Table 4.
The comparison of the encoding ability in different depth of the proposed CNN.
Layer | Type | Discarding Accuracy (%) | Feature Length | Time (ms) |
---|---|---|---|---|
1 | Input | 85.61 ± 2.43 | 21,600 | 21.00 |
2 | Attention | 85.35 ± 2.61 | 21,600 | 20.76 |
3 | Convolution | 77.65 ± 2.86 | 118,800 | 104.56 |
4 | BN | 72.37 ± 3.24 | 118,800 | 104.09 |
5 | ReLu | 72.19 ± 3.18 | 118,800 | 104.09 |
6 | MP | 75.32 ± 2.92 | 29,700 | 27.57 |
7 | Attention | 73.36 ± 3.21 | 29,700 | 28.48 |
8 | Convolution | 71.37 ± 3.17 | 59,400 | 52.91 |
9 | BN | 70.82 ± 3.23 | 59,400 | 53.02 |
10 | ReLu | 76.00 ± 3.26 | 59,400 | 53.74 |
11 | MP | 83.58 ± 2.68 | 15,840 | 15.67 |
12 | Convolution | 90.79 ± 1.30 | 36,720 | 33.68 |
13 | BN | 91.70 ± 0.95 | 36,720 | 33.37 |
14 | ReLu | 89.48 ± 1.83 | 36,720 | 33.28 |
15 | MP | 95.88 ± 0.86 | 18,360 | 18.31 |
16 | Convolution | 96.52 ± 0.70 | 10,080 | 10.99 |
17 | BN | 96.55 ± 0.68 | 10,080 | 10.82 |
18 | ReLu | 96.27 ± 1.09 | 10,080 | 10.90 |
19 | MP | 95.42 ± 1.33 | 3360 | 5.00 |
20 | Convolution | 80.92 ± 2.66 | 960 | 2.25 |
21 | BN | 84.39 ± 3.07 | 960 | 2.25 |
22 | ReLu | 90.23 ± 1.92 | 960 | 2.41 |
23 | Convolution | 77.75 ± 2.57 | 8160 | 9.08 |
24 | BN | 77.48 ± 2.22 | 8160 | 9.10 |
25 | ReLu | 72.51 ± 2.50 | 8160 | 9.04 |
26 | GAP | 26.79 ± 1.75 | 68 | 1.33 |
27 | FC | 16.83 ± 1.23 | 1 | 1.05 |
Attention refers to the radial attention layer.