Skip to main content
. 2021 May 29;13(11):2681. doi: 10.3390/cancers13112681

Table 2.

Table summarizing the main studies regarding Radiomics applied to ovarian cancer.

Study N Patients Endpoint Types of Evaluation Model Performance Imaging Modality Features Selected Nature of Study
Zhang H. et al.,
Eur. Rad. 2019 [26]
Validation 195
Testing 85
Benign vs. Malignant
OEC type I vs. type II
LOO cross-validation
Indipendent testing
End. 1 AUC: 0.97
End 1 AUC: 0.85
End 2 AUC: 0.96
End 2 AUC: 0.82
MRI End. 1: 84
End. 2: 56
Monocentric
Restrospective
Song X.L. et al.,
Eur. Rad. 2021 [27]
Training 72
Validation 32
Benign vs. Borderline
Benign vs. Malignant
Borderline vs. Malignant
2-class classification End 1 AUC: 0.89
End 2 AUC: 0.86
End 3 AUC: 0.89
MRI End. 1: 51
End. 2: 23
End. 3: 18
Monocentric
Prospective
Meier A. et al.,
Abdom. Radiol. 2019 [28]
Total 88 Assosiation Survival and texture heterogeneity Inter-site texture heterogeneity p < 0.05 CT 3 Monocentric
Restrospective
Lu H. et al.,
Nat. Commun 2019 [29]
Total 364 Survival Radiomic prognostic vector HR > 3.83 CT 4 Multicentric
Restrospective
Himoto Y. et al.,
JCO Precis.
Oncol. 2019 [30]
Total 75 Time to off-treatment Intra-site texture heterogeneity
Inter-site texture heterogeneity
p < 0.05
HR: 0.88
HR: 1.19
CT 7 Monocentric
Restrospective
Danala. et al.,
Acad. Radiol 2017 [31]
Total 91 Early prediction treatment response Delta Radiomics
Fusion models
AUC: 0.77
AUC: 0.81–0.82
CT 24 Monocentric
Restrospective

LOO, leave-one-out; AUC, area under the curve; HR, hazard ratio; MRI, magnetic resonance imaging; CT, computed tomography.