutics are often poorly soluble in water1. This can cause formation of 

micron-sized colloidal aggregates2,3, decreasing bioavailability and therapeutic efficacy3,4. 

Solid drug nanoparticles stabilized by lipids and/or polymers can alleviate these problems5,6, 

but their low drug loading is an important limitation7–9. Recently, it has been shown that co-

formulating certain cancer drugs with specific small molecular dyes such as Congo Red10 or 

IR78311 can form stable nanoparticles with ultrahigh drug loading. We propose that 

formulating drug nanoparticles by excipient-aided co-assembly is not limited to 

chemotherapeutics and chemical dyes but transferable to a wider range of drugs and 

excipients. It is currently not understood which of the millions of possible drug-excipient 

combinations lead to nanoparticle formation with the desired properties.

Here, we integrated molecular dynamics (MD) simulations and machine learning with a 

high-throughput experimental co-aggregation platform to identify drug-excipient 

combinations that form stable, self-assembled solid drug nanoparticles based on solvent 

exchange without the need for chemical synthesis (Figure 1a). We identified a total of 100 

novel co-aggregated solid drug nanoparticles from 2.1 million possible pairings of 788 

candidate drugs with one of 2686 excipients. We used FDA-approved drugs and excipients 

to potentially accelerate the translation of these nanoformulations9,12; with potential 

applications including cancer therapy, immunosuppressive therapy, asthma therapy, and anti-

viral, anti-malarial, and anti-fungal drug delivery. We performed ex vivo and in vivo proof-

of-concept studies on two novel co-aggregated nanoparticles. Both validations highlight the 

ability of our platform to facilitate the generation of nanoparticles with high drug loading 

and improved bioavailability.
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High-throughput platform for co-aggregate identification

We selected drugs that self-aggregate into colloidal macrostructures as candidates for our 

platform, since self-aggregating molecules are more prone to co-aggregation10,11. A random 

forest model can identify self-aggregators with precision of 77±2% in retrospective cross-

validation experiments (Supplementary Table 1)3,13. This model identified 788 approved 

drugs as likely to self-aggregate and therefore as candidate material for our nanoparticle 

formulation platform (Supplementary Note 1). We selected 20 compounds for screening to 

span a variety of indications while ensuring chemical diversity (Supplementary Figure 1). 

We used dynamic light scattering (DLS) to confirm the self-aggregation propensity of these 

candidates and found that four of the selected drugs did not show detectable self-aggregates 

and were discarded (Supplementary Table 2). The other 16 drugs formed micron-sized self-

aggregates and represent a diverse set of candidate drugs for co-aggregation.

A set of 90 excipients were selected from the FDA list of inactive ingredients12, the FDA list 

of “generally recognized as safe” ingredients14 and other FDA-approved small molecules15. 

Selection criteria included chemical diversity (Supplementary Figure 1) and commercial 

availability. With the exception of Congo red, which served as a positive control10, none of 

these materials had been used in co-aggregating nanoparticles. However, our material 

selection did specifically select excipients with precedence for biomedical applications to 

facilitate in vivo and human testing and provide a pathway towards human translation.

We followed established protocols for nanoprecipitation to generate nanoparticles from our 

pairs of drugs and excipients (Supplementary Note 2)6,7,10. To automate this process and 

improve reproducibility, we coupled a liquid handling deck (Tecan Freedom Evo 150) to a 

high-throughput DLS (Wyatt Dyna Pro Plate Reader). This enabled us to rapidly screen 384-

well plates of nanoformulations using as little as 1 nanomole of drug or excipient for each 

experimental replicate. In total, we generated and experimentally tested 1440 formulations 

for their ability to form co-aggregating nanoparticles.

To determine whether excipients would prevent colloidal self-aggregation of the drug they 

were paired with, we compared the size of the drug-excipient co-aggregates to the size of the 

colloidal self-aggregates formed by the drug alone. We considered a size reduction to be 

meaningful only if the co-aggregates were less than half as large as the self-aggregates 

formed by the drug alone (Supplementary Figure 2). Out of 1440 measured combinations, 

94 (6.5%) showed the targeted size reduction (Figure 1b). While some excipients appeared 

to facilitate co-aggregation more than others, the data overall suggests a complex molecular 

recognition mechanism with distinct behaviours emerging across the different pairings.

Machine learning for nanoparticle design

We hypothesized that a machine learning model trained on these co-aggregation patterns 

would enable us to extrapolate from this data and rapidly identify additional drug-excipient 

pairs without the need for laborious high-throughput screening. We described every drug-

excipient pair using the chemical substructures and physicochemical properties of both the 

drug and excipient; following standard protocols in molecular machine learning16,17. 
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Additionally, we performed short MD simulations to quantify non-covalent interaction 

potentials between drugs and excipients based on summary statistics on inter-molecular 

distances, potential energies and kinetic energies. Together, these computations generate a 

4515-dimensional descriptor per drug-excipient pair. 1440 data points collected from the 

high-throughput co-aggregation experimentation, as described above, were used as the 

training set (Figure 1c).

We employed a random forest machine learning model given its robust performance in 

molecular machine learning and its inherent ability to select relevant features. Our model 

exhibited promising performance in retrospective evaluations based on ten-fold cross and 

“leave one drug out” validations (Supplementary Table 3)18, indicating that our model 

accurately captures the co-aggregation relationships and is able to prioritize suitable 

excipients for a novel drug. A model which included all parameter types was most accurate 

in predicting co-aggregation outcomes (Supplementary Table 3), although feature 

importance analysis (Supplementary Figure 3) indicated that simulation-derived 

quantifications of molecular interactions and the excipients refractivity19 are most 

informative to predict co-aggregation (Supplementary Table 4; Supplementary Note 3). 

Parameter ablation experiments confirmed the relevance of the most important features for 

our machine learning model (Supplementary Figure 4). The random forest model 

outperformed other established machine learning approaches on our data (Supplementary 

Table 5) and adversarial controls indicated that our model identified meaningful patterns 

(Supplementary Table 6)20. Finally, out-of-bag performance of models trained on random 

subsets of the training data revealed that the model performance was converging (Figure 1d), 

indicating that additional screening rounds would most likely not lead to strong 

improvements in model quality; advocating for more directed acquisition of additional data 

through predictive modelling.

