Table 2.
Table summarizing the main studies regarding Radiomics applied to ovarian cancer.
Study | N Patients | Endpoint | Types of Evaluation | Model Performance | Imaging Modality | Features Selected | Nature of Study |
---|---|---|---|---|---|---|---|
Zhang H. et al., Eur. Rad. 2019 [26] |
Validation 195 Testing 85 |
Benign vs. Malignant OEC type I vs. type II |
LOO cross-validation Indipendent testing |
End. 1 AUC: 0.97 End 1 AUC: 0.85 End 2 AUC: 0.96 End 2 AUC: 0.82 |
MRI | End. 1: 84 End. 2: 56 |
Monocentric Restrospective |
Song X.L. et al., Eur. Rad. 2021 [27] |
Training 72 Validation 32 |
Benign vs. Borderline Benign vs. Malignant Borderline vs. Malignant |
2-class classification | End 1 AUC: 0.89 End 2 AUC: 0.86 End 3 AUC: 0.89 |
MRI | End. 1: 51 End. 2: 23 End. 3: 18 |
Monocentric Prospective |
Meier A. et al., Abdom. Radiol. 2019 [28] |
Total 88 | Assosiation Survival and texture heterogeneity | Inter-site texture heterogeneity | p < 0.05 | CT | 3 | Monocentric Restrospective |
Lu H. et al., Nat. Commun 2019 [29] |
Total 364 | Survival | Radiomic prognostic vector | HR > 3.83 | CT | 4 | Multicentric Restrospective |
Himoto Y. et al., JCO Precis. Oncol. 2019 [30] |
Total 75 | Time to off-treatment | Intra-site texture heterogeneity Inter-site texture heterogeneity |
p < 0.05 HR: 0.88 HR: 1.19 |
CT | 7 | Monocentric Restrospective |
Danala. et al., Acad. Radiol 2017 [31] |
Total 91 | Early prediction treatment response | Delta Radiomics Fusion models |
AUC: 0.77 AUC: 0.81–0.82 |
CT | 24 | Monocentric Restrospective |
LOO, leave-one-out; AUC, area under the curve; HR, hazard ratio; MRI, magnetic resonance imaging; CT, computed tomography.