cancers

Review

Involvement of Thyroid Hormones in Brain Development

and Cancer

Gabriella Schiera 100, Carlo Maria Di Liegro ! and Italia Di Liegro >*

check for

updates
Citation: Schiera, G.; Di Liegro, C.M.;
Di Liegro, I. Involvement of Thyroid
Hormones in Brain Development and
Cancer. Cancers 2021, 13, 2693.
https://doi.org/10.3390/
cancers13112693

Academic Editor: Amedeo

Columbano

Received: 12 May 2021
Accepted: 27 May 2021
Published: 30 May 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze
e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy;
gabriella.schiera@unipa.it (G.S.); carlomaria.diliegro@unipa.it (C.M.D.L.)

Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina,
Neuroscienze e Diagnostica avanzata) (Bi.N.D.), University of Palermo, 90127 Palermo, Italy

*  Correspondence: italia.diliegro@unipa.it; Tel.: +39-091-2389-7415 (ext. 446)

Simple Summary: Development and function of the mammalian brain clearly require precise regula-
tion of gene expression at both the transcriptional and post-transcriptional level. Thyroid hormones
have been recognized to play a fundamental role in these processes, by acting at multiple levels and
in different brain cell types, through direct effects on transcription, mediated by nuclear receptors,
and also by triggering transduction pathways at the plasma membrane. At the same time, due to
their effects on proliferation, differentiation, and cell metabolism, thyroid hormones may have a
critical role in different kinds of cancer, including brain cancer.

Abstract: The development and maturation of the mammalian brain are regulated by thyroid hor-
mones (THs). Both hypothyroidism and hyperthyroidism cause serious anomalies in the organization
and function of the nervous system. Most importantly, brain development is sensitive to TH supply
well before the onset of the fetal thyroid function, and thus depends on the trans-placental transfer of
maternal THs during pregnancy. Although the mechanism of action of THs mainly involves direct
regulation of gene expression (genomic effects), mediated by nuclear receptors (THRs), it is now
clear that THs can elicit cell responses also by binding to plasma membrane sites (non-genomic
effects). Genomic and non-genomic effects of THs cooperate in modeling chromatin organization and
function, thus controlling proliferation, maturation, and metabolism of the nervous system. However,
the complex interplay of THs with their targets has also been suggested to impact cancer proliferation
as well as metastatic processes. Herein, after discussing the general mechanisms of action of THs and
their physiological effects on the nervous system, we will summarize a collection of data showing
that thyroid hormone levels might influence cancer proliferation and invasion.

Keywords: thyroid hormones; nuclear and membrane TH receptors; brain development; brain
cancer; TH transporters; TH carriers; deiodinases

1. Introduction

It is well known since the end of the 19th century that impaired thyroid function can
cause mental retardation and other adult neurological disorders [1,2].

Consequently, the use of sheep thyroid extracts was introduced in 1891 by Murray [2,3]
to treat the hypothyroid condition that had been called myxoedema [4]. About two decades
later, 3,5,3,5 -tetraiodo-L-thyronine (T4 or thyroxine) was isolated from thyroid extracts by
Kendall [1,5].

Interestingly, it was later found that treatment of pregnant rats with thiouracil (which
inhibits the thyroid peroxidase, TPO) delayed ossification in fetuses, thus suggesting that
thyroid hormones (THs) from the mother were necessary to drive thyroid-dependent
events before the onset of the fetal gland activity [6]. This idea was then confirmed by
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many groups who demonstrated trans-placental transfer of both L-thyroxine (T4), and L-
triiodothyronine (T3), and exposition of fetuses to biologically relevant amounts of free THs
during the first trimester of pregnancy (i.e., before the onset of fetal thyroid function) [7-13].
Notably, it was also demonstrated that maternal thyroxinemia could influence histogenesis
of the fetal brain cortex [10]. Moreover, it was found that deiodinases, selenium-containing
enzymes involved in TH metabolism (see below), regulate the levels of active thyroid
hormones that are transferred, ensuring TH supply to the fetuses while protecting them
from an excess of placental transfer (‘barrier effect”) [11-19].

It has also been clearly established that brain development and maturation, as well
as adult neuronal plasticity, strictly depend on dynamic changes in gene expression, and
that such modifications in transcriptional programs are in turn determined by chromatin
organization [20-23]. In order to modulate chromatin structure, thus regulating the ac-
cessibility of genes to RNA polymerase, a few interrelated mechanisms are required:
(i) post-translational modification of histone proteins; (ii) modification of site-specific DNA
methylation; (iii) changes in the activity of ATP-dependent chromatin remodeling com-
plexes, such as the chromodomain helicase DNA-binding (Chd) family of enzymes; and
(iv) synthesis and incorporation into chromatin of histone variants [21,24-30]. Now, the
nuclear receptors for thyroid hormones (THRs) can bind to chromatin and, depending
on the presence of T3 and/or other regulatory factors, can recruit chromatin remodeling
complexes and /or histone-modifying activities, thus causing the chromatin structure and
gene expression to change [31-37]. Notably, during their terminal differentiation, cortical
neurons acquire a short average spacing of nucleosomes (about 165 bp), while glial cells
have a longer nucleosomal length, similar to most other cell types [38—41]. Although the
functional meaning of this property still remains unclear, many years ago it was found
that THs are able to induce shortening of the chromatin repeat length in neurons cultured
in a chemically defined medium [40]. The short repeat length in differentiated neurons
probably depends on the low level of linker H1 histones, even if neuronal chromatin is still
able to form fibers [41,42].

The effects of THs on the overall nucleosomal spacing suggests that these hormones
may influence not only the chromatin organization of single genes but also the general
architecture of nuclei. If this is the case, however, alterations of their levels could also
be involved in cancer. In cancer cells, chromatin organization is indeed altered in many
ways [43-46], and these modifications can, for example, allow activation of normally silent
proto-oncogenes because of loss of an insulated boundary [47].

After summarizing the general mechanisms of action of THs and their physiological
effects on the developing and mature nervous system, herein we will discuss a few available
data suggesting that, indeed, hypo- and hyperthyroidism might influence brain cancer
proliferation and invasion.

2. Genomic and Non-Genomic Mechanisms of Action of Thyroid Hormones (THs)

Although the best-known effects of THs are mediated by their nuclear receptors
(THRs), it is now clear that TH-dependent signals can start at other sites in the cell, including
the plasma membrane. In order to distinguish the slower nuclear responses from other
pathways, TH effects are now classified as “genomic” (directly elicited at the chromosomal
level) and “non-genomic” (starting at other sites rather than nuclei) [31,37,48-53].

