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Abstract: Existing neural stochastic differential equation models, such as SDE-Net, can quantify the
uncertainties of deep neural networks (DNNs) from a dynamical system perspective. SDE-Net is
either dominated by its drift net with in-distribution (ID) data to achieve good predictive accuracy,
or dominated by its diffusion net with out-of-distribution (OOD) data to generate high diffusion for
characterizing model uncertainty. However, it does not consider the general situation in a wider field,
such as ID data with noise or high missing rates in practice. In order to effectively deal with noisy
ID data for credible uncertainty estimation, we propose a vNPs-SDE model, which firstly applies
variants of neural processes (NPs) to deal with the noisy ID data, following which the completed ID
data can be processed more effectively by SDE-Net. Experimental results show that the proposed
vNPs-SDE model can be implemented with convolutional conditional neural processes (ConvCNPs),
which have the property of translation equivariance, and can effectively handle the ID data with
missing rates for one-dimensional (1D) regression and two-dimensional (2D) image classification
tasks. Alternatively, vNPs-SDE can be implemented with conditional neural processes (CNPs) or
attentive neural processes (ANPs), which have the property of permutation invariance, and exceeds
vanilla SDE-Net in multidimensional regression tasks.

Keywords: deep neural networks; neural stochastic differential equation; neural processes; uncer-
tainty estimates

1. Introduction

Deep learning models have achieved great success in many fields, such as image
classification [1], computer vision [2], machine translation [3], and reinforcement learn-
ing [4]. However, in key fields where safety is at stake, such as in medical diagnoses or
autonomous vehicles, the uncertainty estimation of deep learning models is essential for
decision making in order to avoid dangerous accidents. Existing studies have shown that
deep neural networks (DNNs) models are usually miscalibrated and overconfident in
their predictions, which can result in misleading decisions for out-of-distribution (OOD)
samples, so it is very important to add credible uncertainty estimates to the predicted
values [5].

Bayesian neural networks (BNNs) methods were once regarded as a gold standard
for uncertainty estimation in machine learning models [6,7], and the recent benchmark
Bayesian method applies a backpropagation-compatible algorithm for learning a probabil-
ity distribution on the weight of a neural network, which is called Bayes by Backpropaga-
tion (BBP) [8]. However, Bayesian methods are very inefficient when performing posterior
inference in DNNs with a large number of parameters. On the one hand, in order to
improve efficiency, the existing studies adopt the linear subspace feature extracting method
of principal component analysis (PCA) in order to construct the parameter subspace of
DNNs for a Bayesian inference [9], and the curve parameter subspace method is proposed
to build a rich subspace containing diverse, high-performing models [10]. Meanwhile, the
latest incremental kernel PCA (InKPCA) approach applies kernel PCA to extract higher
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order statistical information from DNNs’ parameter space, and achieves more accurate
results than the PCA and curve subspace inference methods [11]. On the other hand, to
approximate the Bayesian inference method, dropout in NNs can be interpreted as an
approximation of the Gaussian process (GP), and dropout variational inference (DVI) can
be an approximate Bayesian inference approach for large and complex DNN models [12].

Non-Bayesian methods are also studied for uncertainty estimation in DNNs models.
For example, the ensemble modeling approach trains several DNNs models with diverse
initialization seeds, and uses the predicted values for uncertainty estimation [13]. Mean-
while, if DNNs are trained with a stochastic gradient descent (SGD), the training procedure
can average multiple points along the trajectory of the SGD in order to construct a stochastic
weight averaging (SWA), which produces much broader optima than an SGD [14]. Due to
the dynamics of training DNNs with SGD-like optimizers having some properties similar
to overfitting, in which the predicted values are overconfident, the pointwise early stopping
algorithm for confidence scores selectively estimates the uncertainty of highly confident
points in deep neural classifiers [15]. Additionally, the Monte Carlo dropout (MC-dropout)
method casts dropout training in DNNs as approximate Bayesian inference and samples at
the test phase, and then applies variance statistics for multiple dropout-enabled forward
passes [16].

Most of the uncertainty estimation models mentioned above mainly consider the
predictive uncertainty that comes from models and their training processes, known as
“epistemic uncertainty” [16]. However, further predictive uncertainty derives from natural
randomness such as noisy data and labels, class overlap, incomplete features, and other
unknown factors; this is known as “aleatoric uncertainty” [17], which is inherent in the
task and cannot be explained away with further data. Fortunately, a unified Bayesian deep
learning framework has been proposed by [17], which can help us to capture an accurate
understanding of aleatoric and epistemic uncertainty for per-pixel depth regression and se-
mantic segmentation tasks. Forward passes in DNNs can be considered to be state transfor-
mations of a dynamical system, which can be defined by a neural-network-parameterized
ordinary differential equation (ODE) [18]. An ODE is a deterministic expression, so it
cannot obtain the epistemic uncertainty message.

Recently, a novel SDE-Net for uncertainty estimation of DNNs has been proposed
to capture epistemic uncertainty using Brownian motion or the Wiener process [19,20],
which are widely used to model uncertainty or randomness in mathematics, physics,
economics, and other disciplines [21,22]. SDE-Net uses two separate neural networks
(NNs): the drift net f is designed to control the system in order to achieve a good predictive
accuracy for in-distribution (ID) data, while the diffusion net g is used to control the
variance of the Brownian motion based on the ID or OOD regions. SDE-Net can not
only explicitly model aleatoric uncertainty and epistemic uncertainty in its predictions
for classification and regression tasks, but also does not need to specifically model prior
distributions and infer posterior distributions as in BNNs. SDE-Net can achieve good
performance and uncertainty estimation between ID and OOD data; however, in practice,
ID data are generally encountered with noise or high missing rates. The purpose of this
paper is to explore how to effectively deal with ID data with noise or high missing rates
for SDE-Net. Our idea is to first fix the noisy ID data with a completion net, and then
process the completed data with SDE-Net for uncertainty estimation. The components of
SDE-Net are described in Figure 1a, and the resolution of SDE-Net’s problems is explained
in Figure 1b. Figure 1 shows that SDE-Net lacks consideration of the general situation in a
wider field—that is, ID data with noise or high missing rates in practice.

To handle OOD data, existing studies either use confidence scores to determine
whether samples are ID or OOD [23], or use a new confidence loss on a sharp predic-
tive distribution for ID data and a flat predictive distribution for OOD data [24]. These
new methods adopt loss functions to produce deterministic results. However, Dirich-
let distribution—which allows high uncertainty for OOD data, but is only applicable to
classification tasks—is parameterized over categorical distributions [25].
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Figure 1. Illustration of SDE-Net and the problems it faces. (a) Components of SDE-Net. For ID data, SDE-Net is dominated
by the drift net in order to achieve good predictive accuracy. For OOD data, SDE-Net is dominated by the diffusion net in
order to generate high diffusion for characterizing model uncertainty. (b) Flowchart explaining how to resolve the problems
faced by SDE-Net.

To handle noisy ID data, recent contributions indicate that the regularization technique
dropout can degrade DNNs’ training performance on noisy data without compromising
generalization on real data [26]. More importantly, the dropout method has been proven to
be a Bayesian approximation, and can represent model uncertainty in deep learning [27].
Moreover, the latest study establishes the first benchmark of controlled real-world label
noise from the internet, and can conduct the largest study into understanding DNNs
trained on noisy labels across different settings—such as noise levels, noise types, network
architectures, and training settings. Thus, this method can be studied further for uncertainty
estimation in deep learning. Of course, there are many other methods that deserve further
study for uncertainty estimation, such as label cleaning/correction, example weighting,
data augmentation, etc.

However, NP methods can combine the advantages of GPs in flexibility and neural
networks with high precision; thus, we propose to add neural processes (NPs) [28] to
SDE-Net in order to improve the its accuracy with noisy ID data, where NP variants
include conditional neural processes (CNPs) [29], attentive neural processes (ANPs) [30],
and convolutional conditional neural processes (ConvCNPs) [31]. We use the abbreviation
vNPs to represent the NP family, which includes vanilla NPs and NP variants. The
combination of vNPs and SDE-Net (vNPs–SDE) is motivated by the permutation invariance
or equivariance properties of vNPs for ID data with noise or high missing rates in SDE-Net.

CNPs define distributions over functions given a set of observations, and the de-
pendence of a CNP on the observations is parameterized by a neural network, which is
invariant under permutations of its inputs. Meanwhile, vanilla NPs are a generalization
to other NP variants, and the vanilla NPs generate fixed-length latent variables via a
permutation invariant function. Moreover, ANPs apply an attention mechanism in or-
der to compute the weights of each key with respect to the query [32]. ConvCNPs can
model translation equivariance in the data and embed datasets into an infinite-dimensional
function space.
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Although convolutional neural networks (CNNs) can also apply translation equivari-
ance to time series or image tasks [33,34], the translation equivariance of CNNs models
is not straightforward to generalize to the NP family in the same way. This is because
CNNs models need image pixels in order to form a regularly spaced grid, while NPs
perform on partially observed context sets in order to embed them into a finite-dimensional
vector space.

To summarize, there are two main contributions of this paper:

• Considering the translation equivariance properties of ConvCNPs, the implementation
of the vNPs–SDE model with ConvCNPs can effectively handle ID data with missing
rates for 1D regression and 2D image classification tasks.

• Applying the property of permutation invariance, the implemented vNPs–SDE model
with CNPs or ANPs surpasses BBP, MC-dropout, and vanilla SDE-Net in multidimen-
sional regression tasks with high missing rates by most metrics.

The rest of this paper is organized as follows: Section 2 describes materials and
methods for uncertainty estimation in deep learning models with noisy ID data. Section 3
presents the implementation of the proposed vNPs–SDE model for different tasks in deep
learning. Section 4 demonstrates the results of ConvCNPs–SDE model for 1D regression
and 2D image classification tasks with high missing rates, and of the CNPs–SDE and ANPs–
SDE models for multidimensional regression tasks with high missing rates. Section 5
presents the discussion of the experimental results, and Section 6 presents the conclusions
and implications for future work.

