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Abstract

Background: Inappropriate acetabular component angular position is believed to increase the 

risk of hip dislocation following total hip arthroplasty (THA). However, manual measurement of 

these angles is time consuming and prone to inter-observer variability. The purpose of this study 

was to develop a deep learning tool to automate the measurement of acetabular component angles 

on postoperative radiographs.

Methods: Two cohorts of 600 anteroposterior (AP) pelvis and 600 cross-table lateral hip 

postoperative radiographs were used to develop deep learning models to segment the acetabular 

component and the ischial tuberosities. Cohorts were manually annotated, augmented, and 

randomly split to train-validation-test datasets on an 8:1:1 basis. Two U-Net convolutional neural 

network (CNN) models (one for AP and one for cross-table lateral radiographs) were trained for 

50 epochs. Image processing was then deployed to measure the acetabular component angles on 

the predicted masks on anatomical landmarks. Performance of the tool was tested on 80 AP and 80 

cross-table lateral radiographs.

Results: The CNN models achieved a mean Dice Similarity Coefficient of 0.878 and 0.903 on 

AP and cross-table lateral test datasets, respectively. The mean difference between human-level 

and machine-level measurements was 1.35° (σ=1.07°) and 1.39° (σ=1.27°) for the inclination and 

anteversion angles, respectively. Differences of 5 or more between human-level and machine-level 

measurements were observed in less than 2.5% of cases.
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Conclusions: We developed a highly accurate deep learning tool to automate the measurement 

of angular position of acetabular components for use in both clinical and research settings.
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total hip arthroplasty; acetabular component angle; inclination angle; anteversion angle; artificial 
intelligence; deep learning

INTRODUCTION

Total hip arthroplasty (THA) is one of the most successful surgical procedures, as it brings 

significant pain relief and increased quality of life for patients[1]. Dislocation is a relatively 

common complication following THA, representing a challenging problem for both patients 

and surgeons[2]. A pooled analysis of 4,633,935 primary THAs estimated the six-year 

cumulative incidence of dislocation to be 2.10%[3]. Dislocation can result in severe pain, 

limb dysfunction, readmission, and reoperation. Moreover, treatment costs for THA patients 

experiencing dislocation are estimated to be 300% higher than patients with uncomplicated 

THA[4]. Therefore, it is crucial to identify and mitigate factors that predispose patients to 

dislocation following THA.

Acetabular component malpositioning is one of the most important and modifiable risk 

factors for post-THA instability and dislocation[5]. Defining acetabular component angles 

can be based on anatomical, operational, or radiologic reference systems[6]. In a radiology 

reference system, the inclination angle is defined as the angle between the acetabular 

component’s longitudinal axis and any line defining the horizontal axis of the pelvis on 

anteroposterior (AP) radiograph. Defining the horizontal axis of the pelvis is commonly 

performed with a line tangent to the base of the ischial tuberosities or the teardrop. Likewise, 

the radiographic anteversion angle is the angle between the acetabular component 

longitudinal axis and the coronal plane. While the measurement of the inclination angle is 

straightforward on AP radiographs (Figure 1A), several methods exist to measure the 

anteversion angles in different radiographic planes [7]. Among the available methods, the 

Woo and Morrey method has been widely used to measure the anteversion angle. This 

method measures the anteversion angle on cross-table lateral radiographs and define it as the 

angle formed between the acetabular component’s longitudinal axis and a vertical line drawn 

perpendicular to the table when the patient is supine (Figure 1B)[8]. Although the Woo and 

Morrey method has been questioned for accuracy, it has the highest intra- and inter-rater 

reliability[7]. This method is almost always applicable to radiographs, while other 

measurement methods may fail if borders or edges of implants are not clearly visible, which 

is especially problematic with methods that rely on drawing ellipses on AP radiographs.