2.1. Nuclear Receptors for THs (THRs)

THRs are encoded by the c-erbA proto-oncogenes, and belong to a superfamily of
nuclear receptors able to recognize short DNA response elements present in the target
genes [54-56]. Notably, there are two genes (THRA and THRB), present on the human
chromosomes 17 and 3, respectively, that are differentially expressed in different tissues of
the body (recently reviewed in [37]). The two genes give rise, by alternative splicing, to
multiple isoforms of alpha and beta receptors, respectively, that show a similar structure
(Figure 1); however, the isoforms known as c-erb-A-&2 and c-erbA-a3 are not able to
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bind the hormones because the splicing events that generate them eliminate part of the
hormone-binding domain [37,57-59]. As shown in Figure 1, all the isoforms contain: (i) an
N-terminal A/B domain, with modulatory functions, among which a role in transcrip-
tion transactivation; (ii) a DNA-binding domain (C) that contains two zinc-fingers, each
coordinated by a zinc ion, through which it interacts with the DNA double helix at the
level of specific motifs, known as TH-response elements (TREs) [13,49,53,60,61]; this region
is also involved in receptor dimerization; and (iii) a hinge domain (D) and (iv) an E/F
domain, which can be involved in binding the hormone, and in stabilizing THR homo- and
hetero-dimers as well as interactions with other proteins [33,37]. A nuclear localization
signal (NLS) is also present in the A/B domain of THR«; interestingly, this sequence under-
goes post-translational modifications, such as phosphorylation [62], and acetylation [63].
Recently, THR sumoylation has also been evidenced [64].

In addition to the proteins derived by alternative splicing events, different TR«x1 iso-
forms exist that are generated by differential AUG use during translation; as a consequence
of using different start codons, these isoforms differ at the N-terminus, while having a
conserved hormone-binding domain. TRx1 proteins with a shorter N-end lack one or both
the NLS, thus losing the ability to enter the nucleus. On the other hand, in the shorter TRx1
isoforms, atypical mitochondrial import sequences (MISs) (Figure 1) can be preferentially
used and can mediate transport to the mitochondria (see below) [65,66].
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Figure 1. Schematic representation of the domain structure of THRx and THRf. The full-length TH
receptors contain: (i) an N-terminal A/B domain, involved in transcription transactivation; (ii) a
DNA-binding domain (C), which recognizes and binds the TH-response elements (TREs), and is
also involved in receptor dimerization; (iii) a hinge domain (D) and (iv) an E/F domain that can
be involved in binding the hormone, as well as in protein—protein interactions. The full-length
THR«1 contains two nuclear localization signals (NLS: red squares) and two atypical mitochondrial
import sequences (MIS: yellow squares). The THRa1 shorter forms, which derive from internal AUG
translational usage, lack one or both NLS; in these proteins, the localizing effect of the mitochondrial
signals is prevalent. THRf3 contains only one NLS (red square) in the D domain [66].

Although THRs mainly form, like other members of the erbA superfamily, het-
erodimers with the retinoic acid X receptor (RXR), they can also bind DNA as monomers,
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homodimers, and even trimers; interestingly, each of these species shows a preference for
specific TREs [37,67-69].

As mentioned above, THRs can bind to chromatin and recruit chromatin remodeling
complexes and/or histone-modifying activities, thus causing the chromatin structure and
gene expression to change [31-37]. In particular, at the level of the so-called ‘positive’
TREs, THR binding, in the absence of THs, recruits “co-repressors”, such as the nuclear
corepressor (NCoR), histone deacetylases (HDAC), and methyl-CpG-binding proteins, thus
repressing transcription. At the level of the same regulatory DNA sequences, binding of
THs to THRs induce the release of co-repressors and binding of “co-activators”, including
the nuclear coactivator 1 (NCoA-1), the cAMP-response element binding protein (CREB)-
binding protein (CBP), also known as p300, and the p300/CBP-associated factor (p/CAF).
The THR-co-activator complexes then elicit transcription activation [33,37,70-82]. Among
the co-activators, central importance has been attributed to proteins with histone acetyl
transferase activity (HAT), which can not only modify nucleosomal histones but also
non-histone proteins [70,71,83].

THR behavior is the opposite at the level of some other TREs: transcription is stim-
ulated in the absence of THs and repressed in their presence; these motifs are defined as
‘negative’ TREs [84,85]. Negative effects of THRs on some genes can also be due to interfer-
ence with the binding of other transcription factors; for example, hormone-bound THRs
can inhibit, in the pituitary gland, the expression of the gene that encodes the 3 subunit of
the thyroid stimulating hormone (TSH). This effect, which is part of the mechanisms re-
sponsible for the negative feedback exerted by THs on the hypothalamus-pituitary-thyroid
(HPT) axis, seems to be due to a tethering effect that prevents the promoter binding of
pituitary-specific transcription factors, such as Pit-1 and GATA2 [86-88]. THRs can indeed
interact with other proteins and bind to chromatin in indirect ways. Moreover, they can also
bind to DNA sequences other than TREs and even outside the gene promoters [37,67,89].

Finally, as mentioned above, the THR ability to enter the nucleus and to bind to
DNA and/or to other chromatin proteins also depends on post-translational modifica-
tions [62—64].

2.2. Plasma Membrane Receptors for THs

The ability of THs to interact with plasma membrane sites was first hypothesized
more than 50 years ago [31,51,90-92]. In the following decades, it was then clearly demon-
strated that extracellular THs can trigger signal transduction pathways that often involve
modification of the intracellular concentration of secondary messengers, such as calcium
ions [48,51,90-97]. It was also found that an essential TH-binding site of the plasma mem-
brane was av[33 integrin, a member of the protein family that anchors the cells to the
extracellular matrix (ECM), thus mediating both tissue organization and regulation of cell
migration events [97-99]. Although initially identified with the same Arg-Gly-Asp (RGD)
amino acid sequence responsible for anchoring cells to the ECM, the TH binding site was
then found to be more complex. It accommodates two sub-sites: (i) S1, which binds T3, and
(if) S2, which can bind both T3 and T4 but shows a higher affinity for T4, and, in addition,
is much more concentrated than T3 outside the cells. T3 binding to S1 elicits a pathway
that involves the phosphoinositide-3-kinase (PI3K), and also plays a role in modulating
the ability of THRs to shuttle between the cytoplasm and the nucleus. On the other hand,
ligand binding to S2 triggers activation of the MAPK/ERK1/2 pathway, via phospholipase
C (PLC) and protein kinase C (PKC) [37,99-102]. As discussed below, activation of intracel-
lular kinases via the MAPK/ERK1/2 pathways can stimulate cell proliferation and might
have a role in different cancer types, including glioma [100,103-106]. Notably, malignant
cells express a higher amount of «v33 integrin when compared with normal cells [105].

2.3. Other TH-Binding Cell Sites

In addition to THRs and the plasma membrane «v 33 integrin, THs also interact with
other intracellular sites. As mentioned in the previous paragraph, some shorter TRo1
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isoforms are generated by starting translation at internal AUG codons. These isoforms
(i.e., p43, p33, p30, and p28; Figure 1, THR«) have a conserved C-terminal TH-binding
domain but differ at their N-terminus. In particular, they lack one or both NLS that mediate
transport of the full-length protein to the nucleus. In the absence of NLS, probably for a
change in the overall conformation of the proteins, the effect of atypical mitochondrial
import sequences (MISs), present in the more distal part of the molecules, can prevail and
mediate transport of at least some of these proteins to mitochondria [65,66]. This is the case
of p43 and p28, which localize to the mitochondrial matrix and the inner mitochondrial
membrane, respectively [65,66]. Notably, p43 can bind canonical TREs, and four TRE-like
motifs are also present in the mitochondrial DNA [65]. Moreover, mitochondrial activity
and mitochondriogenesis are both highly stimulated by p43 overexpression [65,107,108].
This observation, together with the finding that TRa2 (one of the two THR isoforms
unable to bind TH) can bind to the TREs present in the D-loop of mitochondrial DNA,
suggests that THs have direct effects on mitochondrial DNA expression, in addition to the
effects mediated by modulation of the expression of nuclear genes encoding mitochondrial
proteins [37,109].

