Skip to main content
. 2021 May 29;13(11):2681. doi: 10.3390/cancers13112681

Table 1.

Table summarizing the main studies of Radiomics applied to lung cancer.

Study N Patients Objective Types of Evaluation Model Performance Imaging Modality Features Selected Nature of Study
Beig N. et al.,
Radiol. 2019 [7]
Total 290 AD vs. Granulomas Intranodular and
Perinodular radiomic analysis
0.80
0.76
0.60–0.61
CT 12 Multicentric
Restrospective
Linning E. et al., Acad. Radiol. 2019 [8] Total 278 SCLC vs. NSCLC
SCLC vs. AD
SCLC vs. SCC
Primary lesion
radiomic analysis
End. 1 AUC: 0.74
End. 2 AUC: 0.82
End. 3 AUC: 0.66
CT 20 Monocentric
Restrospective
Cong M. et al.,
Lung Cancer 2020 [9]
Training 455
Validation 194
Assessment nodal metastases Predictive Radiomics on primary lesion AUC: 0.91
AUC: 0.86
CT 7 Monocentric
Restrospective
Zhang J. et al.,
Eur. J. Nucl. Med Mol. Imaging 2020 [10]
Training 175
Validation 73
EGFR status Radiomic signature
Fusion models
AUC: 0.86
AUC: 0.87
18F-FDG PET/CT 10 Monocentric
Restrospective
Zerunian M. et al.,
Sci. Rep 2021 [11]
Total 21 OS
PFS
Volumetric
Textural analysis
End. 1 AUC: 0.72
End. 2 AUC: 0.74
CT 6 Monocentric
Prospective
Khorrami M. et al.,
Lung Cancer 2019 [12]
Training 45
Validation 45
Pathological response Intranodular and
perinodular radiomic analysis
AUC: 0.90
AUC: 0.86
CT 13 Monocentric
Restrospective

AD, Adenocarinoma; SCLC, small cell lung cancer; NSCLC, non-small lung cancer, SCC, squamous cell carcinomas; EGFR, epidermal growth factor receptor; OS, overall survival; PFS, progression free survival; SVM, support vector machine; ROC, receiver operating characteristic; CNN, convolutional neural networks; AUC, area under the curve; CT, computed tomography.