2. Materials

In this section, we mainly introduce the concepts to be used in this paper, such as
stochastic processes and NPs and the relationship between them.

2.1. Definition of the Neural Processes Family

Neural processes as stochastic processes. For each finite sequence x1:n = (x1, · · · , xn)
with xi ∈ X, the finite-dimensional marginal joint distribution over the function f values
can be defined as Y1:n( f (x1), · · · , f (xn)). For example, in the popular Gaussian processes
(GPs) model, the joint distributions are multivariate Gaussian distributions parameterized
by a mean and a covariance function.

As stated by the Kolmogorov extension theorem [20], two necessary conditions—
(finite) exchangeability, and consistency for marginal joint distributions ρx1:n of
( f (x1), · · · , f (xn))—can be sufficient to define a stochastic process.

Property 1 (Exchangeability) [28]. If for each finite n element, x1:n, π represents a permutation
of (1, · · · , n), then:

ρx1:n(y 1:n)ρx1,···xn(y 1, · · · , yn) = ρxπ(1),··· , xπ(n)
(y π(1), · · · , yπ(n)) =: ρπ(x1:n)

(π(y 1:n)) (1)

Property 2 (Consistency) [28]. If 1 ≤ m ≤ n, and we marginalize out a part (ym+1, · · · , yn) of
the sequence (y1, · · · , yn) of Y, the resulting marginal distribution is the same as that defined in
the original sequence. That is:

ρx1:m(y 1:m) =
∫

ρx1:n(y 1:n)dym+1:n (2)
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Exchangeability and consistency can define a stochastic process, assuming a stochastic
process f can be parameterized by a global and high-dimensional random vector z, so we
can define a generative model:

p(z, y1:n| x1:n) = p(z)
n=1

∏
i=1

N
(

yi|g( xi , z), σ2
)

(3)

NPs contain a latent variable z to capture stochastic process f and global uncertainty.
An NP model is composed of three key components:

(1) Encoder: The encoder E of NPs has two paths—a deterministic path and a latent path.
In the deterministic path, each context pair (x, y)i is passed through a multi-layer
perceptron (MLPθ) to produce a deterministic representation ri. In the latent path, a
latent representation si is generated by passing through each context pair (x, y)i to
another MLPψ. Thus, the purpose of encoder E is to convert the input space into de-
terministic or latent representation space, where the input space represents n context
points C = {(x, y)i}

n
i=1, and the representation space produces ri = MLPθ((x, y)i)

and si = MLPψ((x, y)i) for each of the pairs (x, y)i.
(2) Aggregator: Aggregator a aims to summarise the n global representations r1...n and

s1...n. The simplest operation of aggregator a is the mean function m = a(mi) =

1
n

n
∑

i=1
mi, which can ensure order invariance and perform well in practice. For the

deterministic path, a is applied to r1...n to produce the deterministic code rC. For
the latent path, however, we are interested in achieving an order-invariant global
latent representation, so we apply a to s1...n to produce the latent code sC, which can
parameterize the normal distribution z ∼ N(µ(sC), Iσ(sC)) for the latent path.

(3) Decoder: In decoder D, the sampled global latent variables z and rC are concatenated
alongside the new target locations xT as inputs, and finally passed through D to
produce the predictions ŷT = D(xT , rC, z) for the corresponding values of f (xT)= yT .
We parameterize decoder D as a neural network.

NPs are a generalization of ANPs and CNPs, but CNPs lack a latent variable z that
allows for global sampling.

The architectures of CNPs and ANPs are described in Figure 2.
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Figure 2. Architectures of CNPs and ANPs. (a) Components of a CNP model: the encoder of CNPs is composed of a
deterministic path to generate a representation r; the decoder of CNPs uses the r and target xT to produce the mean
and the Std. (b) Components of an ANP model: the encoder of ANPs is composed of a deterministic path to generate a
representation r∗ and a latent path to generate latent variable z; the decoder of ANPs uses the r∗, z, and target xT to produce
the mean and the Std.
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Considering the CNPs model in Figure 2a, compared with the NPs and ANPs models,
CNPs lack a latent path, and only produce the deterministic representation ri = MLPθ((x, y)i)
for each of the context pairs (x, y)i in the encoder. Then, the aggregator a of the CNPs
summarises the n global representations r1...n to produce the deterministic code rC. Finally,
rC is concatenated alongside the new target locations xT as an input, and passed through the
neural network MLPϕ to produce the predictions ŷT = MLPϕ(xT, rC) in the decoder.

Considering the ANPs model in Figure 2b, compared with the NPs model, ANPs
add an attention mechanism to increase the accuracy of the NPs. Assume that there
are n key–value pairs (K, V) = (xi, yi)

n
i=1, where K ∈ Rn×dk , V ∈ Rn×dv , and m query

xT= Q ∈ Rm×dk . There are several attention mechanisms, such as uniform, laplace, dot
product, and multihead:

• Uniform(Q, K, V) 1
n

n
∑

i=1
xi;

• Laplace(Q, K, V)WV ∈ Rn×dv , Wi·softmax
((
− ‖ Qi − Kj ‖ 1

)n
j=1

)
∈ Rn;

• DotProduct(Q, K, V)softmax
(

QKT√
dk

)
V ∈ Rm×dv ;

• MultiHead(Q, K, V)concat (head1, · · · , headH)W ∈ Rm×dv ,

where headhDotProduct
(

QW Q
h , KW K

h , VWV
h

)
∈ Rm×dv .

Compared with NPs, the advantage of an ANPs model is to incorporate attention
mechanisms into the NPs model. In short, self-attention of the encoder in the deterministic
and latent paths can be implemented via a multilayer perceptron (MLP), which is applied
to the context points to get the representations r1...n, and then target input xT attends to
r1...n and x1...n with cross-attention to predict the target output r*. In the aggregator and
the decoder, ANPs and NPs have similar operations.

First of all, for the definition of ConvCNPs, the translation equivariance is defined in
Property 3.

Property 3 (Translation equivariance) [31]. Assume H is a function space on X, and T and T′

can be defined:

T : X×Z → Z , Tτ Z =((x1+τ, y1), · · · , (xm+τ, ym))
T′: X× H → H , T′τ h(x)= h(x− τ)

The mapping Φ : Z → H is called translation equivariance, if Φ(Tτ Z)= T′τΦ(Z) for
all τ ∈ X and Z ∈ Z .

Theorem 1. Assume a collection Z ′≤M ⊆ Z≤M, which has multiplicity K. If the function
Φ : Z ′≤M → Cb(X, Y) is permutation invariant, translation equivariant, and continuous, then
Φ has a representation as follows [31]:

Φ(Z) = ρ(E(Z)), E((x1, y1), · · · , (xm, ym)) =
m

∑
i=1

Φ (yi)ψ(−xi)

For continuous and translation-equivariant ρ : H → Cb(X, Y) , continuous
Φ : Y → RK+1 , and ψ : X → R , where H is a function space, the function Φ is called
ConvDeepSet.

The key considerations of φ, ψ, and ρ for Φ of ConvCNPs are:

(1) Setting ψ to be a positive definite reproducing kernel Hilbert space (RKHS) [35].

(2) Setting φ(y)= (y 0, y1, · · · , yK
)

[36].

(3) Setting ρ to be a CNN.
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The ConvCNPs can be represented by a conditional distribution, as follows:

p(Y | X, Z) =
N

∏
n=1

p(yn | Φ θ(Z)(xn)) =
N

∏
n=1
N (yn; µn, Σn) (4)

where (µ n, Σn)= Φθ(Z)(x n).
For an on-the-grid version of ρ(·), a CNN is firstly applied to E(Z), and then an MLP

can map the output at each pixel in the target set to R2C. To summarize, the on-the-gird
algorithm is given by:

(
µ, σ2

)
= CNN︸ ︷︷ ︸

ρ

(

E(context set)︷ ︸︸ ︷
[ Conv(Mc)︸ ︷︷ ︸
density channel

; Conv(Mc � I)/ Conv(Mc)︸ ︷︷ ︸
multiplies by ψ and sums

]T) (5)

where
(
µ, σ2) are means and variances, ρ is implemented with a CNN, and E is produced

by the mask Mc and a convolution operation.

2.2. Definition of SDE-Net

Neural ordinary differential equation (ODE-Net): Neural nets such as residual net-
works (ResNet) [37], normalizing flows [38], and recurrent neural network decoders [39]
map an input x to an output y through a sequence of hidden layers; the hidden representa-
tions can be viewed as the states of a dynamical system:

xt+1= xt+ f (xt, t) (6)

where t ∈ {0 · · · T} is the index of the layer, and xt ∈ RD is the hidden state at neural
network layer t. The equation can be reorganized as xt+∆t−xt

∆t = f (x t , t), where ∆t = 1. If
we assume that ∆t→ 0 , then we can obtain the parameterized continuous dynamics of
the hidden units, which apply an ODE specified by a neural network:

lim
∆t→0

xt + ∆t− xt

∆t
=

dxt

dt
= f (x t , t, θ) (7)

The solution of an ODE can be computed using a black-box differential equation
solver to evaluate the hidden unit state wherever necessary. However, ODE-Net is a
deterministic model for predictions, and cannot model epistemic uncertainty. To overcome
this disadvantage, the novel SDE-Net model is proposed to characterize a stochastic
dynamical system for capturing epistemic uncertainty with Brownian motion, which is
widely used to model the randomness of the motion of atoms or molecules in physics.

SDE-Net: A standard Brownian motion term is added to Equation (7) to form a neural
SDE dynamical system. The continuous-time dynamical system is expressed as follows:

dxt = f (xt, t)dt + g(xt, t)dWt (8)

where g(xt, t) indicates the variance of the Brownian motion, and represents the epistemic
uncertainty of the dynamical system. However, a standard Brownian motion Wt is a
stochastic process, which follows the three properties: (a) W0 = 0; (b) ∇W = Wt −Ws is
N(0, t− s) for all t ≥ s ≥ 0; and (c) for any two different time intervals, the increments
∇W1 and ∇W2 are independent random variables.