Convolutional neural networks (CNNs) are the current state-of-the-art artificial intelligence 

(AI) technique for analyzing images. These algorithms begin by looking for low-level image 

features such as edges and curves and then build up to higher level structures through a 

series of convolutional operations[9]. U-Nets are a type of CNN model that performs 

semantic segmentation, i.e. to identify pixels in an image which belong to one or multiple 

objects of interest[10].
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This study aimed to develop a deep learning tool to automate the measurement of acetabular 

component angles on postoperative radiographs. Our hypothesis was that CNN could 

accurately identify inclination and anteversion angles on AP pelvis and cross-table lateral 

hip radiographs. Herein, we introduce a fully automated tool based on semantic 

segmentation U-Net models and image processing, to measure the acetabular component 

inclination and anteversion angles.

MATERIALS AND METHODS

Following Institutional Review Board (IRB) approval, we utilized our institution’s total joint 

registry to identify primary THA cases performed from 2000 – 2017. Out of this pool, image 

data was obtained for 600 random cases with AP pelvis and 600 random cases with cross-

table lateral hip radiographs. We subsequently developed a tool for semantic segmentation of 

postoperative radiographs, and image processing on the segmentation masks to measure the 

acetabular component angles. We evaluated each step independently and then deployed the 

tool through a Graphical User Interface (GUI).

Semantic Segmentation

Assembling the Imaging Dataset—We retrospectively collected two groups of 600 AP 

and 600 cross-table lateral radiographs obtained at the first postoperative clinical visit of 

random cases. Random selection of AP and cross-table lateral hip radiographs were done 

independently and cases from the two groups did not necessarily overlap. Each group 

included no more than one image from each patient and was balanced based on three factors: 

(A) 300 from female cases and 300 from male cases; (B) 300 from cases that ultimately 

dislocated versus 300 from cases who never dislocated; and (c) 200 from cases with 

osteoarthritis, 200 from cases with rheumatoid arthritis, and 200 from cases with other 

indications for THA.

All images were zero-padded and resized to 512×512 pixels. One author (P.R., who had 

medical and programming expertise) manually segmented the radiographs using RIL-

Contour, an open-source annotation tool[11]. Annotations were then verified by two 

orthopedic surgeons. We segmented the bilateral ischial tuberosities on AP images, and the 

acetabular components on both AP and cross-table lateral images (supplement 1). Each 

cohort was then randomly split to train, validation, and test datasets in an 8:1:1 ratio. Finally, 

images in the training dataset were augmented using horizontal flipping and random rotation 

up to ±20°. These modifications to the original data, a process known as data augmentation, 

facilitates generalizability of deep learning models to unseen future data [12].

Model Initialization and Training—We created two U-Net CNN models to segment AP 

pelvis and cross-table lateral hip images independently. Encoders of both models had the 

VGG-16 architecture and their initial weights were pooled from a model pre-trained on the 

ImageNet database [13][14]. The weights for the decoder layers were initialized randomly 

using the normal He distribution[15]. We trained the network’s decoder layers for 50 epochs, 

with a batch size of 8, and using the Adam optimizer[16]. Learning rate was initially set to 

0.01 and was reduced gradually using a learning rate scheduler (learning rate was reduced 

by a factor of 0.1 after validation loss failed to improve for 5 consecutive epochs). We used a 
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modification of the Dice Similarity Coefficient (DSC) which rewards a high degree of 

overlap between the predicted contour and the human-traced contour[17]. We added a focal 

loss because of the relatively small size of the contour compared to the entire image. During 

training, the model with the least validation loss was saved as the final model[18][19]. We 

trained our U-Net models on an NVIDIA Tesla V-100 GPU with 32 Gigabytes of RAM 

using TensorFlow (V2.0) framework running on Python (v3.6).

Outputs and Statistics—We evaluated model performance on independent test datasets 

which were not seen by the models during training and validation. For each model, the class-

specific DSC and average DSC were reported. We also created integrated gradients maps 

(IGMs) for sample test images to demonstrate that both models are making decisions based 

on meaningful features within the images, enhancing confidence in performance 

reliability[20].