On the other hand, p30 has been reported to be palmitoylated and anchored to
the inner leaflet of the plasma membrane, in association with caveolin-1 [110]. At this
location, p30 binds THs and activates a signal transduction pathway that stimulates a
pro-proliferative/pro-survival program, by increasing the intracellular concentrations of
calcium, nitric oxide (NO), and cyclic guanosine monophosphate (cGMP), thus triggering
sequential activation of protein kinase G II (PKGII), tyrosine kinase Src, extracellular
signal-regulated kinase (ERK), and Akt signaling [110].

2.4. Transport and Metabolism of THs

After their synthesis in the thyroid gland, L-thyroxine (T4) and triiodo-thyronine
(T3) are secreted into the circulation and transported to the target cells by TH distributor
proteins (THDPs), mainly high-affinity thyroxine-binding globulin (TBG) and transthyretin
(TTR) [111-114]. In addjition to the specialized carriers, albumin and low-density lipopro-
teins (LDLs) can also bind THs, even if with lower affinity [113]. All these proteins control
both the amount of freely exchangeable hormones and uniformity of their distribution in
the blood [112-114].

Circulating THs enter the cells through membrane carriers, the most important of
which are: (i) the monocarboxylate transporters (MCTs) 8 and 10; (ii) the L-type amino
acid transporters (LATs); and (iii) the organic anion transporters (OATPs) [82,115-120]. As
discussed in the next section, mutation of these carriers can cause symptoms of hypothy-
roidism that can be of particular severity in the nervous system [115,116,118,120].

Although the main circulating form of THs is T4, T3 has been considered the active
species as it binds to THRs with the highest affinity [121]. A small amount of T3 is directly
produced in the thyroid gland; however, most of it is directly obtained in the target tissues,
through the action of selenocysteine-containing deiodinating enzymes (DIOs). Three main
members of the DIO family are known: (i) DIO1, a plasma membrane enzyme that catalyzes
deiodination of both the outer and inner rings of iodothyronines; (ii) DIO2, an endoplasmic
reticulum-resident protein that catalyzes deiodination of the outer (phenolic) ring; and
(iii) DIO3, a plasma membrane enzyme that catalyzes deiodination of the inner (thyrosine)
ring. In some cellular conditions, such as ischemia/hypoxia, this enzyme rapidly localizes
to the nuclear envelope, where it inactivates T3 [37,122-125].

DIO2 seems to play a fundamental role in the TH-dependent negative feedback in the
hypothalamus. Tanycytes, specialized ependymal cells located close to the neurons of the
paraventricular nucleus (PVN) that produce thyrotropin-releasing hormone (TRH), receive
T4 and use DIO2 to transform it into T3. The active hormone then reaches PVN and the
pituitary gland, where it inhibits the production of TRH and TSH, respectively [122,126].
As discussed below, DIO2 activity has a critical importance in the brain, where it is enriched
in astrocytes. These cells receive T4 and deiodinate it to T3. The active hormone is then
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transferred to neurons through MCTS carriers. In the neurons, T3 binds to THRs or
is deiodinated by DIO3 [37,116,122]. Noteworthy, this latter enzyme is encoded by an
imprinted gene, the expression of which changes during brain development and in the
different areas of the brain, thus suggesting a fine stage- and region-specific tuning of the
brain’s ability to respond to THs [127].

3. Thyroid Hormones and Mammalian Brain Development

Development and maturation of the mammalian brain are extremely sensitive, both
before and after birth, to thyroid hormones. Since the 1980s it was indeed recognized that
hypothyroid as well as hyperthyroid animals show serious anomalies in the anatomy and
function of the brain [31,128-133]. Moreover, the TH-sensitive phase of the central nervous
system development starts before the onset of the fetal thyroid function, and relies, espe-
cially at the beginning, on the TH supply from the mother; therefore, any impairment in
maternal TH supply during pregnancy causes irreversible brain alterations and mental re-
tardation in humans [132-142]. In addition, TH deficiency in the perinatal period can cause
deafness, due to anomalies of both the peripheral and central auditory system [143-147],
also accompanied by general alteration of craniofacial development [148]. In rats, the audi-
tory system mainly develops in the first four weeks after birth, and perinatal TH deficiency
results in permanent hearing defects [145,149]. It was also found that some structures of
the rat auditory system (e.g., the organ of Corti) could resume when treated with T3 but
only when the TH deficiency did not last for prolonged periods in the critical phase [145].
Notably, in the rat auditory area of the cerebral cortex, experimental hypothyroidism causes
an increase of callosal projecting neurons [150], probably because of an impairment in the
elimination of transient axons that normally accompanies development and projection
stabilization [150].

Dependence on maternal THs in humans is of special importance during the first
trimester of pregnancy, since the fetal thyroid gland function reaches significant levels only
in the second trimester; in addition, the HPT axis is not fully functional till 1-2 months after
birth; thus, actually, around birth, maternal T4 still represents 30-50% of the T4 measured
in the cord blood [151]. Notably, T4 is the main TH that crosses the placenta, thus entering
the fetal blood and then the blood-brain barrier, thus accessing the fetal brain [132].

Maternal thyroid dysfunction can, in turn, depend on different causes, the most
important of which is iodine deficiency [152-155]. For many years, iodine deficiency was
considered a problem restricted to specific geographic areas of the planet (for example,
the mountains) and to populations with nutritional deficits, and was finally approached
by enriching some foods of mass consumption with iodine in order to increase the iodine
supply. For example, in 1994, the World Health Organization (WHO) recommended the
addition of iodine to salt used for cooking [155-157]. Despite this, iodine deficiency still
affects a significant proportion of people in industrialized countries [155,158-161], with
alarming consequences on cognitive functions, as revealed by low intelligence quotient (1Q)
and attention deficit hyperactivity disorder (ADHD) in children born from hypothyroid
mothers [155]. Even more alarming is the TH-disrupting effects of some chemicals present
in the fetal and maternal environment because of pollution or because of their normal
presence in widely used industrial products [162,163]. These molecules can act at multiple
levels: (i) some of them (for example, perchlorate, nitrate, and thiocyanate) act as inhibitors
of the sodium-iodide symporter (NIS), present in the basal membrane of the thyroid
follicular cells, and fundamental for iodide uptake into these cells and, as a consequence,
for TH synthesis; (ii) other compounds (for example, some pesticides like mancozeb and
metiram) inhibit the thyroid peroxidase (TPO), responsible for iodination and synthesis
of thyronines [163]; (iii) still other compounds (for example, 4,4’-isopropylidenediphenol,
BPA, found in plastic products, such as water bottles and other food containers) can interact
with a variety of nuclear hormone receptors. Among the latter, THRs can also be bound,
thus activating TH signaling in the absence of T3 [163-167]; and (iv) the chemical similarity
among some of these molecules and THs may also cause displacement of hormones from
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the interacting proteins in the circulation or from the carriers responsible for their entry
into the cells. In both cases, an impairment of TH distribution and effects will arise [163].
Finally, it has been underlined that some of these effects might depend on mixtures of
chemicals, which do not have any apparent effect when probed as individual molecules
but show synergistic effects when present in combination [162,163]. Notably, it has been
reported that a mixture of 15 common chemicals, each at concentrations reported in human
amniotic fluid, when used as a mixture, could alter thyroid hormone signaling and early
brain development in Xenopus embryos. In particular, modification of neural proliferation
as well as neuron and oligodendrocyte size was noticed [168].