More importantly, f (x t , t) and g(xt, t) in Equation (8) can be represented by NNs to
construct SDE-Net. Where f (x t , t) is used as the drift net to control the system in order to
achieve good predictive accuracy and aleatoric uncertainty, and g(xt, t) is utilized as the
diffusion net to represent the epistemic uncertainty of the dynamical system. f

(
x, t; θ f

)
and g

(
x0; θg

)
must both be uniformly Lipschitz continuous. This can be satisfied by
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using Lipschitz nonlinear activations in the network architectures, such as ReLU, sigmoid,
and Tanh.

3. Proposed Methods

Section 3.1 shows the architecture of vNPs–SDE net, which is implemented by different
NPs for specific deep leraning tasks. Section 3.2 presents the objective function of vNPs–
SDE net for uncertainty estimates. The implementation algorithms of the ConvCNPs–SDE-,
ANPs–SDE-, and CNPs–SDE-Net are described in Section 3.3.

3.1. The Architecture of vNPs–SDE-Net

In Section 3.1.1, for synthetic 1D regression and 2D image classification tasks, we
firstly apply ConvCNPs to complete the ID data with high missing rates, and then use
SDE-Net to quantify the uncertainty of the noisy ID dataset.

In Section 3.1.2, for multidimensional regression tasks, we replace the downsampling
NNs in SDE-Net with the encoder of CNPs or ANPs in order to encode the regression data
as latent representation r, then use the drift net and diffusion net of SDE to deal with r,
and finally apply the decoder of CNPs or ANPs to substitute the fully-collected NNs in
SDE-Net.

3.1.1. vNPs–SDE-Net for Synthetic 1D Regression and 2D Image Classification Tasks

For synthetic 1D regression and 2D image classification tasks, the latest research [31]
has extensively compared the ConvCNPs model to the CNPs and ANPs models, and
proved that the ConvCNPs model with translation equivariance can improve performance
in off-the-grid synthetic 1D datasets or on-the-grid image datasets. The reason for the
lack of comparision between vanilla NPs models and the ConvCNPs model is that the
ANPs model with attention mechanisms is usually superior to vanilla NPs, which suffer
a fundamental disadvantage of underfitting and give inaccurate prediction values at the
observed context points on which they condition [30], so the CNPs and ANPs models can
be viewed as preeminent representatives of the NPs family.

In Figure 3, we introduce the architecture of the ConvCNPs–SDE model, which
contains ConvCNPs and the SDE-Net model for training synthetic 1D regression and 2D
image classification tasks.
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For the ConvCNPs-Net model, we apply ID datasets to train ConvCNPs and SDE-Net.
Where ConvCNPs select all observed context points as signal channel SMc � I, suppose I
stands for the image and Mc denotes density channel DMc.

We can concatenate S and D to form [S, D], which means that “there is a point at
this position”. Then a convolutional neural network (CNN) is applied to a normalized
[S, D] to produce Means and Vars, which can be used to generate a continuous multivariate
normal distribution.

For the SDE-Net model used in 1D regression tasks, we adopt upsampling with a
linear layer. The drift net uses a fully connected linear layer, and the linear layer adopts
ReLU activation without batch normalization. The diffusion net can apply multiple linear
layers and ReLU activations, and it has one output and employs sigmoid activation for the
last layer.

For the SDE-Net model used in 2D image classification tasks, we use a downsampling
layer with multiple convolutional layers for extracting features; each layer uses ReLU
activation and batch normalization. The drift net consists of convolutional layers, and the
input channel of each layer sets aside an extra position for layer depth, which signifies the
number of discretization points of the stochastic process. The diffusion net is the same
as the drift net, except for the last layer, which uses sigmoid activation function to return
0 or 1 for the diffusion net, while the drift net outputs based on the number of output
channels [19].

The above mainly introduces the model structure of ConvCNPs and SDE-Net in the
training phase for synthetic 1D regression and 2D classification tasks with ID datasets.

Figure 4 shows that the ConvCNPs model can be utilized to complete masked ID
datasets, and the recovered ID datasets can be more effectively and accurately recongnized
by SDE-Net.
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3.1.2. vNPs–SDE-Net for Multidimensional Regression Tasks

For 1D regression and 2D classification tasks, the ConvCNPs model has advantages
over other members of the NPs family. For multidimensional regression tasks, however, it
is difficult to apply the property of translation equivariance, due to its uncertain number of
dimensions, so we try to adopt ANPs and CNPs models.

For example, in the encoder of the CNPs model [29], observed context points
(x, y)1, . . . , (x, y)i are passed through an MLP to generate representations r1, . . . , ri, and
then mean function m is employed to r1, . . . , ri to produce the global deterministic represen-
tation rC. Specifically, the encoder in CNPs has six latent fully connected linear layers with
ReLU activation, and the number of neurons in the six latent layers is equal to the dimen-
sion n of the regression dataset. For the decoder of the CNPs model, we still apply an MLP
with five fully connected linear layers and ReLU activation; the generated representation
rC is concatenated with the target data xT and together passed through the defined decoder
MLP to produce the parameters Means and Vars for multivariate normal distribution.

For the encoder of the ANPs model [30], we still adopt an MLP with six fully connected
linear layers to replace the self-attention mechanism for the deterministic path, and apply
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three fully connected linear layers for the latent path. The mean aggregation is replaced
by a multihead cross-attention mechanism, and the number of heads is 10. Thus, in
the deterministic path, each context point (x, y)i is passed through an MLP to produce
representation ri; the target query xT attends to the i key–value pairs (xi, ri), and assigns
weights wi to each pair in order to generate a representation r∗ = ∑

i
wiri.

For the latent path of the ANPs model, a representation rC is generated in a similar
manner to the encoder of the CNPs model. Global latent rC can be utilized to parameterise
a multivariate normal distribution, which can model different realisations of the data-
generating stochastic process, and sample from the distribution to produce the latent
variable z, corresponding to one realization of the stochastic process.

For the decoder of the ANPs model, r* and z are concatenated with xT and passed
through an MLP with six fully connected linear layers to produce the parameters Means
and Vars of multivariate normal distribution.

In Figure 5a, the ID dataset is used to train the CNPs–SDE or ANPs–SDE models; the
encoder and decoder are from the CNPs and ANPs models, respectively, so as to generate
the parameters Means and Vars of normal distribution. In Figure 5b, a masked ID dataset
is utilized to test the performance of the constructed vNPs–SDE model when facing the ID
dataset with noise or a high missing rate.
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The ANPs model with attention mechanisms is more expressive and accurate than the
NPs and CNPs models. At test time, the computational time complexity of the NPs and
CNPs models is O(n + m), because each of n context points passes through the MLP of the
encoder to generate r1, . . . , rn for producing rC, and then rC is incorporated with each of m
target points in the decoder to generate m predicted values. However, the computational
time complexity of the ANPs model increases from O(n + m) to O(n(n + m)), since the
self-attention is applied to n contexts, and m target points are used to compute weights for
all of n contexts.

3.2. The Objective Function of the vNPs–SDE-Net for Uncertainty Estimates

The objective function for training the vNPs–SDE-Net model is:

min
θvNP

Ex0∼Ptrain E(LogP(x0)) + min
θ f

Ex0∼Ptrain E(L(xT))

+min
θg

Ex0∼Ptrain g
(
x0; θg

)
+ min

θg
Ex̃0∼POOD

g
(

x̃0; θg
)

s.t. dxt = f
(

xt, t; θ f

)
︸ ︷︷ ︸
drift neural net

dt+ g
(
x0; θg

)︸ ︷︷ ︸
diffusion neural net

dWt

(9)

where LogP(·) in Equation (9) is the log-likelihood loss function as a reconstruction term
for the ConvCNPs and CNPs models. However, for the ANPs model, the first item of the
objective function in Equation (9) is the evidence lower bound (ELBO), which includes
a reconstruction term and a Kullback–Leibler divergence (KL) term. This is because the
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ANPs model has a latent path through which to generate latent variable z for modelling
uncertainty. L(·) is the loss function dependent on the task, such as cross-entropy loss for
classification tasks and log-likelihood loss for regression tasks; T is the terminal time of the
stochastic processes; Ptrain is the distribution of the training data; and POOD represents the
OOD data. The OOD data can be obtained by adding additive Gaussian noise to the noisy
inputs x̃0 = x0 + ε, and then distributing the inputs according to the convolved distribution.

Once an vNPs–SDE-Net has been trained, we can obtain multiple random realiza-
tions of the SDE-Net in order to get samples {xT}M

m=1, and then compute the two un-
certainties from them. The aleatoric uncertainty is given by the expected predictive en-
tropy Ep(xT |x0, θ f ,g)

[H[p(y|x T)]] in classification, and by the expected predictive variance
Ep(xT |x0, θ f ,g)

[σ(xT)] in regression. The epistemic uncertainty is given by the variance of the
final solution Var(xT).

After the vNPs and SDE-Net models are trained, suppose that the ID dataset I with
missing rate MR and mask = Bernoulli (1-MR), so the masked ID dataset I can be expressed
as mask ∗ I. The test performance of vNPs–SDE for the masked ID dataset can be processed
as follows:

(1) Completed_I = vNPs (mask ∗ I)
(2) Means, Vars = SDE-Net(Completed_I)

Since our purpose is to perform supervised learning and uncertainty quantification,
the simple Euler–Maruyama method with fixed step size is adopted for model training.
Hence, the time interval [0, T] is divided into N subintervals, and SDE can be simulated as:

xk+1 = xk + f
(

xk, t; θ f

)
∆t + g

(
x0; θg

)√
∆t Zk (10)

where Zk ∼ N(0, 1) and ∆t = T/N. The number of steps for solving the SDE can be
regarded equivalently as the number of layers in the NNs. Moreover, the training of SDE-
Net is actually the same as in NNs. The vNPs–SDE model is optimized in the Algorithms
in the following sections.

3.3. The Implementation of vNPs–SDE-Net

In this section, vNPs are implemented with ConvCNPs for 1D regression and 2D
image classification tasks in Algorithm 1, and vNPs are realized with CNPs and ANPs for
multidimensional regression tasks in Algorithm 2.