Image Processing

Workflow—Semantic segmentation models generate a multi-channel 512×512-pixel mask 

for each input radiograph. The mask consists of three layers (acetabular component(s), 

ischial tuberosities and the background) for the AP model, and of two layers (acetabular 

component and the background) for the cross-table lateral model. An argmax function is 

used to convert the generated mask to a one-channel image such that there are non-zero-

value pixels on regions of interest, and zero-value pixels elsewhere (Figure 3B). For 

example, this image will have pixels with a value of 1 in acetabular component regions, a 

value of 2 in ischial tuberosity regions, and a value of 0 for the rest of the image. We 

developed an algorithm to measure the acetabular component angles on these simplified 

representations of the original radiographs. The algorithm consisted of several successive 

steps. First, we optimized the segmentation masks generated by the U-Net models. To do so, 

we used the regionprops module from Scikit-Image framework (v0.16.2) to remove 

independent non-zero regions smaller than 150 pixels. This cut-off was determined 

empirically. Second, we searched the region of the acetabular component to find the two 

non-zero pixels which had the greatest distance from each other. From a geometric 

perspective, the line crossing those points would outline the acetabular component 

longitudinal axis. For the AP pelvis images, the most inferior points of both ischial 

tuberosities were also identified and a line was fit to those two points. Finally, the angle 

between the acetabular component longitudinal axis and the line tangent to the ischial 

tuberosity inferior borders was measured on AP pelvis radiographs. Similarly, the angle 

between the acetabular component longitudinal axis and a standard vertical line was 

measured on hip cross-table lateral images.

Outputs and Statistics—We evaluated this algorithm on two random cohorts of 80 AP 

pelvis and 80 cross-table lateral radiographs. Neither of these cohorts were used to train or 

validate the segmentation models, nor for developing the algorithm. Two orthopedic 

surgeons manually annotated acetabular component angles on all images using the 

QREADS (v5.12.0) software[21]. Inclination angles ranged from 25.9° to 65.5° and 

anteversion angles ranged from 1.1° to 52.3° across the annotated images. To measure the 

acetabular component angles using our algorithm, we first generated segmentation masks for 
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the radiographs using the U-Net models and then applied image processing on the generated 

masks. Finally, we compared human-level and machine-level measurements by descriptive 

reporting of inter-measurement differences. Additionally, the lines generated by the 

algorithm were plotted on sample original radiographs to demonstrate the image processing 

performance (Figure 3C).

Deployment

To increase the applicability of the tool in clinical and research settings, we used Tkinter 

(v8.6.10) to develop a GUI and packaged it into a standalone installer with PyInstaller 

(v3.6). Our program is compatible with any modern Windows or Mac computer, and it does 

not require any deep learning hardware or additional software packages (including Python 

itself).

RESULTS

The U-Net models achieved a mean DSC of 0.878 and 0.903 in segmenting the input AP and 

cross-table lateral radiographs, respectively. Table 1 summarizes the performance of U-Net 

models on test datasets. Loss curves for training and validation datasets of both U-Net 

models are displayed in figure 4. Figure 5 shows representative input images, predicted 

masks, and IGMs for each U-Net model. Plotted IGMs provide evidence that both U-Net 

models placed emphasis on the acetabular component and the AP model also emphasized 

the ischial tuberosities.

Figure 3 demonstrates how our algorithm measured acetabular component angles on 

representative postoperative radiographs. The mean absolute difference of machine-level and 

human-level acetabular component angle measurements were 1.35° (σ=1.07°) and 1.39° 

(σ=1.27°) over 80 AP and 80 cross lateral radiographs, respectively. In addition to the mean 

absolute difference being approximately 1.5 degrees or less, outliers were rare as evidenced 

by discrepancies of at least 5 occurring in less than 2.5% of evaluated cases.

Figure 6 shows a screenshot from the Total Hip Arthroplasty Acetabular Component Angle 

Calculator software, a tool developed to deploy the U-Net models and their subsequent 

image processing workflow into a stand-alone GUI. The software can measure acetabular 

component angles on single or multiple PNG image (or DICOM) files. If applied over 

multiple files, it will generate a dataset of measured angles for all input radiographs. The 

software performs inference using the Central Processing Unit (CPU). On a Windows 

Machine with an Intel Core-i7-9750H CPU and 32 Gigabytes of Random-Access Memory 

(RAM), the mean time needed to measure a single acetabular component angle was 13 

seconds. When an entire batch of 80 radiographs was queried simultaneously, the task 

completed in 545 seconds (mean 6.81 seconds per image). Supplement 2 includes detailed 

introduction of our software and its different applications.