All these observations suggest that, even when their maternal production is normal,
T3 and especially T4 must also cross in sufficient amounts a few critical barriers, in order
to reach the sensitive cells in the developing brain [169]. As already reported above, T4
is the main TH that crosses the placenta barrier; its transport and delivery to the brain is
the next critical step. This happens through the cerebral circulation and hence by delivery
across the blood-brain barrier and, in part, through the choroid plexus [132]. Again, the
main hormone entering the brain is thus T4, which uses plasma membrane carriers, the
most important of which are MCT8 and OATP1C1 [118,120,132,169-171]. Among these
carriers, MCT8 seems to be specific for TH transport, and indeed mutations in the gene that
encodes it (SLC16A2) cause a very rare X-linked disease known as Allan-Herndon-Dudley
syndrome (AHDS) or MCTS8 deficiency [171]. The affected patients present with moderate
to severe intellectual disability and an absence of language, together with hypotonia,
bradykinesia, spasticity, and extrapyramidal manifestations [171-173]. MCT8 is normally
abundant in fetal BBB and its deficiency causes brain hypothyroidism [171].

Notably, fetal BBB carriers have high preference for T4, being, on the contrary, rela-
tively impermeable to T3 [132]. As mentioned above, indeed, the active hormone T3 is
essentially obtained, inside the brain, by astrocytic DIO2 activity: T4 crosses the endothelial
cell layer (BBB) and enter astrocytes, which deiodinate it to T3. The active hormone is then
transferred to neurons through the crucial MCTS8 carriers. In the neurons, T3 will bind to
THRs, eliciting its effect on the brain, or will be deiodinated by DIO3 to catabolic products,
such as 3,3'-T2 [37,116,122] (Figure 2). Notably, T3 itself stimulates DIO3 synthesis, while
inhibiting DIO2 mRNA expression, thus activating a negative feedback loop that opposes
an excessive increase of the T3 concentration [127,132,174]. Both in the developing and
adult brain, indeed, not only hypothyroidism but also hyperthyroidism can induce severe
alterations of brain functions.

During development, all brain cell types are influenced to a various extent by THs,
which control a variety of coordinated processes, from neuronal and glial cell proliferation,
maturation, and migration to cell survival and programmed cell death. Moreover, THs also
regulate neural stem cell fate [175]. A particularly TH-sensitive stage of brain development
is the moment at which post-mitotic neurons start migrating to their final destinations, and
emitting axonal and dendritic processes, therein establishing and stabilizing their synaptic
contacts. A second, and later, important phase is the one in which oligodendrocytes are
actively engaged in myelin synthesis. THRs are indeed expressed both in neurons and
glial cells, and, although THs can regulate gene expression in brain cells also at the post-
transcriptional level [13,132,176-180], most of their effects rely on transcriptional regulation
of a variety of genes in both neuronal and glial cells [132,181-183]. In agreement with the
existence of two main phases of TH action and with the idea that most effects depend
on THR-medjiated transcriptional effects, it has been found that THR expression, during
rat brain development, follows a bimodal pattern, with the first peak at embryonic day
16 (El6) and a later one at postnatal day 6 (P6) [184]. Notably, in both the mammalian
and non-mammalian vertebrate brain, TR3 mRNA is expressed later while TR mRNA is
expressed at earlier stages [13,174,185-187].
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Figure 2. Trafficking of THs to the brain across the blood-brain barrier (BBB). T4 is the main
hormone crossing the BBB. It then enters astrocytes through both OATP1C1 (green rectangles) and
MCTS (yellow ovals) transporters, as well as through other transporters (blue rectangles), such as
LAT1/LAT2. T3 is much less represented in the blood; a few molecules can perhaps reach astrocytes
through MCTS. Once in the astrocytes, T4 is converted to T3 by deiodinase 2 (DIO2). T3 can then exit
astrocytes through transporters that are not well characterized (grey rectangles) and enter neurons
through MCTS. In the neuron, T3 can enter the nucleus and bind its nuclear receptors (pathway a) or
it can be catabolized by DIO3 (pathway b).

Actually, the main effect of THs seems to be size regulation of the neural progen-
itor population from which new brain cells derive both in the developing and adult
brain [175,188,189]. In agreement with this idea, TH deficiency causes cellular hypoplasia
in the rat telencephalon, thus determining, at the end of the brain maturation phase, impair-
ment of complex functions, such as learning and memory capacity [174,190,191]. Similarly,
THs promote dopaminergic neuron differentiation from embryonic neural stem cells (NCSs)
of the ventral midbrain [192]. On the other hand, hyperthyroidism also inhibits rat neu-
ronal differentiation, thus altering the correct maturation of the fetal cortex [175]. This latter
effect is, at least in part, mediated by TH's effect on the expression of some members of the
Hairy and Enhancer of Split (Hes) repressor family. The proteins encoded by these genes
contain basic helix-loop-helix ((HLH) domains by which they bind target DNA sequences,
then recruiting co-repressors. In doing so, they play a critical role in development, by
maintaining progenitor cells and by regulating cell fate decisions [193-195]. One of the
Hes target genes is Mashl, a basic helix-loop-helix domain-containing regulatory protein
able to induce neuronal differentiation [194]. Interestingly, Hes genes have an oscillatory
expression in many cell types, including neural stem cells [196-198]; for example, Hes1
represses its own expression. Given the very short half-life of both Hes1 mRNA and Hes1
protein, their disappearance soon induces a decrease of the inhibiting effect, and a new
round of synthesis, with a periodicity of about 2 h [194,196]. In general terms, Hes genes
seem to be required for maintenance but not for generation of NSCs [194].

On the other hand, in the early phase of brain development, THs clearly stimulate
cell proliferation by upregulating factors, such as Sonic hedgehog (Shh) [131,199]. Shh,
in turn, upregulates DIO3 and downregulates DIO2, through DIO2 ubiquitination and
degradation [174,200]. In the early phase, THs also induce neuronal differentiation, while,
in a later phase, they stimulate differentiation of oligodendroglial precursor cells (OPCs)
into myelinating oligodendrocytes, by inducing cell-cycle arrest and transcription of pro-
differentiation genes [201-204].
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Similarly, during brain development, THs also influence astrocyte differentiation [205—
207], and astrocytes affect, in turn, neuronal maturation by releasing growth factors and
ECM proteins [207].

Interestingly, it has been recently reported that, in a rat model of developmental
hypothyroidism, obtained by treating rats from gestation to adulthood with methimazole,
autophagy was stimulated in the hippocampal neurons that regulate cognitive functions,
with induction of neuroinflammation and impairment of learning and memory capacity
This hippocampal neuronal dysfunction could be improved by T4 treatment [208].