To this end, we modelled the complete co-aggregation landscape of all 788 aggregating 

drugs combined with any of the 2686 available excipients using our machine learning model. 

In total, 2.1 million formulations were computationally assessed for their ability to form 

self-assembling co-aggregated nanoparticles. Given the infeasibility of running MD 

simulations for all 2.1 million combinations, we applied a machine learning model trained 

exclusively on chemical and physicochemical properties. This modified model exhibited 

slightly lower retrospective performance (Supplementary Table 3) but higher computational 

tractability. The machine learning model predicted a total of 38,464 combinations (1.8% of 

all possible pairs) to co-aggregate into nanoparticles (Figure 1e).

In silico designed nanoparticles improve drug dispersion

We selected six of the co-aggregation predictions for experimental testing, specifically 

selecting novel excipients (Figure2, I–III), new drugs (Figure2, IV & V) or combinations of 

a novel drug and excipient (Figure2, VI). We used DLS to measure the size of the colloidal 

self-aggregates of the selected drugs. All six drugs self-aggregated into micron-sized, 

polydisperse structures (Supplementary Table 7). A large number of automatically flagged 

acquisitions for these drug aggregates suggested interference with the measurement through 

precipitation. Transmission electron microscopy (TEM) revealed a range of complex 
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microstructures (Figure 2a). When mixing the drugs with the excipients, DLS indicated the 

formation of monodisperse, nano-sized co-aggregates (Supplementary Table 7). Using TEM, 

we imaged the drug-excipient samples and confirmed that co-aggregation of the selected 

drugs and excipients formed homogeneous populations of nanoparticles (Figure 2b). None 

of the co-aggregation acquisitions were flagged, suggesting stable nanoparticle dispersions 

(Supplementary Table 7).

To further assess the stability of nanoparticle dispersions, we escalated nanoparticle 

concentrations by increasing drug and excipient concentration while maintaining 

drug:excipient ratios during production. With the exception of nelfinavir-riboflavin, all of 

the nanoparticular co-aggregates exhibited clear or milky dispersions at high drug 

concentrations up to 1 mM; drugs without excipients precipitated rapidly (Figure 2c). Since 

visibility of precipitation is a subjective measure, we followed established protocols from the 

OECD to quantitatively assess nanoparticle dispersion stability (Supplementary Figure 5)21. 

The nanoparticles formed stable dispersion as indicated by maintaining high drug 

concentrations for longer time periods compared to the drugs without the excipients, with 

the exception of nelfinavir (Figure 2d). The excipients remained highly soluble throughout 

the duration of the experiment (Supplementary Figure 6).

To investigate the non-covalent forces that govern co-aggregation, we conducted additional 

MD simulations using our established parameters for larger systems of 20 drug and 20 

excipient molecules (Figure 2E). Every drug-excipient system interacted with distinct 

patterns of specific non-covalent forces, suggesting that co-aggregation of our nanoparticles 

is governed by complex molecular recognition mechanisms and through various non-

covalent interactions (Supplementary Table 8).

Terbinafine particles for antifungal applications

Onychomycosis is the most common nail disorder observed in clinical practice22. 

Terbinafine is an anti-fungal drug used to treat cutaneous mycoses, including 

onychomycosis. It can be given orally or topically; however, its effectiveness is limited in 

oral applications due to systemic toxicity and in topical applications due to low tissue 

penetration23. We hypothesized that our terbinafine-taurocholic acid nanoparticles could 

increase skin penetration of terbinafine, thereby increasing topical efficiency.

Using TEM, we observed distinct aggregation dynamics with populations of different types 

of low-density nanoparticles forming. Through timed TEM imaging, we identified three 

different types of nanostructures, corresponding to different phases of the nanoparticle 

formation process (Figure 3a). The particles grew over the course of several hours, most 

likely through condensation or coagulation24. We hypothesized that the particles could 

nevertheless provide useful materials since these growth dynamics were sufficiently slow to 

warrant the biochemical application of fresh particles11,25.

We purified the nanoparticles using centrifugation. The particles exhibited low density and 

precipitated in the supernatant. Analytics of purified nanoparticles revealed high 

encapsulation efficiency (75.6 ± 0.4%) and drug loading (93.0 ± 0.5 % w/w) (Supplementary 
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Table 9). We performed a chemical analysis using Scanning Transmission Electron 

Microscopy-Energy Dispersive Spectroscopy and found that the nanoparticles contained 

sulphur from the excipient taurocholic acid – providing further evidence that the 

nanoparticles are indeed co-aggregates of drugs and excipients (Supplementary Figure 7).

Next, we tested whether the nanoparticles would retain the fungistatic effect of terbinafine 

against Candida albicans, a major source of onychomycosis in immunocompromised 

individuals26. Measuring in vitro viability for Candida albicans revealed a significant effect 

of our nanoparticles compared to the vehicle and non-treatment control while terbinafine 

alone showed no significant difference to any treatment (one-way ANOVA p = 0.017, 

Tukey’s post-hoc p < 0.05). Our particles halted biofilm formation with slightly higher but 

comparable efficiency compared to free terbinafine; the excipient alone was not fungistatic 

(Figure 3b and 3c).

Skin uptake of our nanoparticles was twice that of free terbinafine (Figure 3d) – possibly 

due to higher diffusivity of the smaller particles as expected according to the Stokes-Einstein 

equation27,28 or through permeation enhancement caused by the excipient taurocholic 

acid29. Taken together, our data suggested that our nanoparticles can retain the fungistatic 

activity of free terbinafine while locally increasing bioavailability.

Sorafenib nanoparticles improve anti-cancer efficacy in vivo

For our second proof-of-concept study, we selected sorafenib nanoformulations. Sorafenib is 

a multi-kinase inhibitor used as a therapeutic to treat several types of cancer and the standard 

of care for frontline therapy of advanced hepatocellular carcinoma (HCC)30. However, given 

modest clinical efficacy of sorafenib and due to increasing incidence rate31 and poor 

prognosis of HCC30, there is a pressing clinical need for new therapeutic options. 

Nanoparticles have been shown to improve sorafenib efficacy11, which motivated us to use 

our platform to identify sorafenib nanoparticles.