3.3.1. The Implementation of vNPs–SDE-Net with ConvCNPs

Assume an ID dataset {(x, y)i}
n
i=1∼ P(x, y) for 1D regression or 2D image classifica-

tion tasks, and then sample a minibatch of m data, which includes inputs Xm and targets
Ym from the ID dataset: (Xm, Ym) ∼ pID(x, y).

For training the ConvCNPs model, suppose that the context rate (CR) is 80%, so
the context dataset (Xm

c , Ym
c ) is composed of 80% of m datasets, and the sampled m data

are viewed as the target dataset (Xm
t , Ym

t ). The output of the ConvCNPs model is a
multivariate normal distribution, so the predicted Means and Vars can be called by the
ConvCNPs model, the purpose of which is to complete the masked ID dataset.

For the SDE-Net model, the purpose of the training of the drift net is to fit the ID
dataset. Meanwhile, for the training diffusion net g, the dataset from ID or OOD is
respectively marked with labels 0 and 1, and the purpose of g is to distinguish whether the
dataset comes from ID or OOD, so the purpose of training g is to minimize or maximize
the binary cross-entropy loss function for the ID dataset or the OOD dataset, respectively.

For 1D regression tasks, the specific settings of SDE-Net include a layer depth of
four; the upsampling net has a linear layer with a [1–50] architecture, the drift net has
a fully connected linear layer with a [50–50] architecture, and the diffusion net has a
[50–100–100–1] fully connected linear layer. ReLU is the activation function. The number
of training epochs is 1000 and the optimizer is an SGD. The learning rate for the diffusion
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net is 0.01, while for the drift net it is 1e-4, and the learning rate is multiplied by 0.1 when
the number of epochs reaches 60 and the momentum and weight decay are 0.9 and 5e-4,
respectively. We reshape the generated ID dataset to (batch_size, total _points), where
batch_size = 15 and total_points = 100. Assume the MR is given, so the remaining training
dataset is (1-MR) × total_points for the 1D tasks.

Algorithm 1 Implementation of the ConvCNPs–SDE model

Inputs: ID dataset pID(x, y); CR and MR are the context rate and missing rate, respectively; ccnps
represents the ConvCNPs model of vNPs for completing the ID dataset; h1 is the downsampling
net for 2D image classification tasks or the upsampling net for 1D regression tasks; h2 is the fully
connected net; f represents the drift net and g represents the diffusion net; t is the layer depth; L1
is the cross-entropy loss function, L2 is the log-likelihood loss function, and L3 is the binary
cross-entropy loss function.
Outputs: Means and Vars
for #training iterations do
1. Sample a minibatch of m data: (Xm, Ym) ∼ pID(x, y);
2. if for 1D regression task:
3. Context points (Xm

c , Ym
c ) are generated from sampled target points (Xm

t , Ym
t ) based on CR,

where (Xm
t , Ym

t ) equals (Xm, Ym);
4. Forward through the ConvCNPs model: Y_dist = ccnps(Xm

c , Ym
c , Xm

t );
5. Forward through the upsampling net of the SDE-Net block: X0

m = h1(Xm, Ym);
6. else for 2D image classification task:
7. Forward through the ConvCNPs model: Y_dist = ccnps(Xm, Ym);
8. Forward through the downsampling net of the SDE-Net block: X0

m = h1(Xm, Ym);
9. for k = 0 to t − 1 do
10. Sample Zk

m ∼ N (0, 1);
Xk+1

m = Xk
m + f (Xk

m, t)∆t + g(X0
m)
√

∆tZk;
11. end for
12. Forward through the fully connected layer of the SDE-Net block: Yf

m = h2(Xk
m);

13. Update h1, h2 and f by ∇ h1, h2
and f 1

m L1

(
Yf

m, Ym
)

;

14. Update ccnps by ∇ccnps
1
m L2(Y_dist.means, Ym

t );
15. Sample a minibatch of m data from ID: (Xm, 0) ∼ pID(x, y);
16. Sample a minibatch of m data from OOD: (X̃m, 1) ∼ pOOD(x, y);
17. Forward through the downsampling or upsampling nets of the SDE-Net block:
X0

m, X̃m
0 = h1(Xm), h1(X̃m);

18. Update g by ∇g
1
m L3(g(X0

m), 0)−∇gL3(g(X̃m
0 ), 1);

for #testing iterations do
19. Evaluate the of ConvCNPs–SDE model;
20. Sample a minibatch of m data from ID: (Xm, Ym) ∼ pID(x, y);
21. mask = Bernoulli (1-MR)
22. masked_Xm = mask ∗ Xm;
23. completed_Xm= ccnps(masked_Xm);
24. Means, Vars = SDE-Net(completed_Xm);

For the 1D regression tasks, the specific settings of the ConvCNPs–SDE model
include the ConvCNPs net having four 1D convolution layers, which can be described
as [in_channel, out_channel, kernel_size, and stride, padding], and specifically contain
{[3, 16, 5, 1, 2], [16, 32, 5, 1, 2], [32, 16, 5, 1, 2], and [16, 2, 5, 1, 2]}. The density is 25
and K = 1 for φ(y) =

(
y0, y1, . . . , yK), and the RBF is chosen for covariance ψ(y); thus,

these settings can satisfiy Theorem 1. The model settings of SDE-Net are the same as those
defined in the previous paragraph, except for the upsampling layer, which concatenates
x and y as inputs and has fully connected linear NNs with a [2–50] architecture. ReLU
is the activation function. For training ConvCNPs–Net, the number of training epochs is
1000, Adam is the optimizer, and the learning rate and weight decay are 1e-3 and 1e-5,
respectively. The setting of the training parameters is the same as for SDE-Net in the
previous paragraph.



Sensors 2021, 21, 3708 13 of 26

For the 2D image classification tasks, vanilla SDE-Net follows the settings of [19]. For
the convolutional layer, the downsampling layers contain three 2D convolution (Conv2d)
layers, which can be described as {[1, 64, 3, 1, 0], [64, 64, 4, 2, 1], and [64, 64, 4, 2, 1]}
for the MNIST dataset and {[3, 64, 3, 1, 0], [64, 64, 4, 2, 1], and [64, 64, 4, 2, 1]} for the
CIFAR10 dataset. The drift net contains two Conv2d layers with {[65, 64, 3, 1, 1], and
[65, 64, 3, 1, 1]}, and the diffusion net has the same convolution layers as the drift net,
but the diffusion net owns an extra linear connection [64–1] in the last layer. The fully
connected layer of SDE-Net is [64–10]. In order to train the SDE-Net, the layer depth is 6
and the number of training epochs is 40, An SGD is used as the optimizer, the learning
rates of diffusion net are 0.01 and 0.005 for MNIST and CIAFAR10, respectively, and the
learning rates of the other nets are 0.1. The momentum and weight decay are 0.9 and
5e-4, respectively.

For the 2D image classification tasks, the ConvCNPs-Net of the ConvCNPs–SDE model se-
lects all observed context points as signal channel SMc� Inputs, assuming Inputs stands for the
image and Mc denotes density channel DMc, where Mc = Bernoulli( number of context pixel points

number of total pixel points

)
and the number of context points is uniformly sampled from [ number of total pixel points

100 ,
number of total pixel points

2 ]. S and D are firstly processed by a Conv2d layer {[1, 64, 9, 1, 4]}
for the MNIST dataset and {[3, 64, 9, 1, 4]} for the CIFAR10 dataset in order to generate
S’ and D’, and then we can concatenate them to form [S’, D’], which is passed through a
CNN, and finally the output of the CNN is transformed to a continuous function space
for translation equivariance. The CNN firstly has a Conv2d layer with {[128, 64, 1, 1, 0]},
and then has eight Conv2d residual blocks—each residual block having two Conv2d layers
with {[64, 64, 5, 1, 2]}—and finally owns the last Conv2d layer with {[64, 2, 1, 1, 0]} for
the MNIST dataset and {[64, 6, 1, 1, 0]} for the CIFAR10 dataset. The training parameters
include 20 training epochs; Adam is chosen as the optimizer, the batch size is 16, and the
learning rate is 5e-4. The settings of SDE-Net in the ConvCNPs–SDE model are the same as
in the previous paragraph.

3.3.2. The Implementation of vNPs–SDE-Net with CNPs or ANPs

For the multidimensional regression tasks, we apply vanilla CNPs or ANPs to repre-
sent vNPs. As described in Figure 5, the downsampling net and the fully connected layer
are replaced by the encoder and decoder of the CNPs or ANPs models. The training and
testing processes are described in Algorithm 2:

As the dimension of YearPredictionMSD is 90, we apply a fully connected DNN with
a [91–90–90–90–90–90] architecture for the encoder of the CNPs model, and the decoder
architecture of the CNPs model is [180–90–90–90–2]. For SDE-Net, the drift net has a
fully connected linear layer with a [180–180] architecture, while the diffusion net has a
[180–100–1] DNN architecture, and the layer depth is four. ReLU is the activation function.
The number of training epochs is 60 and the optimizer is an SGD; the learning rate for the
diffusion net is 0.01, while for the drift net it is 1e-4, and the learning rate is multiplied by
0.1 when the number of epochs reaches 30 and the momentum and weight decay are 0.9
and 5e-4, respectively.