In order to orchestrate all these processes, THs need to regulate, in a coordinated
manner, the expression of complex sets of genes, in different cell types, and in different
phases of neurogenesis [175,182,183]. Indeed, hypothyroidism induces alteration in the
expression of a variety of genes, among which those encoding the chicken ovalbumin
upstream promoter transcription factor 1 (COUP-TF1), involved in the finetuning of T3-
stimulated gene expression [175]; neurogranin, a calmodulin-binding synaptic protein
involved in learning and memory [209,210]; and many components of the cytoskeleton
and ECM [131,211-215], involved in proliferation and migration of nerve cells. It was
also found that treatment with anti-thyroid agents, during neuronal development, causes
a decrease in the number of parvalbumin-expressing GABAergic interneurons in the
mouse cortex and hippocampus [216], as well as a decrease of the total thickness of the
somatosensory, auditory, and visual cortices, with a decrease of the methyl-CpG binding
protein 2 (MeCP2)-positive neuronal nuclei in the cortical layers II-IV [217].

Notably, THs can also affect the overall methylation status of DNA and consequently
chromatin structure, by regulating, on the one hand, the expression of DNA methyl-
transferases [218,219], and, on the other hand, locus-specific DNA demethylation [220].
Most importantly, it has been suggested that altered levels of THs may affect not only fetal
brain development but also brain development of later generations, probably by altering
germ line epigenetic information that can then impact on the expression of genes, such as
those encoding DNA methyl transferases and deiodinases [221].

As mentioned in the previous sections, THs can also affect cell proliferation, survival,
and differentiation through non-genomic mechanisms [222,223]. For example, binding
of T4 to integrin av33 activates the MAPK signaling pathway and promotes expansion
of progenitors in the embryonic neocortex [131,224]. Notably, it has been reported that
tetraiodothyroacetic acid (TETRAC), a deaminated analogue of T4, which inhibits TH
binding to integrin av33, completely abolishes the progenitor expansion of the embry-
onic mouse neocorte induced by integrin ocv33 activation, thus indicating that expansion
requires T4 binding to integrin ov(3 [224]. Moreover, it has been reported that both
T4 and reverse T3 (rT3), but not T3, can regulate the F-actin amount in elongating neu-
rites of cerebellar neurons in culture. This effect can be blocked by peptides able to bind
integrins [225].

It is worth noting that THs still have a critical effect on the NSCs of the adult mam-
malian brain, where these cells are mainly present in the subventricular zone (SVZ) and
the subgranular zone (SGZ) of the hippocampus, in a quiescent state (for an extensive and
recent review, see [175]). NSCs form a heterogeneous population, with the potential to give
rise to both neurons and glial cells, depending on specific signals; for example, SVZ NSCs
can generate oligodendroglial precursors (OPCs) after injury [175,204]. This latter effect is
mediated by THs [226,227], and probably involves THRf [227]. Based on this observation,
it has been suggested that the use of THRf agonists might be of help in the treatment of
neurodegenerative disorders involving demyelination, such as multiple sclerosis [227].

On the other hand, as long as it concerns adult neurogenesis, while there is a general
agreement on adult hippocampal neurogenesis (AHN) in the dentate gyrus of rodents,
data available for the human brain are somehow discrepant, and the generation of new
neurons throughout life still remains to be definitively determined [228-232].



Cancers 2021, 13, 2693

10 of 29

4. Thyroid Hormones and Brain Cancer

In 1896, in his ‘Original Communication” on the treatment of inoperable cases of
carcinoma of the ‘mamma’ (i.e., breast carcinoma), George Beatson affirmed that it was
probably a mistake “to assign to the nervous system the entire regulation of the metabolic
changes in the tissues of the body”, and proposed that breast cancer, in particular, might
originate from factors produced by the ovaries [233]. This was one of the first suggestions
concerning the possible role in cancer of the chemical messengers defined, a decade later,
by Ernest Henry Starling as “hormones” [234].

In the following decades a variety of studies focused on what has been called hor-
monal carcinogenesis [235]. In particular, between the end of the 1970s and the beginning of
the 1990s, different studies, performed both in culture and in vivo, suggested that THs had
a role in neoplastic transformation, and that hypothyroidism could reverse TH-dependent
growth and spread of tumor cells [236-241]. For example, a patient affected by a metastatic
lung cancer, during chemotherapy, began suffering of cardiac arrhythmia and because of
this was also treated with amiodarone HCI. This drug induces thyroid function impair-
ment, and, indeed, some months after starting this therapy, he was hospitalized because of
mixedema coma. The patient was treated with thyroxine and recovered. Surprisingly, the
tumor mass was reduced and the patient lived for four years after the coma event [239].
Similarly, the experimental induction of a hypothyroid state in mice affected by either
spontaneous or xenografted human tumors was often shown to reduce the rate of cancer
growth [239]. Moreover, it has been reported that high free T4 (FT4) levels are associated
with an increased risk of any solid, lung, and breast cancer [242,243], and that hypothy-
roidism is associated with an older age of onset of different kinds of cancer (for example,
breast and lung cancers) [244-246]. In the case of breast cancer, an effect of T3 on cancer
cell motility has also been reported [106]. On the other hand, hypothyroidism seems to
correlate with an increased risk of colorectal cancer and hepatocellular carcinoma [247].
In particular, THs can control the balance between proliferation and differentiation of
colorectal cancer stem cells (CSCs), inducing differentiation and reducing growth, thus
acting as an anticancer agent [248-251].

In Section 2.2, we reported that THs, after binding to av33 integrin, can activate intra-
cellular kinases via the MAPK/ERK1/2 pathways, thus stimulating cell proliferation. This
ability might have a role in different cancer types [100,103-106,245], also because malignant
cells express higher amounts of avf33 integrin when compared with normal cells [105].
Notably, activation of these pathways affects transcription of a variety of genes encoding
proteins involved in different aspects of cancer, such as signal transduction, angiogenesis,
regulation of cytoskeleton dynamics, and epithelial-mesenchymal transition [104-106]. In
addition, T3 binding to the av33 integrin S1 site activates a pathway that involves the
phosphoinositide-3-kinase (PI3K), and modulates the ability of THRs to shuttle between
the cytoplasm and the nucleus [99-102]. Moreover, THRs can also directly activate PI3K
by binding to its regulatory subunit (p85) [99,251]. It is thus possible to envisage multiple
ways through which THs can influence cancer growth and invasion.

However, as discussed below for brain cancers, the molecular mechanisms underlying
these effects, and even the consistency of the observations obtained from different experi-
ments have been not completely clarified because the effects of THs might be different in
normal and cancer cells, as well as in different kinds of cancer cells [102,252].

From this point of view, a relevant topic is the effect of THs on cancer cell response to
therapy. It has been reported, for example, that THs improves the effects of chemotherapy
in breast cancer patients [253,254]. Similarly, treatment with T3 could enhance the effects
of cisplatin and gemcitabine on pancreatic cancer cells [254,255]. However, T3 has opposite
effects on hepatocellular carcinoma cells (HCCs) [256] and colon cancer cells, probably
by stimulating the expression of P-glycoprotein/multidrug resistance-1 (P-gp/MDR1), a
member of the ATP-binding cassette-containing (ABC) transporters that mediate xenobiotic
extrusion from cells [257]. These observations are apparently in contrast with the above-
mentioned inhibiting effect of THs on the same cancers [247], and suggest that the overall
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effect of THs can be different in the presence and in the absence of chemotherapy. In
any case, the TH effect on P-gp, and consequently on cell efflux of chemotherapeutic
drugs, seems to be activated by ov33 integrin, since it can be counteracted by the already
mentioned TH antagonist TETRAC [257,258], even if THR binding to two closely spaced
sequences, present upstream of the transcription start site, has also been reported to be
required for the maximal induction of MDR1 gene expression by THs [259]. Notably,
activity of P-gp can also be reduced by TETRAC by an av{33-mediated reduction of
the plasma membrane Na* /H* exchanger, and the consequent reduction of intracellular
pH [258].