We decided to contextualize our predicted stabilizer glycyrrhizin against the screening hits 

candesartan cilexitel, indomethacin, and tannic acid. Meloxicam, a low confidence 

prediction, was included since it represents a cyclooxygenase inhibitor like indomethacin. 

Although none of these molecules had been used as excipients in self-assembling 

nanoparticles before, they are well understood to be safe or have been proposed to be used 

clinically together with sorafenib. Although glycyrrhizin is a known 11β-hydroxysteroid 

dehydrogenase inhibitor associated with reversible hypermineralocorticoid-like effects after 

intensive consumption, it is still considered a safe food and drug ingredient with daily 

consumption of up to 3.6 mg/kg32. Tannic acid is “generally regarded as safe”14. 

Candesartan has been co-administered clinically with sorafenib to counter sorafenib-

associated hypertension33. Cyclooxygenase inhibitors such as meloxicam and indomethacin 

have been studied as synergistic enhancers of the anticancer effects of sorafenib34,35. 

Formulating sorafenib with such drugs might constitute an important step towards excipient-

free formulations where all included materials serve a therapeutic purpose5.
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Using DLS and TEM, we measured the size of the co-assembled nanoparticles created with 

the five excipients; all nanoparticles had radii below 100 nm (Figure 4a, Supplementary 

Table 10), complying to stringent nanoformulation thresholds36. All particles enabled full 

drug dispersion over eight hours (Figure 4b), except for meloxicam that provided only 

marginal stability. DLS indicated a potentially longer stability (Supplementary Table 11).

We applied our particles in vitro in a cellular phenotypic screen. The nanoparticles exhibited 

significantly higher cytotoxicity in human liver carcinoma HUH7 with two-fold more potent 

IC50 values compared to the unformulated drug (Figure 4c). We confirmed that nanoparticle 

formation did not prevent sorafenib from engaging with one of its main targets Raf1 by 

observing an equivalent inhibition of MEK phosphorylation compared to free sorafenib 

(Supplementary Figure 8).

With the exception of tannic acid, none of the utilized excipients showed significant 

cytotoxicity in HUH7 alone (Figure 4c insert and Supplementary Figure 9) - ruling out 

additive effects leading to the increased cytotoxicity. Instead, we proposed that the 

nanoparticles enable higher drug uptake compared to the larger micro-scale structures 

formed by unformulated sorafenib (Supplementary Figure 10). The glycyrrhizin particles 

most significantly improved drug availability and almost doubled cytosolic sorafenib content 

(Figure 4d), potentially enhanced by glycyrrhizin’s ability to target hepatocytes37. Inhibiting 

caveolin-mediated endocytosis strongly reduced particle uptake while modulation of 

clathrin-mediated endocytosis did not affect uptake (Figure 4e).

We purified our particles using centrifugation, which revealed that the nanoparticles had 

high drug loading (94.9 ± 1.2%) and encapsulation efficiency (92.6 ± 0.6%) (Supplementary 

Table 12). Using Scanning Transmission Electron Microscopy-Energy Dispersive 

Spectroscopy, we observed that the particles contained fluorine from sorafenib 

(Supplementary Figure 11) – confirming that the particles are enriched with drug as 

expected from the analytics (Supplementary Table 12). Using DLS, we observed that the 

particles were stable in serum and cell media and were not disrupted by shearing forces 

when administered through a 29 Gauge needle, or by centrifugation followed with 

ultrasound-mediated re-dispersion (Supplementary Figure 12).

We refined our formulation protocol to consistently generate nanoparticles containing 3 mg / 

mL sorafenib (Supplementary Figure 13) that enabled us to dose 30 mg / kg for intravenous 

injection. In a toxicity analysis, our formulation did not induce abnormal liver function after 

three injections of elevated dosages of 60 mg / kg (Supplementary Table 13). Next, we 

compared the in vivo antitumour efficacy of our sorafenib-glycyrrhizin nanoparticles to 

sorafenib alone in an established genetic mouse model of spontaneous HCC38,39, the most 

common type of liver cancer. Tumourigenesis is induced by an overexpression of human 

ΔN90-β-catenin and human MET genes in the mouse liver and represents an aggressive 

model of HCC characterized by rapid formation of a large number of tumour nodules38. We 

chose this model because it correlates more strongly with clinical outcomes compared to 

simpler xenograft-based models39–41.
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HCC bearing mice were treated three times a week (t.i.w.) for four weeks with our 

nanoparticle formulations or control treatments (Figure 4f). We tracked alpha-fetoprotein 

(AFP) levels, a marker of HCC progression and transformed hepatocytes42. While no 

differences were visible during the early stages of treatment, at week 10 the sorafenib-

glycyrrhizin nanoparticles showed a successful reduction in serum AFP levels (Figure 4g). 

We observed a similar reduction of AFP in mice receiving only glycyrrhizin (Supplementary 

Figure 14), which is potentially caused by known hepatoprotective effects of glycyrrhizin43. 

This is encouraging since, although we know glycyrrhizin does not target HCC directly 

(Figure 4c, Supplementary Figure 8), it indicates a potential for glycyrrhizin to act as a 

functional adjuvant. The control treatment of sorafenib dissolved in cremophor-ethanol had 

no effect on AFP levels (Supplementary Figure 15). Body weight data suggested that mice 

treated with sorafenib-glycyrrhizin nanoparticles had a significantly reduced tumour burden 

(Supplementary Figure 16) compared to control treatments (Supplementary Figure 17), but 

we cannot exclude that the body weight difference is at least in part impacted by 

confounding variables such as loss of appetite.

We evaluated treatment efficacy based on the calculation of morbidity-free survival fractions 

using the Kaplan-Meier method. Mice treated with sorafenib-glycyrrhizin nanoparticles had 

significantly longer morbidity-free survival (p = 0.0032, logrank test) compared to mice 

treated with vehicle control (intravenous injections of glycyrrhizin in 1% DMSO PBS) or 

mice receiving oral sorafenib (Figure 4h). The only other control treatment that showed any 

therapeutic benefit was sorafenib solubilized in cremophor-ethanol (Supplementary Figure 

18); however, the adverse toxicity of cremophor is an important limitation of this 

formulation44.

