Skip to main content
. 2021 May 26;13(11):2606. doi: 10.3390/cancers13112606

Table 1.

Participant demographics, study characteristics and outcomes of the included studies.

Training Set Validation Set Performance *
First Author
(Year of Publication) (Reference)
N Age
(Mean ± SD)
Gender
(Male-Female)
N Validated on
an Independent External Dataset?
Input
Imaging Data
MLA Method Target
Condition
Sensitivity Specificity AUC (±SD) Accuracy
Ahammed Muneer (2019) [46] 389 NR NR 168 No T2w images; tumor segmentation Deep CNN Glioma grade 92.72 98.13 NR 94.64
Arita (2018) [27] 111 NR NR 58 No T2w-based VOI segmentation and T1w, T2w, FLAIR, and T1w +c images Lasso and Elastic-Net Regularized Generalized Linear Model IDH genotype NR NR NR 87
Bakas (2018) [47] 86 NR NR NR No T1w, T2w, FLAIR, T1w +c images; DTI series and DSC-PWI series Multivariate machine learning model with a Random Forests algorithm IDH genotype 66.7 92.9 NR 88.4
Bangalore Yogananda (2020) [48] 214 NR NR 214 No T2w, FLAIR, and T1w +c images 3D Dense-UNet: T2-Net IDH genotype 97 98 0.98 ± 0.146 97.14
3D Dense-UNet: TS-Net IDH genotype 98 97 0.99 ± 0.146 97.12
Batchala (2019) [84] 102 NR 50–52 106 No T1w, T2w, FLAIR, and T1w +c images; DSC-PWI series Multivariate model 1p/19q integrity NR NR NR 81.1
Bonte (2016) [68] 274 NR NR NR No BraTS-data (T1w, T2w, FLAIR, and T1w +c images) Random Forests algorithm LGG/HGG 95.5 79.5 NR 92.3
Cao (2020) [28] 141 NR 74–67 88 No T1w, T2w, FLAIR, and T1w +c images Lasso and Elastic-Net Regularized Generalized Linear Model with Support vector machine classifier LGG/HGG NR NR 0.915 ± 0.356 NR
Carver (2019) [29] 78 NR NR 50 Yes T1w, T2w, FLAIR, and T1w +c images Lasso and Elastic-Net Regularized Generalized Linear Model IDH genotype NR NR NR 74
Chang (2018) [77] 1188 NR NR 153 No T1w, T2w, FLAIR, and T1w +c images Residual CNN model IDH genotype NR NR 0.93 83.0
Citak-Er (2018) [49] 43 49.5 ± 12.8 25–18 NR No T1w, T2w, DW images; DTI series, DSC-PWI series, and MRS Support vector machine classifier with linear kernel and logistic regression with a Random Forests algorithm LGG/HGG 86.7 96.4 NR 93.0
Cui (2018) [30] 40 NR NR NR No T1w, T2w, FLAIR, and T1w +c images; tumor segmentation Lasso and Elastic-Net Regularized Generalized Linear Model LGG/HGG NR NR 0.84 NR
De Looze (2018) [50] 381 NR 251–130 NR No Three VASARI criteria as assessed on T1w, T2w, FLAIR, and DW images Random Forests model IDH genotype 81 77 0.88 NR
Glioma grade II/III 82 94 0.98 NR
Glioma grade II/IV 100 100 1.0 NR
Glioma grade III/IV 83 97 0.97 NR
Fan (2019) [45] 126 46.8 NR NR No T1w +c images Lasso and Elastic-Net Regularized Generalized Linear Model adopted into linear discriminant analysis and Support vector machine classifier glioblastoma/anaplastic oligodendro-glioma 100.0 91.0 0.923 93.8
Gates (2020) [51] 23 NR NR NR No T2, ADC, CBV, and Ktrans Random Forests algorithm Glioma grade NR NR NR 96
Han (2018) [76] 117 NR NR 21 No T1w, T2w, and FLAIR images Recurrent CNN model MGMT promoter methylation status NR NR 0.54 53
Han (2018) [71] 184 41.67 120–64 93 No T2w images and
T2w-based segmentation
Random Forests algorithm 1p/19q integrity 68.3 71.2 0.760 ± 0.477 70.0
Hwan-Ho (2017) [33] 108 NR NR NR No BraTS-data (T1w, T2w, FLAIR, and T1w +c images) and BraTS-segmentation Lasso and Elastic-Net Regularized Generalized Linear Model and logistic regression Glioma grade 88.89 90.74 0.8870 89.81