For the ANPs of the ANPs–SDE model, the deterministic path and latent path of the
encoder have fully connected DNN architecture—[91–90–90–90–90–90] and [91–90–90–180],
respectively. The cross-attention encoder of (keys, queries) has linear layers with a [90–90]
architecture, and a multihead attention mechanism is adopted in order to deal with the
processed (keys, queries), where the embedded dimension is 90 and the number of par-
allel attention heads is 10. The decoder of the ANPs has a fully connected DNN with
a [270–90–90–90–2] architecture. For vanilla SDE-Net, the architecture of the drift net is
[270–270], while that of the diffusion net is [270–100–1], and the layer depth is four. ReLU
is the activation function. The training parameter settings of the ANPs–SDE model are the
same as those of the CNPs–SDE model.
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Algorithm 2 Implementation of the CNPs–SDE or ANPs–SDE models

Inputs: ID dataset pID(x, y); MR is the missing rate of the ID dataset; the downsampling layer h1
is the encoder of the CNPs or ANPs models; f and g are the drift net and diffusion net,
respectively; L1 is the negative log-likelihood loss function for the CNPs model or the ELBO for
the ANPs model; L2 is the binary cross-entropy loss function; the fully collected layer h2 is the
decoder of the CNPs or ANPs models to produce Means and Vars.
Outputs: Means and Vars
for #training iterations do
1. Sample a minibatch of m data: (Xm, Ym) ∼ pID(x, y);
2. Forward through the downsampling net: d_mean_z = h1(Xm) and X0

m = (Xm, d_mean_z );
3. Forward through the SDE-Net block:
4. for k = 0 to n− 1 do
5. Sample Zk

NM ∼ N (0, 1);
6. Xk+1

m = Xk
m + f (X0

m, t)∆t + g(X0
m)
√

∆tZk;
7. end for
8. Means, Vars = h2(Xk+1

m)
9. Update h1, h2 and f by ∇ h1, h2

and f 1
m L1(Means, Ym);

10. Sample a minibatch of m data from ID: (Xm, 0) ∼ pID(x, y);
11. Sample a minibatch of (X̃m, 1) ∼ pOOD(x, y);
12. Forward through the downsampling or upsampling nets of the SDE-Net block:
X0

m, X̃m
0 = h1(Xm), h1(X̃m);

13. Update g by ∇g
1
m L2(g(X0

m), 0)−∇gL2(g(X̃m
0 ), 1);

for #testing iterations do
14. Evaluate the CNPs–SDE or ANPs–SDE models;
15. Sample a minibatch of m data from ID: (Xm, Ym) ∼ pID(x, y);
16. mask = Bernoulli(1-MR);
17. masked_Xm = mask ∗ Xm;
18. Means, Vars = CNPs_SDE (masked_Xm) or ANPs_SDE (masked_Xm).

4. Results

Section 4.1 introduces the evaluation metrics. Section 4.2 presents the specific settings
of the vNPs–SDE model and the expermental results.

4.1. Evaluation Metrics

For an OOD detection task under both classification and regression settings, assume
P represents real postive, N stands for real negative, T indicates true prediction, and F
signifies false prediction. Thus, TP implies that predicted samples and real samples are
postive, FP denotes that predicted samples are positive and real samples are negative,
FN betokens that predicted samples are postive and real samples are positive, and TN
symbolizes that predicted samples and real samples are negative.

We follow previous works such as [19,23], and apply several metrics [40] for the
OOD detection task. Larger values of these metrics indicate better detection performance.
N represents that the number of TPR ∈ [0.94, 0.96].

TPR =
TP

TP + FN
(11)

FPR =
FP

FP + TN
(12)

TNR at 95% TPR = 1− FPR
N

(13)

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)
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Accuracy =
TP + TN

TP + TN + FP + FN
(16)

AUROC is used to denote the area under the receiver operating characteristic (ROC)
curve; the horizontal axis of the ROC curve is represented by FPR, and the vertical axis is
represented by TPR, so the points (FPR, TPR) on the ROC curve are coordinate points in
the 2D Cartesian coordinate system. The probability of predicting the positive sample as
postive is p1, and that of predicting the negative sample as positive is p2. Therefore, AUROC
reflects the sorting ability of the classifier on the samples. In addition, AUROC is not
sensitive to whether or not the sample categories are balanced, which is also the reason that
AUROC is usually used to evaluate the classification performance of unbalanced samples.

AUROC =
∑i∈P ri − |

P|×(|P|+1)
2

|P| × |N| (17)

where P denotes a positive sample set, N signifies a negative sample set, | · | stands for the
number of samples, and ri respresents the rank of element i in the total set (P + N), from
the smallest to the largest, according to the predicted scores.

AUPR is used to represent fthe area under the precision-recall (PR) curve; the hori-
zontal axis of the PR curve is represented by Recall, while the vertical axis is represented
by Precision.

4.2. vNPs–SDE Model for ID Dataset with MR

In this section we present the experimental results of the vNPs–SDE model for the
ID dataset with MR. Specifically, the ConvCNPs-Net is performed for the synthetic 1D
regression task in Section 4.2.1, the vNPs–SDE model is implemented with CNPs and ANPs
for the multidimensional regression task in Section 4.2.2, and the ConvCNPs–SDE model is
performed with the benchmark datasets MNIST and CIFAR10 in Sections 4.2.3 and 4.2.4,
respectively.

We compare our vNPs–SDE model with the following methods for uncertainty esti-
mates: (1) SDE-Net, which is the lastest non-Bayesian approach for uncertainty estimation
in DNNs; (2) the approximate Bayesian method MC-dropout; and (3) the Bayesian ap-
proach BBP.

4.2.1. ConvCNPs–SDE-Net for Synthetic 1D Regression Tasks

In order to obtain the synthetic 1D dataset, the radial basis function (RBF) kernel was
used for GPs to generate the synthetic 1D dataset [29,31]. The RBF kernel was k(x, x′) =

σ1 ∗ e−
1

2σ2
(x−x′)2

, and we set the output scale to σ1 = 0.5 and the length scale to σ2 = 0.5.
We sampled 1500 x-axis data points from the domain [−2, 2] based on uniform distribution,
and then the covariance of the GPs could be obtained from the sampled data points applied
to the RBF, and the offset was 1e-5. If the means of the GPs are zeros and the GPs have
noise—which has a mean of zero and standard deviation of 0.02—then we can generate
1500 y-axis GP data points for each batch. For the reproducibility of the experiment, the
seed was 123.

In order to train SDE-Net, BBP, and ConvCNPs–SDE-Net, we firstly sorted the sampled
x-axis data points from the smallest to largest, and then adjusted the generated y-axis data
points corresponding to the x-axis to form the training GPs dataset {(x, y)i}

1500
i=1 .

The results are shown in Figure 6. The blue cross stands for training data, the black line
represents the SDE-Net’s posterior mean, the red line denotes the ConvCNPs–SDE-net’s
posterior mean, the yellow represents the BBP approach’s posterior mean, and the shaded
region signifies the mean ± 3 standard deviations. Since MC-Dropout produced poor
results, it is not shown in Figure 6. Firstly, we find that as the MR increases, the ConvCNPs–
SDE model can fit the remaining data points more accurately than vanilla SDE-Net and the
BBP model. Secondly, the ConvCNPs–SDE model has smaller variance than the SDE-Net
and BBP models. Lastly, and most importantly, the curve of the ConvCNPs–SDE model
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is smoother than that of the vanilla SDE-Net and BBP models in almost all experiments,
which is significant for those who have not sampled continuous x-axis samples in domain
[−2, 2] to predict corresponding y values.
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4.2.2. The CNPs–SDE and ANPs–SDE Models for Multidimensional Regression Tasks

We followed the methods of [19], applying the YearPredictionMSD multidimensional
regression dataset for this experiment. The YearPredictionMSD dataset is used to predict
the release year of a song from audio features [41], and the year ranges from 1922 to 2011.
The dataset has 515,345 instances and 90 attributes. We followed the train/test split—the
first 463,715 examples for training and the last 51,630 examples for testing.

We obtained randomized mask = Bernoulli (1-MR), where MR was chosen from [0.1,
0.3, 0.5, 0.7, 0.9] to compute the RMSE. The masked YearPredictionMSD dataset can be
expressed as mask ∗ YearPredictionMSD. The BBP, MC-dropput, ANPs–SDE-Net, SDE-Net,
and CNPs–SDE-Net models were run independently six times, and the results of the
RMSE are shown in Table 1. Firstly, we can conclude that as the MR increases, the RMSE
values gradually increase. Secondly, the CNPs–SDE model is more accurate than the BBP,
MC-dropout, ANPs–SDE and SDE-Net models.

We applied the YearPredictionMSD dataset as ID data and the Boston Housing dataset
as test OOD data. Table 2 shows the OOD detection performance for different models.

We report the average performance and standard deviation for five random initializa-
tions in Table 2. Because of the imbance of the test ID and OOD datasets, AUPR out is a
better metric than AUPR in [19], so ANPs–SDE-Net is a more effective method than the
other methods with respect to AUPR in and AUPR out, and the conclusions drawn from
other metrics show that ANPs–SDE-Net is also comparable or superior to BBP, MC-dropout,
and SDE-Net.

The experimental results of Tables 1 and 2 show that vNPs can not only help SDE-Net im-
prove the accuracy of the ID dataset with MR, but also improve the OOD detection performance.
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Table 1. ID dataset YearPredictionMSD with MR.

Model Missing Rate RMSE

BBP

MR = 0.1

16.6 ± 0.1
MC-dropout 12.4 ± 0.4

ANPs–SDE-Net 9.3 ± 0.6
SDE-Net 9.3 ± 0.7

CNPs–SDE-Net 9.1 ± 0.6

BBP

MR = 0.3

20.4 ± 0.5
MC-dropout 15.2 ± 0.6

ANPs–SDE-Net 13.1 ± 0.9
SDE-Net 13.1 ± 1.0

CNPs-SDE Net 12.9 ± 0.8

BBP

MR = 0.5

23.5 ± 0.4
MC-dropout 17.5 ± 1.0

ANPs–SDE-Net 16.1 ± 1.1
SDE-Net 16.1 ± 1.2

CNPs–SDE-Net 15.8 ± 1.0

BBP

MR = 0.7

26.3 ± 1.1
MC-dropout 19.6 ± 1.2

ANPs–SDE-Net 18.5 ± 1.3
SDE-Net 18.5 ± 1.4

CNPs–SDE-Net 18.2 ± 1.2

BBP

MR = 0.9

28.8 ± 1.3
MC-dropout 21.5 ± 1.3

ANPs–SDE-Net 20.7 ± 1.4
SDE-Net 20.7 ± 1.6

CNPs–SDE-Net 20.4 ± 1.3

Table 2. OOD detection for regression on YearPredictionMSD + Boston Housing.