For pharmacokinetic characterization, we measured the concentration-time course of 

sorafenib in blood, liver, lung, spleen, and kidney after administering our sorafenib-

glycyrrhizin particles to healthy mice (Supplementary Note 4). We compared our 

formulation to oral administration of sorafenib and to an intravenous injection of sorafenib 

dissolved in cremophor-ethanol (Figure 4i, Supplementary Figure 19). Our sorafenib-

glycyrrhizin particles significantly improved liver targeting (Figure 4i insert; Supplementary 

Note 5). Other researchers have shown a preferred accumulation of similar nanoparticles in 

the lung11,25, suggesting that liver accumulation of these particles is driven by 

physicochemical differences between our formulation and those previously reported. 

Overall, our data suggests that this hepatic targeting, combined with endocytosis-driven 

active drug uptake of the nanoparticles into hepatocellular carcinoma cells (Figure 4e) and 

the ability of the particles to release sorafenib to act on its established pathways 

(Supplementary Figure 8) can explain the improved treatment efficacy of our nanoparticles 

(Figure 4h).

Conclusion

Small molecule-based nanoparticle systems are an important addition to nanomedicine, 

enabling rapid generation of highly loaded nanocarriers for life-saving therapeutics10,11. 

High drug loading will ultimately reduce the risk of excipient-triggered adverse reactions9 

and reduce administered volumes, improving adherence and quality of life45. With machine 
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learning and high-throughput experimentation (Supplementary Note 6), we broaden the 

scope of this technology and include a wide array of different types of drugs treating various 

diseases. Using FDA-approved excipients such as vitamins, nutrients, and food compounds 

generates nanoformulations with potential for accelerated translation.

Under fixed conditions, co-aggregation can be conducted in a highly reproducible manner 

(Supplementary Figure 13) with low PDI (Supplementary Table 7 and 10). An important 

challenge and opportunity lies in the context-sensitive nature of the self-assembly process. 

Buffer conditions such as pH, temperature, and salt concentrations can significantly alter the 

co-aggregation propensity of the materials2,3,46. Variations of these conditions during 

manufacturing could further broaden the scope of such platforms and include materials 

currently unsuitable for simple co-precipitation.

Additionally, aggregation context can provide further opportunities for the development of 

adaptive systems that co-aggregate specifically in situ, for example in gastric conditions47. 

This might ultimately enable responsive systems. For example, we had observed that some 

of our aggregates grow when heated (Supplementary Figure 20), potentially due to Ostwald 

ripening and elevated collision rates24. If such conditions can be controlled, dynamic 

changes to the nanoparticles might be harnessed for adaptive delivery solutions48.

In order to improve the selection of specific nanoparticles for various applications, it would 

be useful to have methods that predict physical properties of these nanoparticles. 

Investigating focused sets of nanoparticles can enable size prediction11. We have provided 

further evidence that nanoparticle size can correlate with particle stability (Figures 2 and 4). 

Furthermore, our data suggests that predictive uncertainty measures (cf. meloxicam in 

Figure 4) as well as MD analysis (cf. riboflavin in Figure 2) can be used to anticipate 

nanoparticle stability. Models that could anticipate more complex properties such as 

biodistribution and release kinetics would further facilitate nanoparticle selection. Finally, 

further maturing the described materials, for example to enable functionalization and 

encapsulation of hydrophilic drugs (Supplementary Note 7), will expand the number of 

possible applications of these co-aggregates. By accelerating the development of 

nanomedicines, we anticipate that the approach reported herein and extensions thereof will 

be an important step towards personalized drug delivery9.

Online Methods

High-throughput formulation assessment

Stock solutions (10mM) of aggregating drugs and excipients were created in sterile dimethyl 

sulfoxide (DMSO) and stored at −20 °C. For every experiment, 1 μl of the drug stock 

solution was mixed with 1 μl of the stock solution of any of the excipients (1:1) in a 96 well 

plate using a Tecan Freedom Evo 150 liquid handling deck. Mixing of the two droplets was 

ensured through centrifugation. Subsequently, we rapidly added 198 μl of sterile-filtered and 

degassed phosphate-buffered saline (PBS) for solvent exchange and mixed the formulation 

through repeated pipetting. 75 μl of replicate samples were subsequently transferred into a 

384 well plate for high-throughput dynamic light scattering assessment on a Wyatt Dyna Pro 

Plate Reader at 25 °C using 5 independent acquisitions of 5 s duration. DLS enables us to 
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quantitatively assess nanoparticle formation by measuring the size of resulting co-aggregates 

with help of the “globular protein” model. Data was processed by calculating the median 

size observed for a specific drug. We required at least a 50% size reduction of the co-

aggregate compared to drug alone to indicate nanoparticle formation. Our analysis suggested 

that this threshold could potentially enable an inclusive separation of what appeared to be a 

bimodal distribution of aggregate sizes across our screen (Supplementary Figure 2). 

Measures of polydispersity and replicate variance were considered but did not lead to 

improved predictive performance. We noted that drug self-aggregates would result in a large 

number of flagged DLS acquisitions, indicating unreliable readouts through macro-

aggregates and precipitation, while no such artefacts were observed for our nanoparticles.

Machine learning

Chemical structures for all drugs in SMILES representation were extracted from DrugBank 

5.0.15 Data for excipients was extracted from the FDA according to previously published 

protocols.9 Compounds were described according to radial chemical substructures (Morgan 

Fingerprint, radius 4, 2048 bits, rdkit.org) and calculated physicochemical properties 

(rdkit.Chem.Descriptors._descList, rdkit.org) based on previously published evaluations.
16,17 Concatenating the substructure description and the physicochemical properties for 

every drug and every excipient generated a 4496-dimensional description of a drug-excipient 

formulation. Additionally, short MD simulations were run and automatically analysed to 

assess the enthalpic, non-covalent interaction potential between drugs and excipients. In 

brief, atomic partial charges for drugs and excipients were derived from antechamber and 

parmchk2 and the net charge was calculated using the OpenEye Quacpac AM1-BCC 

method. Two excipient and two drug molecules were randomly positioned using packmol 

(m3g.iqm.unicamp.br/packmol/) and amber’s tleap module. After energy minimization of 

the system, short 20 ns simulations were run in OpenMM 7.2.1 (openmm.org) in OBC2 

implicit solvent with non-periodic boundary conditions and no cut-off distance. A Langevin 