Inano (2014) [52] 33 NR 22–11 33 No DW images, FA-maps, first eigenvalue, second eigenvalue, third eigenvalue, MD-maps, and raw T2 signal
with no diffusion-weighting
Support vector machine classifiers Glioma grade 84.8 74.5 0.912 ± 0.028 80.4
Jiang (2019) [34] 87 45.4 ± 13.1 43–44 35 Yes T2w and T1w +c images Lasso regression model with fusion Radiomics model and Support vector machine classifier MGMT promoter methylation status 82.1 85.7 0.898 ± 0.323 88.6
Jiang (2020) [35] 83 45.5 ± 12.3 50–33 33 Yes T2w and T1w +c images Lasso regression model with radiomics signature model and Support vector machine classifier TERT promoter mutation status 71.4 89.5 0.827 ± 0.470 84.8
Kim (2020) [53] 127 NR 68–59 28 No T1w, T2w, FLAIR, T1w +c, DW images; DSC-PWI series Recursive feature elimination with Support vector machine, completed with a Random Forests algorithm and a logistic regression classifier IDH genotype 53.6 86.7 0.747 ± 0.228 NR
Kinoshita (2018) [70] 199 NR NR NR No Conventional MR sequences (NOS) Random Forests algorithm Glioma grade NR NR 0.711 64.5
Lee (2019) [54] 88 NR 47–41 35 Yes T1w, T2w, FLAIR, DW images; DSC-PWI series Eight machine learning classifiers:
K-Nearest Neighbors, Support vector classification, Decision Tree, Random Forest, AdaBoost, Naive Bayes, Linear Discriminant Analysis, and Gradient Boosting
IDH genotype NR NR NR 83.4
Li (2019) [55] 69 60.0 37–32 40 Yes T2w and T1w +c images Support vector machine classifier with Support vector machine classifier PTEN genotype 86.7 70.0 0.787 82.5
Li (2018) [32] 63 43.6 25–38 91 Yes T2w images Lasso regression model with Support vector machine classifier ATRX genotype 57.1 85.7 0.725 76.9
Li (2018) [33] 180 39.2 111–69 92 No T2w images Lasso regression model with Support vector machine classifier P53 status 62.2 85.1 0.763 70.7
Li (2017) [56] 151 40.7 ± 10.8 81–70 151 No T1w and FLAIR images CNN for segmentation followed by DLR model with Support vector machine classifier IDH genotype 94.38 86.67 0.9521 92.44
Li (2018) [77] 133 54.2 79–54 60 No T1w, T2w, FLAIR, and T1w +c images Multiregional Radiomics model MGMT-methylation NR NR 0.88 80
Li (2018) [78] 118 53.6 70–48 107 No T1w, T2w, FLAIR, and T1w +c images Multiregional Radiomics models IDH genotype 80 99 0.96 97
Liang (2018) [79] 167 52.4 ± 15.5 NR NR No BraTS-data (T1w, T2w, FLAIR, and T1w +c images) Multimodal Three-Dimensional DenseNet IDH genotype 78.5 88.0 0.857 84.6
Lo (2020) [57] 39 NR 28–11 NR No T1w +c images; processed by transformed ranklet images. Logistic regression
classifier
IDH genotype 57 97 NR 90
Lu (2018) [58] 214 NR NR 70 Yes T1w, T2w, FLAIR, T1w +c, and DW images
(T2w and DW images were optional)
Three-level machine learning model LGG/HGG 82.5 90.5 NR 87.7
Matsui (2020) [36] 217 42 131–86 NR No T1w, T2w, and FLAIR images Lasso regression model with DLR model Grading LGG NR NR NR 58.5
Mzoughi (2020) [37] 284 NR NR 67 Yes T1w +c images Lasso regression model with 3D CNN model with Support vector machine classifier Glioma grade NR NR NR 96.4
Park (2020) [71] 168 NR NR 168 No T2w, FLAIR, and T1w +c images Random Forests algorithm IDH genotype NR NR 0.900 ± 0.298 NR
Park (2019) [72] 136 44.99 ± 12.94 65–71 99 Yes T2w, FLAIR, and T1w +c images; DTI series Random Forests algorithm Glioma grade 72.6 60.4 0.72 ± 0.51 66.7
Rathore (2019) [59] 202 NR NR NR No T1w, T2w, FLAIR, and T1w +c images.