Moreover, TETRAC is also able to restore the radiosensitivity of cancer cells, probably
by inhibiting TH-induced activation of DNA repair mechanisms in response to the DNA
damaging effects of radiation [258]. This TETRAC effect has also been observed in US7MG
glioblastoma cells, which, after exposure to the TH antagonist, already show an increased
degree of DNA damage in the pre-irradiation state, and reduced capacity of DNA repair in
the post-radiation state [260]. Despite these observations in cultured glioblastoma cells,
it is not yet clear which effects THs can have on brain cancer response to therapy. On the
one hand, indeed, THs have, as discussed above, many different and synergic mechanisms
of action, while, on the other hand, brain cancers are highly heterogeneous and complex.
Recently, it has become clear that in most solid tumors, a sub-population of cells is present
with special properties of therapy resistance. These cells, now called “persisters”, acquire
drug tolerance and the ability to resist apoptosis not because of DNA mutations but because
of epigenetic processes, such as chromatin remodeling events [261]. Thus THs, due to their
ability to modify chromatin organization, can interfere with such events at different levels,
and in potentially different ways, also depending on the specific properties of a given
persister cell. Thus, depending on the specific kind of tumor and its specific environment,
crosstalk might be established between THs and other cancer-expressed factors [262-264],
thus conditioning the overall effect of THs.

4.1. Effects of THs on Angiogenesis and Brain Cancer Cell Proliferation

Brain cancers are complex and heterogeneous. Most of them derive from glial cells and
are called gliomas, then classified as astrocytomas, oligodendrogliomas, ependymomas,
and glioastrocytomas depending on their most likely origin, and on the genes expressed in
them [265-268].

The proliferation of glioma cells consumes oxygen, thus generating hypoxia and
variable degrees of necrosis [268-270]. In turn, oxygen shortage inhibits prolyl hydroxylase
domain proteins (PHDs), which use molecular oxygen to hydroxylate their substrates [271],
including the « subunit of the hypoxia-inducible transcription factor-1 (HIF-1c). When
hydroxylated, HIF-1c is poly-ubiquitinated by the von Hippel-Lindau tumor suppressor
protein (pVHL) and degraded by the proteasome [271]. When hydroxylation is inhibited be-
cause of hypoxia, HIF-1« is no longer ubiquitinated and degraded; thus, it can heterodimer-
ize with HIF-13. The dimer enters the nucleus, binds to the hypoxia-response elements
(HREs) present in the promoters of hypoxia-regulated genes, and activates them [271,272]
(Figure 3). Among the activated genes, some encode angiogenic factors, such as vascular
endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2), which stimulate
the endothelial cells (ECs) to release proteases that degrade various components of the
extracellular matrix, thus allowing ECs themselves to migrate, proliferate, and differentiate,
forming new vessels [273].

Notably, proliferation of glioma cell lines is stimulated by THs, as demonstrated by
accumulation in treated cells of the proliferating cell nuclear antigen (PCNA), and by
an increase of radiolabeled thymidine incorporation into newly synthesized DNA in T4-
treated cells in culture [274]. This effect is inhibited by TETRAC [274], which, as mentioned
above, blocks T4 binding to integrin av33, and inhibits, in the normal developing brain,
the expansion of neural progenitors in the neocortex [224]. Similarly, it has been reported
that THs have an anti-apoptotic effect in glioma cells [275]. This effect can also be attributed
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to T4 binding to integrin av[33, as it can be counteracted by resveratrol, a compound that
induces p53-mediated apoptosis in human cancer cells through interaction with integrin
av 33 [275]. It is worth noting that, during brain development, THs also have a VEGF /FGE-
2-dependent effect on brain angiogenesis [273,276], and treatment of newborn rats for
20 days with propylthiouracil (PTU), an inhibitor of TH synthesis, resulted in decreased
complexity and density of brain microvessels [276]. Again, TH's effects on angiogenesis
seem to be mediated by integrin av[33, which is also highly expressed in endothelial
cells [273].

cancer cells undergoing shortage of oxygen
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Figure 3. Dependence of angiogenic processes on oxygen shortage and activation of the hypoxia-
induced factor 1 (HIF-1). HIF-1 factor is composed by two subunits, HIF-1 and HIF-1f3. In normoxic
conditions (a, +O,), HIF-1« is hydroxylated by prolyl hydroxylase domain proteins (PHDs), poly-
ubiquitinated (u) by an E3 ligase, and degraded by the proteasome. When cells (including cancer
cells) undergo oxygen shortage (b, -O,), PHDs, which use molecular oxygen as a substrate in the
hydroxylation reaction, cannot modify any more HIF-1«; as a consequence, HIF-1c is no longer
degraded, and combines with HIF-13; the HIF-1a/HIF-13 dimer enters the nucleus, where it binds
to the HIF-1-response elements (HREs) and activates its target genes, including the one encoding
vascular endothelial growth factor (VEGF), which in turn stimulates the endothelial cells of the
vessels to migrate, proliferate, and differentiate, forming new vessels [273].

Moreover, many studies suggest that T4, by binding to integrin ov33, stimulates the
growth of glioblastoma multiforme (GBM, a grade IV glioma), the most malignant form
of glioma [101,275,277]. In agreement with these observations, hypothyroid patients and
patients treated with propylthiouracil to inhibit TH synthesis show longer survival than
euthyroid ones [100,277]. Similarly, hypothyroidism was recently reported to be associated
with favorable survival in patients with brain metastases from other primary cancers [278].

Clinical observations in human astrocytomas have also shown that the expression
of THR«1 and/or THR«&2 tends to decrease, while the expression of THR(1 significantly
increases, thus suggesting that brain cancers might also be linked to alterations of the
combination of nuclear receptors expressed [277,279].

Other studies on glioma cell lines evidenced a more heterogeneous response of cancer
cells to THs. It was found, for example, that T3 can induce differentiation in some glioma
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cell lines, while having a tumor cell type-dependent effect on proliferation, with the more
aggressive cells being more sensitive to T3 [280].

On the other hand, it has been reported that, in neuroblastoma cells, after binding
to its nuclear receptors, T3 blocks RAS-mediated proliferation as well as transcription of
genes encoding proteins involved in cell division, such as cyclin D1, thus arresting the cell
cycle in GO/G1 [250].