Integrator was used at 300K with friction coefficient of 1/ps. The timestep of the simulation 

was 2 fs and the trajectory was saved every 10 ps, creating 2,000 frames. These trajectories 

were processed with MDTraj (mdtraj.org) to calculate heavy atom distances between drugs 

and excipients and derive summary statistics (maximum, minimum, and average distance, as 

well as maximum first derivative) for each pair. Furthermore, the potential and kinetic 

energies of the conformation in the last frame were calculated. Overall, this gave us an 

additional 19 parameters to characterize drug and excipient pairs as input to the machine 

learning platform. These 4515-dimensional numerical characterizations of a formulation 

served as input for the random forest classification machine learning model (scikit-learn) 

with 500 trees and using ⌊√4515⌋ = 67 features per classification tree. This model was 

compared to Naïve Bayes (GaussianNB), Nearest Neighbor (KNeighborsClassifier; k=3), 

Decision Trees (DecisionTreeClassifier), Neural Networks (MLPClassifier), and a Support-

Vector machine (LinearSVC) implemented with default parameters in scikit-learn. To 

analyse the correlation between training data set size and model performance, we trained our 

Random Forest model on randomly selected subsets of the data and evaluated out-of-bag 

predictive performance as a measure of model convergence. This analysis was run twenty 

times and mean performance was reported. Code and data for all these calculations can be 

found at https://github.com/DanReker/CoAggregators.
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Additional molecular dynamics simulations

For the six novel combinations of drugs and excipients, we converted SMILES compound 

representations to Tripos mol2 files using Openbabel with B3LYP/6–31G* partial charge 

calculation with GAFF force field and systematic rotor search for generating 3D 

conformations. If systematic confirmation search was rate limiting, the process 

automatically switched to a weighted search. Missing parameters were checked with the 

parmchk2 module in Ambertools. Using packmol, five random system configurations were 

generated for 20 molecules of each pair (20+20=40 molecules total), or 20 molecules of 

drug only. A topology and coordinate file were generated with the tleap module in 

Ambertools. OpenMM 7.3.1 was used to create a 20ns simulation under OBC2 implicit 

solvent at 1 bar, 300K, with periodic cut-off distance of 1nm after initial minimization. The 

last frame of this simulation was visualized in PyMol using coloured Van-der-Waals spheres. 

Molecular interactions for the last frame were determined using the MolBridge webserver 

(nucleix.mbu.iisc.ernet.in/molbridge) as well as extracting Baker-Hubbard Hydrogen Bonds 

between drugs and excipients through MDTraj (http://mdtraj.org/).

Dispersion kinetics

Dispersion stability of nanoparticles was performed according to established protocols by 

the OECD “Dispersion Stability of Nanomaterials in Simulated Environmental Media” 

(Supplementary Figure 5).21 Specifically, dispersion was studied at 250 μM drug 

concentration, except for altered concentrations for celecoxib (500 μM) or nelfinavir (50 

μM) to enable studying dynamics at the same time scales compared to other drugs in spite of 

slower/faster aggregation dynamics and therefore sedimentation rate. Formulations were 

generated by mixing 5 μl of drug stock solution with 5 μl equimolar excipient stock in 

DMSO or 5 μl DMSO, followed by solvent exchange by adding 990 μl sterile filtered and 

degassed PBS. All samples were generated in 4 ml glass vials, briefly vortexed to ensure 

dispersion, and subsequently stored sealed at room temperature. Formulations were then 

sampled at pre-determined timepoints by extracting 5 μl of formulation with a standard 

Eppendorf pipette from the centre of the vial. The extracted 5 μl samples were transferred 

into individual high-performance liquid chromatography sample vials (Sigma Aldrich) and 

diluted in acetonitrile (for atovaquone, danazol) or methanol (for celecoxib, sorafenib, 

terbinafine, nelfinavir) to ensure full solubility of the drug before injection onto the column. 

Diluted samples were stored at 4°C and drug concentrations were determined via liquid 

chromatography within 24h as described in the Supplementary Methods.

Candida albicans XTT assay and microscopy

Candida albicans were incubated in sterile 50 g/L Difco YPD broth overnight at 30 °C on an 

orbital shaker at 300 rpm. Centrifuging at 3220 g for 5 mins was used to extract the fungus. 

Washing was performed twice with PBS. The final pellets were re-suspended in 20mL 

RPMI1640 (Sigma Aldrich). The fungi concentration was determined using a 

haemocytometer with bright-field microscopy at 40x magnification. Fungi were seeded at a 

concentration of 1 million per well in 96-well plates. Terbinafine-taurocholic acid particles, 

free terbinafine, or Taurocholic acid excipient control were added at concentrations of 250 

μM, 25 μM and 2.5 μM. PBS containing 1% DMSO was used as buffer control and 70% 
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isopropanol was used as positive treatment control. Plates were wrapped with parafilm and 

incubated at 37 °C. Fungi viability was evaluated using an XTT assay after 24h of 

incubation. To this end, XTT was prepared as a saturated solution at 0.5 g/L in sterile PBS 

under light protection and subsequently sterile filtered with a 0.22-μm pore size filter. XTT 

solution was aliquoted in 10 ml Falcon tubes and stored at −80 °C. Before a measurement, 1 

μL of a 10 mM menadione solution in acetone was added to the XTT solution and used to 

substitute the media. Absorbance was measured at 490nm to determine background signal 

per well. Plates were subsequently incubated for another 2h at 37 °C under light protection 

and absorbance was measured at 490nm to determine fungus viability. Treatment data was 

normalized to untreated control (100% survival, 1% DMSO in PBS) and positive treatment 

(70% ethanol) was used to ensure experimental consistency. For microscopy, 40x bright-

field images were taken after 17h incubation using 25 μM free terbinafine, 25 μM 

terbinafine-taurocholic acid nanoparticles or 1% DMSO PBS buffer control at 37 °C.