DISCUSSION

Acetabular component inclination and anteversion angles denote positioning of the 

acetabular component following THA[22]. Different safe zones have been proposed for 
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acetabular component angles, and therefore, measurement of those angles is essential to 

evaluate outcomes and risk-stratify patients[23]. Current digital tools require labor-intensive 

inputs from the user to measure acetabular component angles and are therefore prone to poor 

inter- and intr-aobserver reliability. We developed a fully automated tool to measure the 

acetabular component angles using deep learning semantic segmentation models and 

subsequent image processing. Our segmentation U-Net models were accurate and had high 

class-specific and average DSC scores.

The lowest DSC score (0.843) was observed in segmenting the ischial tuberosities on AP 

pelvis images (Table 1). During manual segmentation of AP images, we focused on accurate 

segmentation of the tuberosities inferior borders, which are critical in fitting the trans-ischial 

tuberosity line. The superior border of the tuberosity zone (which is not essential for image 

processing purposes) was annotated with slight variations. Therefore, the model learned an 

average of inconsistent segmentations for the superior border, and when it was evaluated on 

a single ground truth image from the test set, the DSC scores could be poor depending on 

how far the ground truth for the superior border deviated from the average learned by the 

model. Supplement 3 showcases this heterogenicity mathematically. The image processing 

algorithm had an absolute measurement error of less than 2.50° in 97.50% of both AP pelvis 

and hip cross-table lateral postoperative radiographs, making it a valid, reliable, and 

clinically applicable tool to annotate acetabular component angles. Additionally, our tool 

should reduce the time needed for measuring the acetabular component angles. Therefore, it 

can be incorporated into routine clinical practice and can also be used to annotate large 

imaging datasets for research. We recently used our tool to measure the acetabular angles on 

about 100,000 hip radiographs from our institution. Practically, it would be impossible to 

manually review that number of images for a clinical research study. However, the power 

added to studies by having discrete data on large volumes of patients is considerable.

IGMs are tools that highlight the importance of image areas or individual pixels in model 

decision making[20]. The IGMs generated by our segmentation models on representative 

images show that the U-Nets are looking at relevant regions of the input radiographs to 

segment the images. Also, we trained the segmentation models on datasets which were 

balanced based on sex, underlying pathology, and ultimate dislocation status. Because such 

factors may result in obvious or non-obvious imaging features in postoperative radiographs, 

the balanced datasets helped to train models that perform consistently when applied over 

different patient populations. Finally, plotting of the acetabular component longitudinal axis 

line and the trans-ischial tuberosity line showed that the image processing implemented by 

our tool is measuring the acetabular component angles in the standard way introduced in the 

literature. Due to the consistent nature of deep learning and image processing algorithms we 

used, our tool is reliable and will always produce the same result if applied to the same 

image.

Several digital image analysis softwares exist to help measure acetabular component 

angles[24][25][26]. Compared to our model, such alternative methodologies are primarily 

limited in 3 areas: 1) they require manual annotation by the user prior to running the model, 

2) there is no way to determine if the acetabular component is anteverted or retroverted 

without a corresponding lateral image, and 3) They are all dependent on some inputs from 
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the user (e.g. to outline the acetabular component and femoral head). To this latter point, we 

initially attempted to create a model that could measure both inclination and anteversion on 

an AP pelvis image. Inclination proved to be highly reliable; however, anteversion was more 

challenging, as annotation and segmentation of the acetabular component ellipse is 

extremely difficult in cases where the border between the acetabular component and the 

femoral head is not visible. In particular, defining the ellipse of the acetabular component 

can be nearly impossible for some implants, especially at low anteversion angles. As such, 

we created our anteversion angle measurement tool using the cross-table lateral image and 

the method described by Woo and Morrey, as this has the highest inter and intra-observer 

reliability. Given that only 2 lines have to be defined by the algorithm, this simplifies the 

deep learning task and results in improved model performance.