Model #Parameters RMSE TNR at TPR 95% AUROC Detection
Accuracy

AUPR
In

AUPR
Out

BBP 30.0K 9.5 ± 0.2 9.0 ± 1.4 56.8 ± 0.9 52.1 ± 0.7 45.3 ± 1.3 1.3 ± 0.1
MC-dropout 14.9K 8.8 ± 0.0 6.1 ± 0.5 53.0 ± 1.2 53.7 ± 0.6 99.2 ± 0.2 1.1 ± 0.1

ANPs–SDE-Net 288.5K 8.8 ± 0.0 44.4 ± 4.2 84.2 ± 1.6 75.2 ± 1.7 99.8 ± 0.0 28.8 ± 2.0
CNPs–SDE-Net 141.0K 8.9 ± 0.1 7.9 ± 1.2 59.3 ± 1.5 58.6 ± 0.9 99.2 ± 0.1 1.3 ± 0.1

SDE-Net 12.4K 8.7 ± 0.1 64.3 ± 0.6 84.1 ± 1.1 80.6 ± 0.5 99.7 ± 0.0 24.7 ± 1.0

4.2.3. ConvCNPs–SDE-Net for Image Classification Dataset: MNIST

The benchmark MNIST dataset is a dataset of handwritten digits from 0 to 9, which
consists of 70,000 28 × 28 monochrome images, including 60,000 training images and
10,000 test images [38]. The results of Figure 7 show that even when 70% of the original
MNIST dataset is lost, we can roughly distinguish the values of the completed digits with
the naked eye.

The drift net in SDE-Net can precisely fit the ID dataset MNIST for classification,
and the diffusion net of SDE-Net directly models the relationship between the ID dataset
MNIST and epistemic uncertainty; this idea encourages SDE-Net to output greater un-
certainty for OOD dataset SVHH and low uncertainty for ID dataset MNIST. However,
SDE-Net needs to improve the test performance for receiving the ID dataset MNIST with
MR. Thus, we evaluated the performance of the BBP, MC-dropout, ConvCNPs–SDE,
and SDE-Net models for OOD detection and ID with MR in classification tasks. MR
takes values from [0.1, 0.3, 0.5, 0.7, 0.9, RMR], where RMR denotes random sampling from
[0.5, 0.7, 0.9] each time. We report the average performance and standard deviation for five
random initializations.
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Table 3 shows that as the MR increases, the ConvCNPs–SDE model gradually exceeds
the vanilla SDE-Net, BBP, and MC-dropout models in all metrics, including the MR obtained
by random sampling.

Aside from OOD data detection, it is also significant that the application of uncertainty
makes the model aware of the possibility of making mistakes in test time. Hence, the
misclassification detection aims at exploiting the predictive uncertainty to distinguish
the test dataset with MR in which the model has misclassified [19,30]. Table 4 shows the
misclassification detection performance of the BBP, MC-dropout, ConvCNPs–SDE, and
SDE-Net models on ID dataset MNIST with MR = [0.1, 0.3, 0.5, 0.7, 0.9, RMR] and SVHN.
We report the average performance and standard deviation for five random initializations.

Table 4 shows that as the MR increases, the ConvCNPs–SDE model consistently
surpasses the BBP, MC-dropout, and vanilla SDE-Net models in the first four metrics,
including the MR obtained by random sampling. Possibly as a result of the imbalance
of the test ID and OOD datasets, BBP achieves comparable or even better performance
compared to the MC-dropout, ConvCNPs–SDE, and SDE-Net models in the last metric
AUPR err. Overall, the ConvCNPs–SDE model is a better model for misclassification tasks
in practice.

4.2.4. ConvCNPs–SDE-Net for Image Classification Dataset: CIFAR10

The benchmark dataset CIFAR10 has 60,000 color images with 10 classes, including
50,000 training images and 10,000 test images; each class has 6000 images, and the pixel of
each image is 3× 32× 32 [39].
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Table 3. OOD detection results of the BBP, MC-dropout, ConvCNPs–SDE, and SDE-Net models on ID dataset MNIST with
MR = [0.1, 0.3, 0.5, 0.7, 0.9, RMR] and OOD dataset SVHN.

MNIST
with MR Model Classification

Accuracy
TNR at

TPR 95% AUROC Detection
Accuracy

AUPR
In

AUPR
Out

MR = 0.1

BBP 88.76 ± 1.73 33.17 ± 5.09 87.77 ± 2.03 83.75 ± 2.32 85.85 ± 3.21 94.02 ± 3.42
MC-dropout 98.90 ± 0.06 88.66 ± 0.04 96.22 ± 0.04 92.18 ± 0.02 89.23 ± 0.05 98.44 ± 0.03

ConvCNPs–SDE-Net 99.32 ± 0.06 98.69 ± 0.04 99.68 ± 0.00 97.99 ± 0.02 99.01 ± 0.01 99.89 ± 0.00
SDE-Net 98.87 ± 0.06 99.40 ± 0.03 99.86 ± 0.01 98.82 ± 0.04 99.61 ± 0.02 99.94 ± 0.01

MR = 0.3

BBP 78.37 ± 3.10 24.90 ± 3.12 82.06 ± 4.12 74.46 ± 2.27 73.86 ± 2.15 90.22 ± 2.30
MC-dropout 93.47 ± 0.06 50.10 ± 0.06 92.01 ± 0.03 86.84 ± 0.06 84.68 ± 0.03 95.75 ± 0.05

ConvCNPs–SDE-Net 98.94 ± 0.07 99.04 ± 0.04 99.78 ± 0.01 98.27 ± 0.06 99.34 ± 0.03 99.92 ± 0.01
SDE-Net 94.98 ± 0.19 99.47 ± 0.02 99.70 ± 0.03 98.96 ± 0.03 99.51 ± 0.06 99.82 ± 0.04

MR = 0.5

BBP 52.50 ± 4.15 16.70 ± 2.10 70.47 ± 3.12 78.37 ± 3.10 54.43 ± 3.34 84.60 ± 2.12
MC-dropout 75.88 ± 0.10 21.72 ± 0.09 81.64 ± 0.09 75.87 ± 0.06 70.73 ± 0.04 89.60 ± 0.05

ConvCNPs–SDE-Net 97.45 ± 0.17 98.58 ± 0.03 99.70 ± 0.01 98.15 ± 0.05 99.17 ± 0.02 99.87 ± 0.01
SDE-Net 80.54 ± 0.36 99.17 ± 0.05 98.45 ± 0.08 97.26 ± 0.04 98.06 ± 0.05 98.96 ± 0.07

MR = 0.7

BBP 23.71 ± 4.11 17.40 ± 2.23 66.36 ± 3.12 61.91 ± 3.23 43.01 ± 2.44 83.18 ± 2.23
MC-dropout 46.48 ± 0.10 12.16 ± 0.16 70.32 ± 0.11 65.67 ± 0.16 53.76 ± 0.21 83.06 ± 0.15

ConvCNPs–SDE-Net 88.96 ± 0.33 97.45 ± 0.06 99.20 ± 0.03 97.47 ± 0.07 98.03 ± 0.04 99.62 ± 0.03
SDE-Net 49.25 ± 0.11 45.25 ± 1.36 93.53 ± 0.13 90.68 ± 0.15 92.36 ± 0.16 95.68 ± 0.12

MR = 0.9

BBP 10.08 ± 1.14 54.34 ± 2.34 84.13 ± 4.34 77.78 ± 1.44 59.63 ± 2.33 93.72 ± 1.34
MC-dropout 17.15 ± 0.54 8.41 ± 0.44 60.38 ± 0.35 57.66 ± 0.34 38.11 ± 0.24 77.82 ± 0.36

ConvCNPs–SDE-Net 36.54 ± 0.58 79.72 ± 0.65 96.20 ± 0.06 93.82 ± 0.14 92.86 ± 0.16 97.81 ± 0.08
SDE-Net 14.56 ± 0.34 10.30 ± 0.49 71.82 ± 0.25 67.83 ± 0.18 64.34 ± 0.30 82.80 ± 0.23

MR = RMR

BBP 36.90 ± 10.56 26.37 ± 3.63 73.05 ± 2.26 67.85 ± 1.62 51.52 ± 2.56 87.43 ± 1.22
MC-dropout 42.97 ± 1.60 11.26 ± 2.41 69.34 ± 1.43 64.95 ± 1.20 53.56 ± 2.62 82.43 ± 1.12

ConvCNPs–SDE-Net 68.90 ± 11.66 95.72 ± 1.60 97.89 ± 0.85 95.91 ± 0.96 95.70 ± 1.67 98.89 ± 0.45
SDE-Net 45.34 ± 13.66 22.73 ± 7.30 86.24 ± 5.13 83.25 ± 5.82 83.74 ± 6.71 91.00 ± 3.11

Table 4. Misclassification detection performance of the BBP, MC-dropout, ConvCNPs–SDE, and SDE-Net models on MNIST
with MR = [0.1, 0.3, 0.5, 0.7, 0.9, RMR] and SVHN.