Skin uptake of terbinafine particles

All ex vivo studies were approved by the Massachusetts Institute of Technology Committee 

on Animal Care. Fresh porcine ear samples were provided by the Massachusetts Institute of 

Technology facilities and were washed three times with PBS and mounted on a Franz 

diffusion cell (FDC-400 flat flange, 15 mm orifice diameter, mounted on an FDC diffusion 

drive console providing synchronous stirring at 350rpm, Crown Glass Co. Inc., 

Sommerville, N.J., USA) by gluing the epidermis side of the skin to the donor chamber and 

subsequent mounting onto the receiver chamber that was preloaded with PBS. Terbinafine-

taurocholic acid nanoparticle or free terbinafine were added at 250 μM in 1% DMSO PBS 

and loaded to the donor chambers in triplicates. PBS containing 1% DMSO served as buffer 

control. Parafilm was used to prevent evaporation from both the receiver and the donor 

chamber. After 4h of incubation, donor solutions were removed and the skin was washed 

with PBS to remove excess drug. The perfusion area was cut into squares and weighed and 

measured for further analysis. Skin samples were loaded into 2 mL homogenizing tubes 

(Fisher Scientific, Fisherbrand™ Pre-Filled Bead Mill Tubes) with methanol at a 1:2 ratio 

and homogenized at 6000 rpm for 40s × 3. Homogenate was analysed for drug content using 

Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS) as 

described in the Supplementary Methods.

HUH7 cell survival assessment

HUH7 cells were gifted by Dr. Jay Horton (UT Southwestern Medical Center). Cells were 

not authenticated. Cells were tested negative for Mycoplasma contamination by the 

Diagnostic Laboratory of the Division of Comparative Medicine at MIT. Cells were plated at 

10,000 cells in 96 well plates and incubated overnight to allow adhesion. Cell medium was 

changed and cells were treated with various concentrations of nanoparticles for 48h. These 

concentration series were generated by creating a dilution series of the drug stock solutions 

and then performing nanoparticle generation at altered stock concentrations. Cell viability 

was measured through quantitation of ATP using CellTiter-Glo (Promega).
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Sorafenib uptake experiments

HUH7 cells were plated in 12-well plates at 200,000 cells (1ml DMEM) and incubated for 

24h to allow for adhesion. Cell medium was changed (900 μl) and cells were treated with 

(100 μl, 10x) 100μM sorafenib, 100μM of nanoparticle formulations, or buffer control (0.1% 

DMSO PBS) and incubated for 2h. Afterwards the supernatant was removed and cells were 

carefully washed 3 times using 2.5% Tween-80 in PBS, which we had tested to ensure it 

dislodged sorafenib aggregates while not changing cell adhesion or morphology according 

to brightfield microscopy images. Cells were lysed with Pierce RIPA Buffer (ThermoFisher 

Scientific) and transferred. Subsequently, lysate was lyophilized and re-dissolved in 

methanol (200 μl). The solution was centrifuged (10min at 3200RPM) and supernatant was 

subsequently analysed using HPLC for sorafenib content as described in the Supplementary 

Methods. Area under the curve (AUC) values were converted into sorafenib content (μg / 

ml) according to a standard curve and normalized according to protein content per replicate 

(mg / ml) from an orthogonal BCA assay. To study the mechanism of increased uptake of 

sorafenib-glycyrrhizin particles, we performed another uptake experiment according to the 

protocol above, but pre-incubated the cells for 30 minutes with sucrose (0.15 g/ml) or 

methyl-beta-cyclodextrin (5mM) to inhibit endocytosis.

Drug loading and encapsulation efficiency

Particles were generated using stock concentrations of 10 mM for both drugs and excipients. 

Particles were subsequently washed using two rounds of centrifugation, removal of 

supernatant, and re-dispersion in PBS. Particles were then dissolved in fixed volumes of 

methanol to ensure full solubility. These solutions were subsequently submitted to liquid 

chromatography analysis to determine the concentration of drug and excipient in these 

solutions. Amount of drug or excipient in the particles was calculated by subtracting the 

expected amount (ug) of drug/excipient assuming full solubility in PBS from the actually 

measured concentrations. Encapsulation efficiency was determined as the amount of drug 

found in the particles (ug) divided by the amount of drug added via the stock solution in 

particle production (equation 1).

encapsulation = drug in particle
added drug (eq 1)

Drug loading was calculated as the amount of drug in the particles (ug) divided by the mass 

of the particles given by the cumulative amount of the drug (ug) and the amount of excipient 

(ug) in the particles (equation 2)

loading = drug in particle
drug in particle + excipient in particle (eq 2)

In vivo cancer study

All in vivo studies were approved by the Massachusetts Institute of Technology Committee 

on Animal Care. Female FVB/N mice were purchased from Charles River Laboratories. 

Animals were maintained in a conventional barrier facility with a climate-controlled 
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environment on a 12-h light/12-h dark cycle, fed ad libitum with regular rodent chow. 

Hepatocellular carcinoma was induced as previously described.38,39 Briefly, plasmids 

encoding human ΔN90-β-catenin, human MET, and SB transposase were hydrodynamically 

injected intravenously into 6–7-week-old mice. Plasmids were kindly provided by Dr. Xin 

Chen (UCSF, San Francisco, CA). Plasmids were amplified and isolated in endotoxin free 

conditions (< 5 EU/mg) by Aldevron (Fargo, ND). Five weeks after injections serum levels 

of alpha-fetoprotein (AFP) were analysed as HCC marker and animals were randomized 

according to AFP-levels into the different treatment groups. Treatment was started six weeks 

after HCC induction, and each group of mice was treated three times a week for four weeks 

with one of the following treatments: intravenous injections of 30 mg/kg sorafenib in 

sorafenib-glycyrrhizin nanoparticles, sorafenib suspensions at 30mg/kg in PBS with 1% 

DMSO delivered by oral gavage, intravenous injections of buffer control (1% DMSO in 

PBS), intravenous injections of 30 mg/kg sorafenib solubilized in a 50:50 ethanol-

cremophor mixture, or intravenous injections of glycyrrhizin in 1% DMSO in PBS (vehicle 

control). Mice were evaluated twice daily for tumour burden (>15% increase in bodyweight) 

and other clinical signs of discomfort such as laboured breathing, lethargy, lack of appetite, 

cachexia, diarrhoea, poor grooming, hunched appearance, and lack of nest building. After 

the four-week treatment period, AFP levels and bodyweight changes were recorded to 

evaluate treatment success. Treatment was stopped and mice were evaluated twice daily for 

progression-free survival according to the same signs of adverse effects.