The main limitation of our tool was observed in images with poor patient positioning, such 

as rotation of the images over 45 degrees, images cropped such that the acetabular 

component or ischial tuberosities were not visible in the field-of-view, overlap of soft tissue 

obscuring the ischial tuberosities, and presence of unusual hardware in the field (e.g. 

periacetabular fracture hardware). These radiographs represent less than 2.5% of the images 

in the test dataset (Supplement 2). Model performance may still be acceptable in some of 

these cases; however, manual screening of the segmentation quality is recommended when 

applying the tool on such radiographs. The second limitation of our algorithm is that it does 

not control for the positioning of pelvis in radiographs before doing the measurements. In 

Woo and Morrey approach, the longitudinal axis of the acetabular component is being 

compared to a line perpendicular to the x-ray table as opposed to a fixed anatomic landmark. 

As such, altered positioning between patients, or with the same patient on subsequent 

radiographs, can potentially introduce inaccuracies[27]. Comparing the measured angles on 

radiographs with measurements done on CT-scans may reveal the inaccuracies, and prompt 

for clues to correct the radiographic measurements. Such experiments were beyond the 

scope of current study; however, our future work includes developing algorithms to correct 

radiographic acetabular angle measurements with respect to standard measurements done on 

CT-scans. We also aim to develop a separate model for measuring acetabular angles on 

preoperative radiographs.

CONCLUSION

We developed a digital tool to automate the measurement of the angular position of the 

acetabular component in THA on postoperative radiographs using deep learning semantic 

segmentation models and subsequent image processing. Performance metrics indicate highly 

accurate and precise measurements compared to human annotation, with very infrequent 

clinically relevant discrepancies. Our tool can reduce the interobserver variability and time 

needed to measure acetabular component angles and is therefore applicable for use in both 

clinical and research settings. Further work to validate the tool with respect to CT scan 

measurements are needed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Inclination and anteversion acetabular component angles defined in a radiology reference 

system. (A) Inclination angle is defined as the angle between the acetabular component 

longitudinal axis and the trans-ischial tuberosity line on an anteroposterior radiograph. (B) 

Anteversion angle is defined by the angle between the acetabular component longitudinal 

axis and a standard vertical line perpendicularly drawn to the table on a hip cross-table 

lateral radiograph.
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Figure 2. 
Architecture of U-Net CNN model used to segment the radiographic images. Encoder of the 

model had the VGG-16 architecture and its initial weights were pooled from a model pre-

trained on the ImageNet database. The output of the model will initially have three channels 

(in AP model) or two channels (in cross-table lateral model). An argmax function will 

change this output to a one-channel 512×512-pixel mask, that is then used for image 

processing.
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Figure 3. 
Overview of the pipeline for automatic measurement of the acetabular component angles. 

(A) Original radiographic images, (B) predicted masks by the semantic segmentation U-Net 

models overlaid on the original images, (C) acetabular component longitudinal axes (in 

green) and the trans-ischial tuberosity line or standard vertical line (in red) which are 

estimated by image processing. Together, they form the inclination angle on AP pelvis 

images and anteversion angle on hip cross-table lateral images (white triangles).
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Figure 4. 
Training performance of the semantic segmentation U-Net models. The green dashed line 

shows the epoch when the best model was saved. (A) Training and validation loss curves for 

the inclination model. (B) Training and validation loss curves for the anteversion model.

Rouzrokh et al. Page 13

J Arthroplasty. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Visualization of the semantic segmentation U-Net models overlaid on sample original 

images. (A) Original radiographic images, (B) predicted masks, (C) integrated gradients 

maps where the red color highlights the most influential pixels on the model’s predictions.
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Figure 6. 
Screenshot from the Total Hip Arthroplasty Acetabular Component Angle Calculator 

software, a tool developed to deploy the semantic segmentation U-Net models and their 

subsequent image processing workflow into a stand-alone graphic user interface (GUI). The 

software can measure acetabular component angles on single or multiple PNG image (or 

DICOM) files.
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TABLE 1.

Performance of the U-Net semantic segmentation models on the test datasets.

Model Performance Indicator Value

Inclination Angle Model Acetabular component DSC 0.913 (σ=0.047)

Ischial tuberosity DSC 0.843 (σ=0.082)

Average DSC 0.878

Anteversion Angle Model Acetabular component DSC 90.3 (σ=0.077)
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