4.2. The Possible Role of Deiodinases in Brain Cancer

As mentioned when discussing TH's effects on brain development, the levels of
circulating THs do not necessarily reflect the intracerebral levels of these hormones because
of the existence of deiodinases (DIOs), some of which are involved in the production of
active T3 from T4, while others catalyze the production of rT3 (from T4) and different
forms of T2 (from either T3 or rT3) [37]. Since all these species of THs (including rT3
and T2, once considered inactive species, but instead probably endowed with specific
activities) can differently affect cell proliferation and differentiation, by changing the
relative concentrations of TH species DIOs can affect the overall response of both normal
and cancer cells. Indeed, a variety of studies have demonstrated an involvement of
DIOs in carcinogenesis and have suggested, at the same time, that TH effects can be
concentration and cell type dependent [281]. In other words, it can be critical to differentiate
intratumoral hypo-/hyperthyroidism from general hypo-/hyperthyoridism, as evaluated
on the basis of circulating TH levels [281]. In the developing brain, T4 as well as rT3 can
modulate neuronal migration and neurite outgrowth by acting on cytoskeletal element
polymerization and cell migration ability [225]. Thus, T4 and rT3 might have the same
effect on cancer cells, and DIO concentrations and activities, by controlling in turn the
concentration of each TH species, which might have a direct impact on carcinogenesis.
For example, in a study comparing tissues from different brain cancers (astrocytoma,
glioblastoma, and oligodendroglioma), both DIO2 mRNA and activity were reported to be
the highest in oligodendroglioma, in comparison with other cancer types, with a positive
correlation between the mRNA concentration and enzymatic activity, thus suggesting
pretranslational regulation of the DIO2 expression level [281-283]. It has also been reported
that, on average, the activity of DIO2 is significantly higher in human brain cancer cells
with respect to the non-cancer surrounding tissue; however, T3 and T4 concentrations
seemed to be significantly lower in gliomas than in non-cancer brain samples [250,284,285].
On the other hand, DIO3 expression is somehow more variable and does not seem to
undergo consistent changes in different cancer samples [281].

4.3. Cell-to-Cell Communication between Cancer Cells and Microglia

A further interesting point concerns the effects of T3 on microglia, the specialized
macrophages of the brain. These latter cells seem, indeed, to be involved in the growth
and invasion of gliomas [286] (Figure 4). Resting microglia express only low levels of
inflammatory molecules; however, in different pathological conditions, including changes
in brain homeostasis, they acquire an ameboid behavior, migrating to the sites of brain
damage, and releasing a variety of molecules, such as cytokines, chemokines, and growth
factors [287]. Glioma tissue is widely infiltrated by microglia, and these cells clearly have a
stimulating role in glioma progression [288]. Actually, the interaction between glioma cells
and microglia is a reciprocal one and is probably mostly mediated by extracellular vesicles
(EVs) [268] (Figure 4). In particular, it has been found that EVs released from glioma cells
can increase cytokine secretion, and the phagocytic capacity of macrophages, as well as an
increased production of matrix metalloproteases (MMPs) by microglial cells, thus opening
the way for glioma cell migration [268,289]. Notably, THs are important modulators of
immune cells, including macrophages, and it has been recently suggested that T3 not only
directly modulates brain cancer growth but also indirectly promotes glioma proliferation
and migration through its effects on microglia [286].
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EVs from glioma cells
pro-apoptotic proteins [290, 291]; mtDNA EVs from microglia:
[292]; aggrecanases [293]; histone H1.0 [294]; [MMPs [268, 289]; cytokines (e.g. IL-
miRNAs (e.g. miR-21) [295, 296]. 15) [297, 298]; glycolytic enzymes
[299]; MCT1[299].

Figure 4. EV-mediated interactions among microglia and cancer cells. Extracellular matrix (ECM) of
the glioma tissue is infiltrated by microglial cells, which seem to have a stimulating role in glioma pro-
gression. Both microglia and cancer cells produce extracellular vesicles (EVs), which contain different
classes of molecules (e.g., proteins and different species of RNA) [268]. A few molecules, contained
in EVs released from glioma cells (small red circles), and in EVs released from microglia (small grey
circles), are reported in the rectangles, together with some relevant references [268,289-299]. MCT,
monocarboxylate transporter; miRNAs, microRNAs; mtDNA, mitochondrial DNA; MMPs, matrix
metalloproteinases. It has been suggested that THs (T4/T3) modulate brain cancer growth both
directly and indirectly through their effects on microglia [286].

4.4. Aquaporins and Brain Cancer

One of the problems intrinsic to brain cancer derives from its complex relationship
with the blood-brain barrier (BBB). On the one hand, indeed, BBB constitutes an obstacle
for both identification and treatment of cancer since it opposes drug entering into the
brain [300]. On the other hand, however, the presence of brain malignancies causes BBB
to become leaky, and induces vasogenic brain edema, which is, indeed, the most serious
complication of GBM [301]. Moreover, brain cancer cells are able to trigger both neuronal
and glial cell death, associated with cytotoxic edema [301,302]. As discussed in the case of
microglia—cancer cell communications, these latter events are probably mediated by release
from cancer cells of EVs that contain a collection of different factors, able to stimulate cancer
growth, angiogenesis, and invasion, while suppressing immune response [303,304]. Both
cytotoxic and vasogenic edemas largely depend on altered expression and/or localization
of specific water channels, belonging to the aquaporin family (AQPs). Many AQPs (AQP1,
AQP3, AQP4, AQP5, AQP6, AQP8, AQP9, and AQP11) have been identified in the CNS,
the most represented of which are AQP1, AQP4, and AQP9 [305]. In particular, AQP4,
present both in astrocytes and neurons, has a highly polarized localization in astrocytic
endfeet that contact the BBB [304-306]. A variety of studies suggested AQP4 involvement
in promoting cancer cell migration [307-309]. Although the molecular mechanisms under-
lying AQP4 effects in cancer cells have not been clarified, it has been suggested that AQP4
allows water flow across the plasma membrane at the level of the leading cell protrusions
(lamellipodia), with an effect on their number and polarization, thus stimulating cytoskele-
ton rearrangement and an increase in cell motility [304]. Notably, AQP4 expression was
found to be higher in the peritumoral area, which is in the region with the highest ability to
invade the surrounding tissue [310]. Recently, it has been reported that AQP4 expression is
regulated by THs in astrocytes of the cerebral cortex of newborn and young mice [283]. The
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same authors also found that T3 treatment significantly downregulates AQP4 in human
glioblastoma cells, thus suggesting that higher TH concentration might have a better out-
come in reducing AQP4 in brain cancer cells and, hence, in reducing tumor cell migration
ability [283].

4.5. THs and Cancer Cell Metabolism

One of the properties of cancer cells is reprogramming of energy metabolism, which
allows continuous growth, even in hypoxic conditions. The most critical aspect of the
metabolic phenotype of cancer cells was described by Warburg almost 70 years ago [311],
and consists in increased glycolysis and lactate production, also in the presence of oxy-
gen (aerobic glycolysis) [250,312-314]. This property, called the “Warburg effect”, relies,
probably, on several metabolic modifications, some of which are still not completely under-
stood. An interesting observation linked, in breast cancer cells, the Warburg effect with
TH-dependent induction of one of the pyruvate kinase (PK) isoforms: PKM2 [250,315]. PK
catalyzes the last reaction of glycolysis, which is the transfer of a high-energy phosphate
group from phosphoenolpyruvate to adenosine diphosphate (ADP), to form adenosine
triphosphate (ATP). In mammals, PK is encoded by two genes (PKLR and PKM), each
of which gives rise to two PK isoforms [316]. While the PKLR gene only encodes a red
blood cell-specific (PKR), and a liver-specific isoform (PKL, also expressed in the kidney),
the PKM gene encodes PKM1 and PKM2 isoforms, found in all the other tissues, with
PKM2 mainly expressed in proliferating tissues, and especially in cancer cells, where it
is involved in the activation of the Warburg effect [316-318] but also in gene expression
regulation [319,320]. PKM2 expression is induced by the PI3K/mammalian target of ra-
pamycin (mTOR) pathway [316], and thus might be influenced by THs acting at the plasma
membrane. Interestingly, recent evidence suggests the existence of a PKM2-mediated link
between glucose metabolism and the cell capacity to repair damaged DNA [321]. Surpris-
ingly, PKM2 is phosphorylated, at threonine 328, by the DNA damage-activated ataxia
telangiectasia mutated (ATM) kinase, and then promotes DNA repair [321]. Moreover,
PKM2 has been reported to be involved in the activation of HIF-1«, critical for metabolic
reprogramming of cancer cells [322]. Interestingly, the nuclear functions of PKM2 are
regulated by different kinds of non-coding RNAs [320,322].