MNIST with MR Model TNR at
TPR 95% AUROC Detection

Accuracy
AUPR
Succ

AUPR
Err

MR = 0.1

BBP 40.78 ± 2.34 89.55 ± 0.92 82.52 ± 1.25 98.79 ± 0.22 44.14 ± 3.22
MC-dropout 86.52 ± 1.22 95.59 ± 0.88 91.76 ± 0.68 99.93 ± 0.01 36.68 ± 1.88

ConvCNPs–SDE-Net 92.44 ± 1.06 98.15 ± 0.12 95.01 ± 0.50 99.99 ± 0.00 31.49 ± 5.90
SDE-Net 84.43 ± 3.22 96.75 ± 0.60 92.59 ± 0.76 99.96 ± 0.01 31.32 ± 2.89

MR = 0.3

BBP 24.90 ± 2.26 82.15 ± 2.82 75.45 ± 1.32 94.61 ± 2.34 54.26 ± 2.04
MC-dropout 60.92 ± 1.24 91.73 ± 0.41 54.25 ± 1.51 99.21 ± 0.01 46.33 ± 1.31

ConvCNPs–SDE-Net 85.80 ± 3.63 97.22 ± 0.42 93.00 ± 1.02 99.97 ± 0.01 35.81 ± 4.71
SDE-Net 54.25 ± 1.51 91.11 ± 0.46 84.01 ± 0.93 99.44 ± 0.04 40.00 ± 1.75

MR = 0.5

BBP 12.17 ± 2.16 72.48 ± 1.26 68.08 ± 1.52 78.42 ± 4.25 68.32 ± 2.55
MC-dropout 27.28 ± 0.33 82.15 ± 0.33 76.10 ± 0.23 92.85 ± 0.13 56.85 ± 0.43

ConvCNPs–SDE-Net 72.53 ± 3.26 95.07 ± 0.51 89.36 ± 0.39 99.86 ± 0.01 36.57 ± 4.60
SDE-Net 33.07 ± 0.53 83.79 ± 0.35 76.12 ± 0.24 95.33 ± 0.14 56.45 ± 0.83

MR = 0.7

BBP 10.17 ± 1.27 65.10 ± 1.21 65.09 ± 0.82 51.87 ± 0.57 82.44 ± 1.22
MC-dropout 15.67 ± 0.87 73.82 ± 0.35 68.55 ± 0.32 72.23 ± 0.37 72.72 ± 0.33

ConvCNPs–SDE-Net 43.58 ± 1.67 89.10 ± 0.16 82.10 ± 0.41 98.44 ± 0.07 48.40 ± 1.01
SDE-Net 28.88 ± 0.97 76.12 ± 0.50 68.84 ± 0.47 75.88 ± 0.34 75.61 ± 0.76

MR = 0.9

BBP 9.21 ± 1.22 69.39 ± 1.45 64.41 ± 0.62 26.28 ± 1.46 94.27 ± 0.32
MC-dropout 7.45 ± 0.32 59.26 ± 0.43 57.29 ± 0.12 25.06 ± 0.22 86.16 ± 0.22

ConvCNPs–SDE-Net 15.73 ± 0.67 70.02 ± 0.70 64.73 ± 0.81 60.84 ± 1.19 77.94 ± 0.59
SDE-Net 7.14 ± 0.42 60.91 ± 0.41 59.25 ± 0.30 22.04 ± 0.79 88.79 ± 0.25

MR = RMR

BBP 10.85 ± 2.43 70.43 ± 5.52 67.83 ± 3.42 68.10 ± 6.22 80.86 ± 3.23
MC-dropout 34.81 ± 13.32 78.00 ± 5.40 72.60 ± 4.40 77.47 ± 9.45 76.60 ± 4.21

ConvCNPs–SDE-Net 36.95 ± 11.08 88.19 ± 2.74 81.51 ± 2.59 94.38 ± 3.33 71.57 ± 6.18
SDE-Net 35.11 ± 15.40 83.44 ± 6.02 76.25 ± 4.80 80.15 ± 15.44 83.92 ± 3.18
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Figure 8 shows that even when 70% of the original CIFAR10 is lost, we can generally
distinguish the objects in the completed images with the naked eye in the bottom row. We
evaluate the performance of the ConvCNPs–SDE and SDE-Net models for OOD dataset
SVHN detection and ID dataset CIFAR10 with MR in classification tasks. We report the
average performance and standard deviation for five random initializations.
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Table 5 shows that the ConvCNPs–SDE model exceeds the other models in the im-
portant classification accuracy metric, while BBP surpasses almost all of the other models
in the remaining four metrics for all MR values, which shows that the ability of BBP to
identify SVHN as OOD data is better than that of the other methods. From the perspective
of classification accuracy, the ConvCNPs–SDE model is a better model for OOD detection
with benchmark dataset CIFAR10 in practice.

Table 6 shows the misclassification detection performance of the BBP, MC-dropout,
ConvCNPs–SDE, and SDE-Net models on ID dataset CIFAR10 with MR and SVHN. We
report the average performance and standard deviation for five random initializations. For
the different values of MR, the ConvCNPs–SDE model surpasses the BBP, MC-dropout,
and vanilla SDE-Net models in the first four metrics. Possibly as a result of the imbalance
of the test ID and OOD datasets, SDE-Net achieves better performance than the other
models in the last metric AUPR err. Overall, the ConvCNPs–SDE model is a better model
for misclassification tasks in practice for CIFAR10.



Sensors 2021, 21, 3708 21 of 26

Table 5. Classification and OOD detection results of the BBP, MC-dropout, ConvCNPs–SDE, and SDE-Net models on ID
dataset CIFAR10 with MR = [0.1, 0.3, 0.5, 0.7, 0.9, RMR] and OOD dataset SVHN.

CIFAR10
with MR Model Classification

Accuracy
TNR at

TPR 95% AUROC Detection
Accuracy

AUPR
In

AUPR
Out

MR = 0.1

BBP 19.83 ± 0.45 64.31 ± 3.35 92.57 ± 2.47 86.49 ± 2.45 84.29 ± 1.55 96.46 ± 1.42
MC-dropout 43.01 ± 0.35 3.67 ± 0.13 50.90 ± 0.15 52.50 ± 0.10 31.15 ± 0.16 71.50 ± 0.05

ConvCNPs–SDE-Net 78.66 ± 0.20 4.46 ± 0.31 59.97 ± 0.16 59.33 ± 0.11 42.23 ± 0.15 75.54 ± 0.07
SDE-Net 23.23 ± 0.25 1.57 ± 0.10 37.79 ± 0.13 50.36 ± 0.06 24.04 ± 0.14 63.41 ± 0.06

MR = 0.3

BBP 19.64 ± 0.15 59.53 ± 3.43 92.62 ± 1.89 86.50 ± 1.55 86.45 ± 2.45 96.36 ± 1.45
MC-dropout 24.91 ± 0.25 1.87 ± 0.15 40.81 ± 0.35 50.01 ± 0.26 23.62 ± 0.12 65.83 ± 0.25

ConvCNPs–SDE-Net 76.46 ± 0.20 4.25 ± 0.37 58.31 ± 0.30 57.89 ± 0.20 40.55 ± 0.18 74.71 ± 0.22
SDE-Net 13.11 ± 2.89 4.61 ± 0.25 52.28 ± 0.34 52.55 ± 0.15 31.46 ± 0.12 72.74 ± 0.30

MR = 0.5

BBP 19.44 ± 0.25 46.25 ± 4.26 87.53 ± 3.72 81.05 ± 3.72 77.70 ± 3.38 93.95 ± 1.68
MC-dropout 18.49 ± 0.19 2.22 ± 0.15 40.79 ± 0.19 50.00 ± 0.15 23.42 ± 0.17 66.10 ± 0.16

ConvCNPs–SDE-Net 72.21 ± 0.26 3.57 ± 0.19 55.08 ± 0.28 55.35 ± 0.13 37.36 ± 0.15 72.98 ± 0.22
SDE-Net 10.33 ± 0.06 4.97 ± 0.08 50.74 ± 0.26 50.95 ± 0.17 29.18 ± 0.21 72.33 ± 0.13

MR = 0.7

BBP 18.39 ± 0.52 21.77 ± 4.09 77.28 ± 3.11 70.66 ± 2.47 67.15 ± 2.63 87.66 ± 2.29
MC-dropout 14.61 ± 0.18 2.76 ± 0.28 42.66 ± 0.22 50.00 ± 0.13 24.26 ± 0.23 67.36 ± 0.14

ConvCNPs–SDE-Net 62.47 ± 0.49 2.50 ± 0.06 48.70 ± 0.28 52.08 ± 0.05 31.64 ± 0.14 69.60 ± 0.13
SDE-Net 10.10 ± 0.08 4.91 ± 0.28 49.86 ± 0.50 50.27 ± 0.19 27.85 ± 0.31 72.05 ± 0.34

MR = 0.9

BBP 14.60 ± 0.67 1.10 ± 0.40 55.31 ± 2.84 65.55 ± 1.23 54.23 ± 2.43 68.97 ± 0.93
MC-dropout 12.01 ± 0.16 2.81 ± 0.11 43.53 ± 0.06 50.00 ± 0.07 24.45 ± 0.04 67.91 ± 0.16

ConvCNPs–SDE-Net 36.48 ± 0.43 1.29 ± 0.01 37.86 ± 0.39 50.49 ± 0.05 23.48 ± 0.30 64.32 ± 0.18
SDE-Net 10.18 ± 0.06 4.91 ± 0.18 49.40 ± 0.06 50.19 ± 0.12 27.02 ± 0.05 71.92 ± 0.11

MR = RMR

BBP 16.37 ± 0.38 15.04 ± 5.27 70.19 ± 1.22 65.72 ± 0.64 59.93 ± 0.21 83.36 ± 1.87
MC-dropout 14.78 ± 0.08 2.31 ± 0.25 41.87 ± 0.35 50.00 ± 0.15 23.72 ± 0.23 66.80 ± 0.33

ConvCNPs–SDE-Net 56.04 ± 4.08 1.98 ± 0.24 46.79 ± 2.04 51.80 ± 0.48 30.41 ± 1.90 68.45 ± 0.98
SDE-Net 10.18 ± 0.05 4.82 ± 0.26 50.01 ± 0.36 50.42 ± 0.22 28.00 ± 0.28 72.03 ± 0.27

Table 6. Misclassification detection performance of the BBP, MC-dropout, ConvCNPs-SDE, and SDE-Net models on
CIFAR10 with MR = [0.1, 0.3, 0.5, 0.7, 0.9, RMR] and SVHN.