Biodistribution of sorafenib formulations

Healthy, 10-week-old, female FVB/N mice were injected with a single dose of 30 mg/kg 

sorafenib-glycyrrhizin nanoparticles, 30 mg/kg sorafenib dissolved in cremophor-ethanol, or 

received a suspension of 30 mg / kg sorafenib in PBS orally. Three mice per group were 

humanely euthanized at 30 min, 2h, 4h, 6h, and 24h after administration to process organs 

and blood. For sample preparation, 5% BSA in PBS buffer was added at a 2:1 volume to 

mass ratio. Samples were homogenized at 6500 rpm 2x for 2.00 minutes at room 

temperature. 100 μl of each homogenate was spiked with 50 μl of 5 μg/mL internal standard 

in acetonitrile. Ethyl acetate (1ml) was added to homogenized samples as well for 

extraction. Samples were vortexed, sonicated for 10 minutes, and centrifuged for 5 minutes 

at 6,000 rpm. Following centrifugation, the collected supernatant was allowed to evaporate. 

The evaporated samples were reconstituted with 300 μl acetonitrile and centrifuged for 5 

minutes at 6,000 rpm. 200 μl of the supernatant was pipetted into a 96-well plate containing 

200 μl of water. Finally, 0.50 μl was injected onto the UPLC-ESI-MS system for the analysis 

of sorafenib content. AUC for each organ were calculated using numerical integration 

following the trapezoidal rule.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: High-throughput screening of solid drug nanoparticles and machine learning model 
development.
a Schematic of high-throughput experimental workflow to create nanoparticles using 

nanoprecipitation technique and rapid assessment using dynamic light scattering (DLS). b 
Left: High-throughput testing of all 1440 combinations of 16 drugs and 90 excipients 

(inactive ingredients, generally-recognized-as-safe food and drug additives, and other FDA-

approved approved compounds). Colour gradient indicates size reduction of nanoparticle 

compared to the unformulated drug, where white corresponds to less than a 50% reduction 

in size and black correspond to a 90% reduction in size with linear interpolation (cf colour 

bar at bottom). Right: Machine learning-based assessment of nanoparticle-forming potential 

of drug-excipient pairs according to their chemical structures, physicochemical properties, 
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and pairwise interaction potential determined from short molecular dynamic simulations. 

Gradient indicates predictive confidence from ten-fold cross validation (white 0% 

confidence, black 100% confidence, linear interpolation, cf colour bar at bottom). We found 

good agreement between the computational assessments (right) and the real-world 

experimentation (left), with 91% of the experiments correctly predicted. c Schematic 

explaining relationship of molecular dynamic simulations and machine learning. The 

molecular dynamic simulations of drug-excipient systems are computationally analysed to 

quantify non-covalent interaction potentials. These potentials serve as input for our machine 

learning model. The machine learning model uses both these interaction potentials and the 

molecular properties of drugs and excipients to predict which drug-excipient pairs will most 

likely lead to nanoparticle formation. Furthermore, the analysis of the predictive architecture 

of the machine learning model enables us to determine the most important variables that 

govern co-aggregation prediction (Supplementary Table 4). In a separate analysis, molecular 

dynamics trajectories were analysed to identify the most relevant non-covalent interactions 

for different drug-excipient pairs (Supplementary Table 8). d Performance analysis of 

machine learning model trained on different training dataset sizes. Shown is the mean 

performance of 20 independent models trained on random data subsets. e Using the 

developed computational prediction model, we predicted 2.1 million pairs constituting all 

exhaustive combinations of 788 drugs each paired with one of 2686 excipients. The machine 

learning model predicted that a majority of the drugs and excipients would not co-aggregate, 

resulting in colloidal self-aggregation of the drug and precipitation. For 38,464 combinations 

(1.8%), the machine learning model predicted a potential interaction between the drug and 

the excipient, leading to a stabilized, co-assembled nanoparticle formation. Some excipients 

(blue dots) are predicted to enable creation of nanoparticles with many different drugs (red 

dots) while other excipients were predicted to be able to create nanoparticles with only a 

single drug. Node size corresponds to the number of predicted excipients/drugs enabling 

formation of nanoparticles with this compound. Combinations further characterized in this 

paper are highlighted with purple edges, are numbered (cf. Figure 2) and labelled with the 

corresponding drug and excipient constituting this pair. The novel component that was not 

previously used in the screen is highlighted in bold and underlined.
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Figure 2: Computationally prioritized combinations of drugs and excipients form nanoparticles.
Numbering corresponds to edges highlighted in Figure 1e. Nanoparticle formation was 

primarily evaluated using dynamic light scattering (Supplementary Table 5). This data was 

further validated using TEM images of micron-sized aggregates formed by the pure drug (a) 

and TEM images of the nanoparticles formed by co-aggregating the drugs and excipients 

(b). Photos show dispersion of the nanoparticles compared to unformulated drug during 

concentration escalation experiments (c). Dispersion stability was quantified by analysing 

time-concentration curves according to OECD guidelines (d). Short molecular dynamic 

simulations map non-covalent interaction potential between drugs and excipients (e). In the 

MD visualizations, drugs are visualized through black Van der Waals-spheres, while 

excipients are visualized through transparent and coloured Van der Waals-spheres. For a, b, 
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and c representative images are shown from ten acquisitions generated through two 

independent experiments, all images reproduced the here depicted behaviour.
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Figure 3: Characterization and ex vivo application of terbinafine & taurocholic acid particles.
a TEM images of terbinafine alone (left) and nanoparticles formulated together with 

taurocholic acid. TEM images taken at different timepoints after co-assembly initiation are 

depicted on the right. Scale bar corresponds to 1 μm, scale consistent across images. b C. 
albicans survival after treatment with terbinafine alone (black), terbinafine & taurocholic 

acid nanoparticles (red), or pure taurocholic acid (formulation control, light grey). 