Data were sometimes complemented with DTI and DSC-PWI series
CNN adjusted with a Support vector machine classifier IDH genotype 83 86 0.85 85
MGMT 83 85 0.84 83
Rathore (2018) [67] 111 NR NR NR No T1w, T2w, FLAIR, and T1w +c images Support Vector Machine model with a Random Forests algorithm MGMT-methylation 75.0 97.0 0.80 88.28
Rathore (2019) [59] 270 NR NR NR No T1w, T2w, FLAIR, and T1w +c images; DTI and DSC-PWI series Cross-validated sequential feature selection MGMT-methylation NR NR NR 86.95
Sasaki (2018) [39] 207 NR NR NR
No T1w, T2w, FLAIR, and T1w +c images Lasso regression model with supervised component principal analysis MGMT-methylation NR NR NR 68
Sasaki (2019) [38] 201 NR NR NR No T1w, T2w, and T1w +c images Lasso regression model with supervised component principal analysis MGMT-methylation 67 66 NR 67
Shboul (2020) [40] 81 NR NR 27 No T1w, T2w, FLAIR, and T1w +c images Lasso regression model with supervised component principal analysis and multi-resolution fractal modeling IDH genotype 90 79 0.84 ± 0.156 NR
1p/19q integrity 75 85 0.80 ± 0.208 NR
MGMT-methylation 93 73 0.83 ± 0.208 NR
ATRX genotype 69 83 0.70 ± 0.468 NR
TERT promoter mutation status 77 86 0.82 ± 0.208 NR
Shofty (2018) [60] 47 37.7 ± 10.6 27–20 NR No T2w, FLAIR, and T1w +c images Ensemble Radiomic Classifier model with a Support vector machine classifier 1p/19q integrity 92 83 0.87 87
Sun (2020) [41] 92 NR NR NR No T1w, T2w images Lasso regression model with logistic regression models P53 status 100 40 0.709 81.3
Takahashi (2019) [80] 44 NR NR 11 No DW (b1000 and b2000) images, ADC-maps, FA-maps, and MK-maps Deep CNN model Glioma grade NR NR NR 82
Takahashi (2019) [82] 38 NR NR NR No T2w-based VOI segmentation Logistic regression models 1p/19q integrity 69.7 73.3 0.736 71.1
Tan (2019) [42] 74 47.93 ± 13.28 45–29 31 No FLAIR and T1w +c images; ADC-maps Radiomics Nomogram model IDH genotype 86.7 87.5 0.900 ± 0.116 87.1
Tian (2020) [43] 88 NR 53–35 38 No T1w, T2w, FLAIR, and T1w +c images; MRS Lasso regression model with Radiomics Nomogram model TERT promoter mutation status 75.0 90.9 0.889 ± 0.335 84.2
Tongtong (2017) [61] 110 NR NR NR No 3D FLAIR images Support vector machine classifier with minimum redundancy, maximum relevance, and maximum sparse representation coefficient IDH genotype 88 79 0.90 85
van der Voort (2019) [62] 284 NR 161–123 129 Yes T2w and T1w +c images. Data were sometimes complemented with FLAIR images Support vector machine classifier 1p/19q integrity 73.2 61.7 0.723 ± 0.084 69.3
Wei (2019) [83] 74 NR 42–32 31 No FLAIR and T1w +c images; ADC-maps Fusion Radiomics model by logistic regression modelling MGMT promoter methylation 94.4 53.9 0.902 ± 0.305 77.4
Wu (2019) [73] 84 53.5 ± 15.0 67–59 42 No T1w, T2w, FLAIR, and T1w +c images Random Forests algorithm IDH genotype NR NR 0.931 ± 0.233 89.5
Xi (2018) [44] 98 NR 55–43 20 Yes T1w, T2w, and T1w +c images Lasso regression model with Support vector machine model MGMT promoter methylation 87.5 75.0 NR 80.0
Yang (2018) [81] 113 NR NR NR No T1w, T2w, FLAIR, and T1w +c images CNN model LGG/HGG NR NR NR 86.7
Yu (2017) [85] 110 40.3 ± 11.3 54–56 30 No FLAIR images Radiomics model IDH genotype 88 67 0.79 83
Zhang (2017) [63] 90 51.4 52–38 30 No T1w, T2w, FLAIR, T1w +c, and DW images Random Forests algorithm IDH genotype NR NR 0.9231 89
Zhang (2018) [64] 73 NR NR 30 No T1w, T2w, FLAIR, and T1w +c images Support vector machine-based recursive feature elimination IDH genotype 85.0 70.0 0.792 80.0
P53 status 84.6 85.7 0.869 85.0
Zhang (2020) [65] 108 NR 61–47 NR No DTI series CNN model with a Support vector machine classifier LGG/HGG 98 86 0.93 94
Glioma grade III/IV 98 100 0.99 98
Zhao (2020) [74] 36 45.0 ± 14.4 19–17 36 No FLAIR and T1w +c images Random Forests algorithm Glioma grade II/III 77.8 78.3 0.861 ± 0.240 78.1
Zhou (2019) [66] 538 NR 303–235 206 Yes FLAIR and T1w +c images Random Forests algorithm with a Support vector machine classifier IDH genotype NR NR 0.919 ± 0.286 NR

Legend: ADC: Apparent diffusion coefficient; ARTX: Alpha thalassemia/mental retardation syndrome X linked gene; BraTS: Brain Tumor Segmentation Challenge; CNN: Convolutional neural network; DW: Diffusion-weighted images; DTI: Diffusion tensor imaging; DSC-PWI: Dynamic susceptibility contrast perfusions weighted imaging; FA: Fractional anisotropy imaging; FLAIR: fluid attenuated inversion recovery; HGG: High grade glioma; IDH: Isocitrate dehydrogenase gene; LGG: Low-grade glioma; MGMT: O6-Methylguanine-DNA Methyltransferase; MRS: Magnetic resonance spectroscopy imaging; TERT: Telomerase reverse transcriptase gene; T1w: T1-weighted images; T1w +c: T1-weighted post-contrast images; T2w: T2-weighted images; VASARI: Visually AcceSAble Rembrandt Images. * If cross-validation was used, the Performance values of the cross-validation set were provided here. When the dataset was split into training/validation/test sets, the Performance evaluation values with regard to the investigated outcome (e.g., IDH genotype) of the Validation set were provided here.