CIFAR10 with
MR Model TNR at

TPR 95% AUROC Detection
Accuracy

AUPR
Succ

AUPR
Err

MR = 0.1

BBP 10.97 ± 0.66 58.75 ± 0.62 56.19 ± 0.70 25.69 ± 0.32 85.16 ± 0.77
MC-dropout 10.89 ± 0.60 67.19 ± 0.12 63.17 ± 0.23 61.69 ± 0.13 69.60 ± 0.24

ConvCNPs–SDE-Net 27.47 ± 0.80 83.77 ± 0.18 77.33 ± 0.26 94.88 ± 0.12 54.12 ± 0.64
SDE-Net 21.85 ± 1.60 72.51 ± 0.29 66.64 ± 0.35 44.85 ± 0.58 88.73 ± 0.21

MR = 0.3

BBP 9.84 ± 0.34 56.17 ± 0.24 54.57 ± 0.34 24.77 ± 0.14 84.32 ± 0.67
MC-dropout 6.47 ± 0.34 58.22 ± 0.26 56.90 ± 0.46 32.83 ± 0.66 78.92 ± 0.24

ConvCNPs–SDE-Net 26.96 ± 0.83 82.70 ± 0.24 76.04 ± 0.37 93.83 ± 0.17 55.70 ± 0.50
SDE-Net 8.61 ± 1.24 65.01 ± 0.68 63.04 ± 0.57 22.85 ± 0.88 91.82 ± 0.34

MR = 0.5

BBP 8.19 ± 0.02 55.73 ± 0.68 55.17 ± 0.70 23.32 ± 0.43 83.74 ± 0.02
MC-dropout 6.11 ± 0.14 57.18 ± 0.23 56.69 ± 0.22 24.32 ± 0.26 84.06 ± 0.34

ConvCNPs–SDE-Net 23.55 ± 0.79 80.31 ± 0.16 73.78 ± 0.33 91.32 ± 0.05 57.15 ± 0.57
SDE-Net 5.89 ± 1.22 53.64 ± 0.83 53.40 ± 0.19 13.31 ± 0.32 90.45 ± 0.33

MR = 0.7

BBP 9.00 ± 0.09 53.62 ± 0.66 53.73 ± 0.61 20.29 ± 1.04 84.15 ± 0.25
MC-dropout 5.89 ± 0.78 56.51 ± 0.58 56.08 ± 0.38 18.90 ± 0.22 87.23 ± 0.38

ConvCNPs–SDE-Net 18.24 ± 0.69 75.85 ± 0.39 69.81 ± 0.40 84.37 ± 0.38 61.18 ± 1.22
SDE-Net 5.05 ± 0.98 50.28 ± 0.51 51.17 ± 0.40 10.67 ± 0.44 89.87 ± 0.28
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Table 6. Cont.

CIFAR10 with
MR Model TNR at

TPR 95% AUROC Detection
Accuracy

AUPR
Succ

AUPR
Err

MR = 0.9

BBP 5.06 ± 0.13 53.45 ± 2.20 53.78 ± 1.96 16.89 ± 1.98 86.25 ± 0.14
MC-dropout 5.73 ± 0.78 55.93 ± 0.35 55.23 ± 0.28 14.60 ± 0.75 89.49 ± 0.23

ConvCNPs–SDE-Net 11.53 ± 0.48 66.46 ± 0.45 62.43 ± 0.48 56.21 ± 0.53 74.77 ± 0.72
SDE-Net 4.81 ± 0.88 50.93 ± 0.40 51.68 ± 0.36 11.26 ± 0.68 89.86 ± 0.25

MR = RMR

BBP 8.12 ± 0.17 55.30 ± 1.18 53.92 ± 0.85 19.66 ± 0.15 86.11 ± 0.74
MC-dropout 6.66 ± 0.58 56.51 ± 0.88 55.59 ± 0.83 19.04 ± 0.55 87.32 ± 0.25

ConvCNPs–SDE-Net 16.33 ± 1.57 75.42 ± 1.58 69.77 ± 1.39 80.73 ± 3.76 66.10 ± 2.00
SDE-Net 5.34 ± 0.77 51.45 ± 0.94 51.74 ± 0.89 11.69 ± 0.56 90.21 ± 0.24

5. Discussion

In this work, we proposed to incorporate the NPs family into SDE-Net to form a
vNPs–SDE model for handling noisy ID datasets. The vNPs–SDE model was implemented
with ConvCNPs-Net for synthetic 1D regression and 2D image classification tasks, and
the vNPs–SDE model was implemented with CNPs and ANPs for multidimensional
regression tasks.

For the multidimension regression tasks, the results of five models including BBP,
MC-dropout, SDE-Net, CNPs–SDE, and ANPs–SDE are demonstrated in Tables 1 and 2.
Table 1 shows that as the MR increases, the values of RMSE gradually increase, and the
CNPs–SDE model is more accurate than the other models. Table 2 shows that SDE-Net
still has the optimal performance in RMSE, TNR at TPR 95%, and detection accuracy.
Additionally, compared to the other models, SDE-Net has the fewest parameters. However,
ANPs–SDE-Net is a more effective method than the other methods in terms of AUROC,
AUPR in, and AUPR out, and is comparable to SDE-Net in RMSE.

The results of the three models—namely, BBP, SDE-Net, and ConvCNPs–SDE—are
plotted in Figure 6 for synthetic 1D data. Due to MC-dropout method not fitting the
GPs dataset, the results of MC-dropout are not shown in Figure 6. More specifically, our
proposed ConvCNPs–SDE model can fit the synthetic 1D data better and produce smaller
variances than the BBP and SDE-Net models. When MR is 0.9, we find that the results of
the BBP and SDE-Net models deviate from the data. At the beginning and the end of the
training set, BBP produces worse results than SDE-Net and ConvCNPs–SDE; this may be
due to the learning Bayesian phase at the beginning and the uncertainty introduced about
unseen data [8].

The results of the four models, including BBP, MC-dropout, SDE-Net, and ConvCNPs–
SDE, are given in Tables 3 and 4 for MNIST. Table 3 shows that as the MR increases, the
ConvCNPs–SDE model gradually surpasses the vanilla SDE-Net, BBP, and MC-dropout
models in all metrics, including the MR obtained by random sampling; this indicates that
even with noisy ID data, our proposed ConvCNPs–SDE model can still effectively detect
OOD data. Table 4 describes the misclassification detection when exploiting the proposed
ConvCNPs–SDE model to distinguish between the dataset with MR and the OOD data.
Table 4 shows that as the MR increases, the ConvCNPs–SDE model consistently surpasses
the BBP, MC-dropout, and vanilla SDE-Net models in the first four metrics. However, BBP
achieves comparable or better performance compared to the MC-dropout, ConvCNPs–SDE,
and SDE-Net modesl in the last metric AUPR err; this may be as a result of the imbalance
of the ID and OOD data [19], or due to noisy ID data, and as such deserves further study.



Sensors 2021, 21, 3708 23 of 26

For the benchmark CIFAR10 dataset, the results are depicted in Tables 5 and 6. Table 5
shows that the ConvCNPs–SDE model is superior to the other methods in terms of clas-
sification accuracy, while BBP surpasses almost all of the other models in the remaining
four metrics for all ID data with MR values, which means that the ability of BBP to identify
SVHN as OOD data is better than that of the other methods. Tables 3 and 5 show the OOD
detection for MNIST and CIAFR10, respectively, but we have different conclusions for
distinguishing between OOD and noisy ID data. We can assume that the BBP method, as
illustrated in Table 5, has some advantages over the other approaches in terms of OOD
detection, with three large input channels. For the ID dataset, the limitation of our proposed
ConvCNPs–SDE model may be that the ordinary DNNs in the ConvCNPs–SDE model
cause poor performance. Tables 4 and 6 have smiliar conclusions.

Despite these promising results, future studies should train and test our models on
more datasets in order to verify their performance, and at the same time test the OOD
detection perforamnce of BBP on other noisy ID datasets. Moreover, the local optimal
characteristics of DNNs lead to instability of the predicted results; as such, future research
should explore other methods to make the loss values of DNNs close to a constant.

6. Conclusions

SDE-Net is a much simpler and more straightforward method than BNNs for uncer-
tainty estimates in deep neural networks, and it can separate different sources of uncertain-
ties and accurately distinguish between ID and OOD datasets. It is a promising method
for equipping NNs with meaningful uncertainties in many safety-critical fields, such as
medical diagnoses and self-driving vehicles. However, SDE-Net does not consider the
general situation in a wider field—for instance, ID data with noise or high missing rates
in practice.

In this paper, we proposed a vNPs–SDE model, which combines SDE-Net with the
NPs family in order to deal with the noisy ID dataset for uncertainty estimates. Specifically,
we applied the permutation invariance property of CNPs and ANPs for multimensional
regression tasks, and the translation equivariance property of ConvCNPs for synthetic 1D
regression and 2D image classification tasks. Extensive experimental results of the vNPs–
SDE model show that vNPs can not only improve SDE-Net in terms of OOD detection
and misclassification detection between ID and OOD datasets, but also allow it to make
more efficient and accurate predictions for ID datasets with missing rates than the BBP,
MC-dropout, and vanilla SDE-Net models—except for OOD detection for CIAFR10, in
which BBP is superior. Hence, the ability of the BBP model in terms of OOD detection
deserves further extensive experiments.

Future studies should consider the local optimal problem of deep learning models,
which is also one of the sources of uncertainty that generate unstable predictions—we can
find a curved path, and the parameters of DNNs on the path can produce near constant
loss of deep learning. The DNNs of the proposed vNPs–SDE model are too simple, but we
can apply transfer learning methods to replace the simple DNNs with the state-of-the-art
ResNets, such as ResNet-18 and ResNet-34, to improve performance.
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SDE-Net Neural stochastic differential equation model
DNNs Deep neural networks
ID In-distribution
OOD Out-of-distribution
NPs Neural processes
vNPs Vanilla neural processes or neural process variants
ConvCNP Convolutional conditional neural process
CNPs Conditional neural processes
ANPs Attentive neural processes
BNNs Bayesian neural processes
PCA Principal component analysis
GPs Gaussian processes
MLP Multilayer perceptron
CNNs Convolutional neural networks
ODE-Net Neural ordinary differential equation
Conv2d Two-dimensional convolution
RKHS Reproducing kernel Hilbert space
ResNet Residual networks
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