Concentrations indicate terbinafine and/or taurocholic acid concentration. XTT readouts 

were normalized according to untreated control (100% survival, 1% DMSO in PBS, hollow 

circles), n = 4 independent samples, lines correspond to mean values, error bars represent 

one standard deviation. We performed a one-way ANOVA (p = 0.017) followed by Tukey’s 

post hoc test and found that terbinafine alone shows no significant difference to any other 
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condition while terbinafine-taurocholic acid significantly reduced C. albicans viability 

compared to the control treatments. c Microscopy images of C. albicans after 17h of 

nanoparticle treatment or terbinafine treatment compared to untreated control. d Skin uptake 

of terbinafine into porcine flank skin in Franz Diffusion cell measurements, n = 3 

independent samples, p = 0.028 two-sided T-test. Lines corresponds to mean values; error 

bars represent one standard deviation. For a and c, representative images are shown from ten 

acquisitions generated through two independent experiments, all images reproduced the here 

depicted behaviour.
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Figure 4: Characterization and in vivo application of sorafenib nanoparticles.
a TEM images of colloidal aggregates formed by unformulated sorafenib (left) compared to 

TEM images of nanoparticles formulated with glycyrrhizin, candesartan cilexitel, 

indomethacin, tannic acid, and meloxicam. Black scale bar corresponds to 200 nm, scale 

consistent over all images. Coloured border added to visually aid identification of 

nanoparticles across all panels. Representative images are shown from ten acquisitions 

generated through two independent experiments, all images reproduced the here depicted 

behaviour. b Dispersion of sorafenib alone and in nanoformulation with excipients, 

measured as concentration-time curve by HPLC. Percentages for nanoparticles reflect 

encapsulation efficiency. n=2 independent samples. c HUH7 human hepatocellular 

carcinoma cell survival after 48 h of treatment with different nanoparticles or free sorafenib. 

Dose-response curves were fitted in Prism using the inhibitor vs. response (three parameters) 

model, Sorafenib IC50 = 14 ± 1.1 μM, Sorafenib & glycyrrhizin IC50 = 6.2 ± 0.6 μM, 

Sorafenib & candesartan cilexetil IC50 = 8.7 ± 0.7 μM, Sorafenib & Indomethacin IC50 = 8.4 

± 0.8 μM, Sorafenib & tannic acid IC50 = 7.3 ± 0.7 μM. n = 10 independent samples. Graphs 

on the right show box plots of individual measurements (p = 0.0013 two-way ANOVA). The 

nanoparticle formations were significantly more potent compared to unformulated sorafenib 

at all tested concentrations above 6 μM (p < 0.05, Dunnett’s multiple comparisons test). Box 

extends from the 25th to 75th percentiles, line is the median, whiskers extend from maximal 
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to minimal measurement. Insert shows HUH7 viability after 48 h of incubation with 50 μM 

excipients only (coloured dots) or buffer control (hollow circles). Difference to buffer 

control was evaluated using Dunnett’s multiple comparisons test. Lines corresponds to mean 

values; error bars represent one standard deviation. n = 4 independent samples. d Cytosolic 

sorafenib in HUH7 cells after 2h incubation with unformulated sorafenib (black), sorafenib-

tannic acid particles (orange), sorafenib-indomethacin particles (blue), or sorafenib-

glycyrrhizin particles (green). All treatments were added at 100 μM. n = 5 independent 

samples, p = 0.016 one-way ANOVA. Lines corresponds to mean values; error bars 

represent one standard deviation. e Independent uptake mechanism study with same 

experimental conditions as (d) but including endocytosis inhibitors sucrose or methyl-beta-

cyclodextrin. Sucrose inhibits clathrin-dependent endocytosis, which did not affect cytosolic 

sorafenib levels (p = 0.52, Dunnett’s multiple comparisons test). Methyl-beta-cyclodextrin 

inhibits caveolin-mediated endocytosis and significantly reduced cytosolic sorafenib levels 

(p < 0.0001, Dunnett’s multiple comparisons test). p < 0.0001 one-way ANOVA. n = 6 

independent samples. Lines corresponds to mean values; error bars represent one standard 

deviation. f Schematic of in vivo experiment. Tumour was induced by injection of oncogene-

coding plasmids. 5 weeks after induction, AFP levels were determined to assess tumour 

progression and enable group randomization. Mice were randomized according to AFP-

levels and then treated three times a week (t.i.w.) for four weeks. Treatments were 30 mg / 

kg sorafenib--glycyrrhizin nanoparticles, 30 mg / kg sorafenib oral, 30 mg / kg sorafenib in 

cremophor-ethanol, glycyrrhizin vehicle control, cremophor–ethanol vehicle control, 1% 

DMSO in PBS buffer control. AFP levels were measured at week 7 and week 10 to assess 

tumour progression during treatment period (cf. Figure 4g). After this final intervention, 

mice were monitored for morbidity-free survival (cf. Figure 4h). g AFP levels of mice after 

receiving sorafenib–glycyrrhizin nanoparticles, oral sorafenib, or 1% DMSO in PBS buffer 

control. AFP levels were compared at beginning of treatment (week 5), during treatment 

(week 7), and at end of treatment (week 10). p = 0.027 two-way ANOVA, significance levels 

shown for Tukey’s multiple comparisons test for all possible treatment comparisons, n = 12, 

7, and 5 independent animals for sorafenib-glycyrrhizin, vehicle control, oral sorafenib. 

Lines corresponds to mean values; error bars represent one standard deviation. h Kaplan-

Meyer analysis shows that mice treated with sorafenib-glycyrrhizin nanoparticles show 

longer morbidity-free survival (p = 0.0032, log-rank Mantel-Cox test) compared to oral 

sorafenib and glycyrrhizin-only vehicle control, n = 12 independent animals for sorafenib-

glycyrrhizin and vehicle control, n = 5 for oral sorafenib. i Biodistribution analysis of 

sorafenib tissue accumulation for sorafenib-glycyrrhizin nanoparticles (green) compared to 

oral sorafenib administration (white) and sorafenib dissolved in cremophor-ethanol (grey). 

AUC for sorafenib-glycyrrhizin is compared to the two other treatments per tissue using 

Dunnett’s multiple comparisons test. p < 0.0001 two-way ANOVA. Insert shows relative 

sorafenib content of liver compared to blood. Sorafenib-glycyrrhizin nanoparticles show 

significantly better targeting to the liver compared to sorafenib in cremophor-ethanol (p = 

0.014, Tukey’s multiple comparisons test) and oral sorafenib (p = 0.0012, Tukey’s multiple 

comparisons test). p = 0.0014 one-way ANOVA, n = 3 independent animals per condition 

and timepoint. Lines corresponds to mean values; error bars represent one standard 

deviation.
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