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Abstract: Angiogenesis is the process of new blood vessel formation. In this complex orchestrated
growth, many factors are included. Lately, focus has shifted to endothelial cell metabolism, par-
ticularly to the PFKFB3 protein, a key regulatory enzyme of the glycolytic pathway. A variety of
inhibitors of this important target have been studied, and a plethora of biological effects related to the
process of angiogenesis have been reported. However, recent studies have disputed their mechanism
of action, questioning whether all the effects are indeed due to PFKFB3 inhibition. Remarkably,
the most well-studied inhibitor, 3PO, does not bind to PFKFB3, raising questions about this target.
In our study, we aimed to elucidate the effects of PFKFB3 inhibition in angiogenesis by using the
small molecule AZ67. We used isothermal titration calorimetry and confirmed binding to PFKFB3.
In vitro, AZ67 did not decrease lactate production in endothelial cells (ECs), nor ATP levels, but
exhibited good inhibitory efficacy in the tube-formation assay. Surprisingly, this was independent
of EC migratory and proliferative abilities, as this was not diminished upon treatment. Strikingly
however, even the lowest dose of AZ67 demonstrated significant inhibition of angiogenesis in vivo.
To our knowledge, this is the first study to demonstrate that the process of angiogenesis can be
disrupted by targeting PFKFB3 independently of glycolysis inhibition.

Keywords: AZ PFKFB3 67; PFKFB3; endothelial cells; angiogenesis

1. Introduction

Angiogenesis is the growth of new blood vessels from preexisting vasculature. It is
a complex multifaceted process that is critical for many physiological and pathological
conditions such as embryonic development, wound repair, inflammation, and tumor
growth [1]. In this dynamic process, the proliferation and migration of ECs and the
recruitment of pericytes play a central role, constructing a vascular tube that is oriented
toward the site that requires oxygen and nutrient supply [2].

ECs compose the inner layer of the (cardio)vascular system and play an important role
in maintaining oxygen and nutrient supply to all tissues in the body. Under physiological
conditions, adult ECs remain largely in a quiescent state, but can become rapidly activated
in response to pathological conditions. In these conditions, e.g., injury, where the formation
of new blood vessels is required, the process of angiogenesis is activated. Three main EC
subtypes govern the process of angiogenesis: migratory tip cells, which are specialized in
growing vascular sprouts in response to growth factors; stalk cells, which proliferate and
elongate the sprout; and quiescent phalanx cells, mostly present in established vessels and
are responsible for maintaining vascular homeostasis and endothelial barrier function [3-5].
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Different activators of angiogenesis have been described thus far, with the most well-
characterized being vascular endothelial growth factor (VEGF). Two receptors mediate the
effects of VEGF, namely VEGF receptor 1 and VEGF receptor 2 [6], with the latter having a
higher sensitivity and responsiveness to VEGEF. For several years, blocking VEGF and /or
its respective receptors has been a strategy for targeting pathological angiogenesis, but
drug resistance and insufficient efficacy have limited its success, suggesting that alternative
anti-angiogenic strategies are required [7-9].

Recently, attention has shifted to EC metabolism. Our understanding of this topic
has grown, and it has become clear that cellular metabolic pathways act as central me-
diators of signaling and angiogenesis. In general, contrary to other healthy cells [10,11],
ECs, independently of their subtype, being arterial, venous, lymphatic, or microvascular
ECs are highly glycolytic. Furthermore, the glycolysis rate in these cells is comparable to
the rate measured in various tumor cells [11]. A crucial step in the glycolysis pathway
is the phosphofructokinase reaction (PFK1) which converts fructose-6-phosphate (F6P)
to fructose-1,6-bisphosphate (F-1,6-P,). Besides PFK1, phosphofructokinase-2/fructose-
2,6-bisphosphatase (PFKFB) enzymes synthesize fructose-2,6-bisphosphate (F-2,6-P5), an
allosteric activator of PFK-1 and the most potent stimulator of glycolysis [12]. The PFKFB
family consist of four isoforms, named PFKFB1-PFKFB4, that are involved in both synthe-
sis and degradation of F-2,6-P, [13-16]. These bifunctional isoenzymes display distinct
properties, including tissue expression profiles, the ratio of kinase/phosphatase activi-
ties, and their responses to protein kinases, hormonal and growth factor signals [17,18].
Thus, only PFKFB3 reveals a kinase to phosphatase ratio (K:P) of about 740:1, favoring
the formation of F-2,6-P, and therefore sustaining high glycolytic rates [19,20]. Albeit
being a ubiquitous enzyme [21], under physiological conditions PFKFB3 has a variable low
basal expression in all organs. It has been well documented that pfkfb3 gene expression
levels are upregulated in response to growth factors (VEGEF, PDGEFE, FGF2, insulin) [22,23],
proinflammatory cytokines (TNF-«, IL-3, TGF-31) [24-26], hypoxia [27,28], or different
stress stimuli [29]. However, under different stimuli, the mechanisms involved in PFKFB3
regulation in different cell types differ.

