Skip to main content
. 2021 May 27;21(11):3721. doi: 10.3390/s21113721

Table 4.

The comparison of the encoding ability in different depth of the proposed CNN.

Layer Type Discarding Accuracy (%) Feature Length Time (ms)
1 Input 85.61 ± 2.43 21,600 21.00
2 Attention 85.35 ± 2.61 21,600 20.76
3 Convolution 77.65 ± 2.86 118,800 104.56
4 BN 72.37 ± 3.24 118,800 104.09
5 ReLu 72.19 ± 3.18 118,800 104.09
6 MP 75.32 ± 2.92 29,700 27.57
7 Attention 73.36 ± 3.21 29,700 28.48
8 Convolution 71.37 ± 3.17 59,400 52.91
9 BN 70.82 ± 3.23 59,400 53.02
10 ReLu 76.00 ± 3.26 59,400 53.74
11 MP 83.58 ± 2.68 15,840 15.67
12 Convolution 90.79 ± 1.30 36,720 33.68
13 BN 91.70 ± 0.95 36,720 33.37
14 ReLu 89.48 ± 1.83 36,720 33.28
15 MP 95.88 ± 0.86 18,360 18.31
16 Convolution 96.52 ± 0.70 10,080 10.99
17 BN 96.55 ± 0.68 10,080 10.82
18 ReLu 96.27 ± 1.09 10,080 10.90
19 MP 95.42 ± 1.33 3360 5.00
20 Convolution 80.92 ± 2.66 960 2.25
21 BN 84.39 ± 3.07 960 2.25
22 ReLu 90.23 ± 1.92 960 2.41
23 Convolution 77.75 ± 2.57 8160 9.08
24 BN 77.48 ± 2.22 8160 9.10
25 ReLu 72.51 ± 2.50 8160 9.04
26 GAP 26.79 ± 1.75 68 1.33
27 FC 16.83 ± 1.23 1 1.05

Attention refers to the radial attention layer.