Notably, hypoxia upregulates DIO3 expression, thus increasing the rate of intracel-
lular T3 inactivation, and decreasing oxidative metabolism [323]. In addition, hypoxia
induces DIO3 translocation to the nucleus through interaction with the heat shock pro-
tein 40 (Hsp40), thus enabling deiodination of T3 at the site of its interaction with the
genome [324]. These events are deleterious in cancers, such as ovarian cancer and hepato-
cellular carcinoma, in which THs act as oncosuppressors [325,326].

Till now, it is not clear whether and at which extent these events are involved in
brain cancer; however, PKM2-dependent activation of oncogenic genes has also been
reported in the case of glioblastoma, where PKM2 also acts as a histone kinase able to
regulate chromatin structure and hence gene expression and tumorigenesis [327]. Given
the importance of THs in regulating chromatin organization in brain cells, a role of these
hormones in metabolic reprogramming is also highly probable.

5. Conclusions and Future Directions

Thyroid hormones have profound effects on many tissues of the body, both during
development and in the adult. These effects are mostly triggered by direct regulation of
gene expression (genomic effects), mediated by THRs, that can bind to chromatin and,
depending on the presence of T3 and/or of a variety of regulatory proteins, can cause
chromatin structure and gene expression to change. As discussed above, however, they
can also interact with extra-nuclear binding sites, one of which is plasma membrane ov[33
integrin, thus activating intracellular pathways that can be synergic with THR action but
can also be, probably, independent of them.
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During brain development, TH genomic and non-genomic effects show a synergic
effect in remodeling chromatin organization and function, thus controlling proliferation,
maturation, and metabolism of all the cell types of the nervous system. Moreover, THs
seem to also regulate the size of the neural progenitor population from which new brain
cells derive both in the developing and adult brain [175,188,189]. Notably, the effects of THs
on the brain seem to change in different phases of development. Indeed, in an early phase,
they stimulate cell proliferation but also neuronal differentiation, while, in a later phase,
they induce cell cycle arrest, and differentiation of myelinating oligodendrocytes, [201-204].
These stage/time-dependent differences suggest that TH action can be modulated by other
regulatory cell factors.

Similarly, THs seem to have different effects on different kinds of cancer cells; for
example, high free T4 levels are associated with an increased risk of lung and breast can-
cer [242,243]. Moreover, in the case of breast cancer, T3 stimulates cancer cell motility [106].
Low TH levels, on the contrary, seem to correlate with an increased risk of colorectal cancer
and hepatocellular carcinoma [247]. Concerning brain cancer, a TH stimulating effect on
different glioma cell lines has been noticed [274]. Moreover, TH effects on angiogenesis
have been reported, which seem to be mediated by integrin ocv33, which is also highly
expressed on endothelial cells [273]. For a summary of the different pathways triggered by
THs that might have a role in cancer, see Figure 5.

We can conclude that, although many studies suggested a role of THs in cancer growth
and metastases, the relationship between general levels of THs and cancer risk is not yet
clear-cutting. At the same time, it is possible to hypothesize that the specific TH outcome
depends on crosstalk between the hormones and other cancer/environment-expressed
factors [262-264]. For example, cancer cells express a higher amount of av[33 integrin when
compared with normal cells [105]. Moreover, as mentioned above, in human astrocytomas,
a decrease of THR«1 and/or THR&2, and increase of THR[1 have been observed, thus
suggesting that, at least in the case of these brain cancers, alterations in the combination of
the expressed nuclear receptors might also have an importance [277,279].

Actually, as we have discussed, it is probably fundamental to consider that the levels
of circulating THs do not necessarily reflect the intra-tissue levels of these hormones
because of the existence of so many factors controlling the intracellular levels of THs: (i) TH
blood transporters can increase/decrease, thus affecting the actual concentration of free
hormones that can enter the cells; (ii) membrane TH carriers can be up/downregulated,
thus affecting the entrance of the hormone into the cells, and, as a consequence, also the
amount of extracellular hormone that can interact with membrane receptors, and trigger
intracellular signal transduction pathways; (iii) different isoforms of deiodinases (DIOs) can
be up/downregulated, thus affecting the intracellular TH species concentration; (iv) THR
expression and activity can be directly altered or modified because of up/downregulated
expression of other critical factors; and (v) all the TH isoforms (including rT3 and T2, once
considered inactive species) might differently affect cell proliferation and differentiation.
In other words, general hypo-/hyperthyroidism, as evaluated on the basis of circulating
TH levels, might give information not in agreement with the real intracellular situation.

Last, but not least, TH effects can be counteracted or, on the contrary, mimicked by
individual chemicals or by mixtures of chemicals, present in the environment because of
pollution or because of their normal presence in industrial widely used products [162,163].

Thus, in summary, THs have a variety of effects on brain cancer cell proliferation, sur-
vival, migration, and probably general metabolism, but more experiments are required to
better understand the interplay between TH action and environmental/cellular conditions.
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Figure 5. Schematic view of the different hypothetical pathways triggered by THs in a generic brain
cancer cell. THs can enter the cells through membrane transporters (yellow ovals), such as MCT8
and OATP1C1. They can also bind to plasma membrane receptors, the best known of which is «v33
integrin. T4 is the main form of circulating THs, and thus the main form present in the extracellular
matrix (ECM). As a consequence, T4 is also the most abundant TH that enters the cell, and that
is able to bind avf33 integrin, at the level of the S2 site (red arrow). T3 is much less concentrated
outside the cell but can specifically bind to v 33 integrin at the level of the S1 site (blue arrow); it can
also bind to the S2 site (red arrow), even if it is with much lower affinity than T4. Binding of T3 to
the S1 site elicits a signal transduction pathway (a), which involves the phosphoinositide-3-kinas3
(PI3K). On the other hand, binding of T4 (T3) to the S2 site elicits activation of the MAPK/ERK1/2
pathway (b) [99-106]. T4 that enters the cell is converted to T3 by deiodinase 2 (DIO2). T3 can then
enter the nucleus (c) and regulate transcription of target genes both directly, by binding to THRs,
and indirectly, by interacting with other regulatory proteins [37,67,89]. The a-c regulatory pathways
can all influence, directly or indirectly, the transcription of genes involved in different hallmarks of
cancer. In addition, T3 has been suggested to be able to directly regulate mitochondrial activities
(d), probably by interacting with Ax1 proteins, such as p43 and p28 [37,65,66,107-109]. Finally, as
schematically described in Figure 4, brain cancer cells also release extracellular vesicles (EVs; small
light brown circles), which can influence other brain cells in the environment, and also receive EVs
from the surrounding cells (grey small circles).
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