Skip to main content
. 2021 May 27;21(11):3721. doi: 10.3390/s21113721

Table 5.

Comparison on the performance of different methods proposed in recent years.

No Studies Year Method Parameters/FLOPs Evaluation Protocol Augmentation Result
1 Othman et al. [50] 2016 IrisCode (2D-Gabor filter + Hamming Distance) -/- CASIA-V4: 602 classes (for testing) None CASIA-V4: 3.5% (Verification EER)
2 Nguyen et al. [43] 2017 Pre-trained CNN (Dense-Net) + SVM -/- CASIA-V4: 1000 classes (Train: 70%, Test: 30%) * None CASIA-V4: 98.8% (Identification Accuracy)
3 Alaslani et al. [67] 2018 Pre-trained CNN (Alex-Net) + SVM 41 M/2.2 B CASIA-V1: 60 classes
CASIA-V3: 60 classes
CASIA-V4: 60 classes
(Train: 70%, Test: 30%) *
None CASIA-V1: 98.3%
CASIA-V3: 89%
CASIA-V4: 98%
(Identification Accuracy)
4 Wang et al. [63] 2018 MiCoRe-Net >1.4 M/>50 M CASIA-V3: 218 classes (Train: 1346 images, Test: 218 images) *
CASIA-V4: 1000 classes (Train: 9000 images, Test: 1000 images) *
Rotation and Cropping CASIA-V3: 99.08%
CASIA-V4: 88.7%
(Identification Accuracy)
5 Tobji et al. [64] 2019 FMnet 15 K/10 M CASIA-V4: 1000 classes (Train: 70%, Test: 30%) * None CASIA-V4: 95.63% (Identification Accuracy)
7 Boyd et al. [68] 2019 Pre-trained/Finetuned CNN (ResNet-50) + SVM 25 M/5.1 B CASIA-V4: 1000 classes (Train: 70%, Test: 30%) * None CASIA-V4: 99.03% (Identification Accuracy)
6 Liu et al. [45] 2019 Fuzzified image + Capsule network >4 M/- CASIA-V4: 1000 classes (Train: 80%, Test: 20%) None CASIA-V4: 83.1% (Identification Accuracy)
8 Lee et al. [65] 2019 Deep ResNet-152 +Matching distance >53 M/>10 B CASIA-V4: 1000 classes (Train: 50%, Test: 50%) Translation and Cropping CASIA-V4: 1.33% (Verification EER)
9 Proença et al. [49] 2019 VGG-19 based CNN 138 M/- CASIA-V4: 2000 classes (Train: 1000 classes, Test: 1000 classes) Scale transform and Intensity transform CASIA-V4: 3.0% (Verification EER)
10 Chen et al. [66] 2020 Tiny-VGG based CNN >10 M/>1.3 B CASIA-V4: 140 K pairs
(Train: 50,632 images on another database)
Contrast, Brightness, and Distortion CASIA-V4: 99.58% (Identification Accuracy)
CASIA-V4: 2.36% (Verification EER)
11 Proposed Method 2021 Condensed 2-ch CNN 33 K/49.1 M CASIA-V1: 108 classes (Finetune: 20 classes, Test: 88 classes)
CASIA-V3: 233 classes (Train: 33 classes, Test: 200 classes)
CASIA-V4: 648 classes (Finetune: 30 classes, Test: 615 classes)
Brightness jitter, Horizontal shift, and Longitudinal scaling
(Online)
CASIA-V1: 100%
CASIA-V3: 100%
CASIA-V4: 99.77%
(Identification Accuracy)
CASIA-V1: 0.33%
CASIA-V3: 0.76%
CASIA-V4: 1.19%
(Verification EER)

* Training set and testing set share same classes. K-Kilo, M-Million, B-Billion.