With accumulating knowledge of PFKFB3 in angiogenesis, there has been an increased
interest in the identification and development of PFKFB3 inhibitors. 3PO, the most well-
studied, and its derivatives PFK15 and PFK158, belong to this class. A range of biological
activities have been attributed to these compounds, including reduction of F-2,6-P; levels,
inhibition of glucose uptake and lactate production, reduction in glycolytic flux, and
induction of apoptosis in cancer cell lines both in vitro and in vivo [30,31]. Inhibition of
EC proliferation and migration, resulting in reduced vessel sprouting in EC spheroids,
zebrafish embryos, and the postnatal mouse retina, have all been attributed to 3PO [30,32].
However, questions were raised early on in the literature as to whether all these effects
are attributable solely to PFKFB3 inhibition. Research groups have disputed that 3PO
acts as a PFKFB3 inhibitor, as this compound is inactive in a PFKFB3 kinase assay, a
lack of crystal structure could not confirm binding [33], and cytotoxicity could not be
distinguished from glycolytic cellular activity for the concentrations used [34]. Our group
has clearly reported that there is no binding between 3PO and the PFKFB3 protein [35].
PFK15 has shown a much higher IC5) towards the PFKFB3 enzyme compared to what
has been reported (IC5p > 1000 uM versus 0.2 uM), while PFK158 has no effect on PFKFB3
enzymatic activity [36]. All in all, reported data on PFKFB3 inhibition rely on compounds
with low specificity so that additional off targets could not be ruled out. Therefore, in
this present study, we used the small molecule AZ67, a bona fide PFKFB3 inhibitor with
high potency and selectivity for this target. By using isothermal titration calorimetry,
we demonstrated binding of AZ67 to PFKFB3. Importantly, we showed that targeting
PFKFB3 leads to angiogenesis inhibition in vitro and in vivo, independently of glycolysis
inhibition. However, it was surprising that all these effects occurred with no impact on
EC proliferation or migration abilities, thus providing novel insights into the angiogenesis
inhibition process.
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2. Results
2.1. AZ67 Binds to Human Recombinant PFKFB3 Enzyme

Considering the latest finding that 3PO is not a PFKFB3 inhibitor [35], we aimed to
demonstrate that AZ67 binds to PFKFB3. By using isothermal titration calorimetry, we
verified and characterized the binding between AZ67 and PFKFB3. Figure 1 demonstrates
a raw thermogram (top panel), and integrated data, indicating clear binding and saturation
towards the end of the assay run. Mean values (=SEM) for the KD (168.01 & 2.97 nM), N-
value (1.077 £ 0.047) and binding enthalpy (—31.19 & 1.08 kcal/mol), reveal that the bind-
ing had a dissociation constant in the nanomolar range, with a 1:1 stoichiometry between
AZ67 and the PFKFB3-monomers (thus 1 AZ67 molecule binding to 1 PFKFB3 monomer).
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Figure 1. AZ67 binds to PFKFB3. Binding of AZ67 to PFKFB3 was analyzed via isothermal titration
calorimetry using a MicroCal Peaq-ITC isothermal titration calorimeter. (A) Raw thermogram;
(B) integrated injection heat (kcal/mol) as function of the molar ratio. The obtained fitted values in

the box are the mean + SEM of three replicates.

2.2. HAOECs Viability Was Not Affected by AZ67

Before proceeding with other in vitro assays, we tested the possible toxicity of AZ67.
As shown in (Figure 2A), AZ67 did not affect the viability of human aortic ECs (HAOECs)
up to a concentration of 5 pM.
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Figure 2. Viability of HAOEC upon AZ67 treatment and PFKFB3 expression with different stimuli.
(A) AZ67 does not affect the viability of HAOEC. Cells were treated for 24 h with either vehicle or
different concentrations of AZ67 (0.1, 1, 3, 5 pM). AZ67did not show cytotoxic effects up to 24 h
treatment compared to vehicle. Data are represented as mean £+ SEM, N =5, p > 0.05 (one-way
analysis of variance (ANOVA)). (B) PFKFB3 protein expression in HAOEC. Western blot analyses
and densitometric quantification of PFKFB3 protein levels in HAOEC lysates with different stimuli.
HAOECs were seeded in 24-well plates and further stimulated with 20 ng/mL hTNF-«, 10 ng/mL
hVEGE, or 1 mM DMOG for 24 h. Expression was normalized per independent experiment to 3-actin
and expressed relative to control. All data points represent normalized averages obtained from
3—4 independent experiments and are presented as mean £+ SEM. N.S—nonspecific band. * p < 0.05
vs. control (one-way ANOVA, followed by the Dunnett T3 test).

2.3. VEGE, TNF-a, and DMOG Upregulate Endothelial PFKFB3

Much is already known about PFKFB3 protein expression in cells, a ubiquitous en-
zyme with a variable low basal expression in all organs under physiological conditions.
As mentioned in the introduction, an upregulation in response to pathological-mimicking
conditions has already been documented. However, as under different stimuli the mech-
anisms involved in PFKFB3 expression in different cell types differ, it was important to
demonstrate protein expression in HAOECsS, the cells of choice for this study. To do so,
we examined the effects of angiogenic factor VEGEF, and of the pro-inflammatory cytokine
TNEF-a on PFKFB3 protein expression. As shown in (Figure 2B), after a 24 h stimulation,
the expression of PFKFB3 in these cells was 2 to 3 times higher with 20 ng/mL hTNF-«
stimulation, while 10 ng/mL hVEGF had no effect in this regard. In addition, DMOG, an
oncometabolite mimetic known to significantly upregulate PFKFB3 protein expression (in
other cell types) [37], showed an even higher induction of protein expression. When using
1 mM DMOG for 24 h, protein expression was upregulated up to 5 times.

2.4. AZ67 Does Not Inhibit L-Lactate Production, Nor ATP Levels in Activated HAOECs

Next, we aimed to elucidate whether AZ67 inhibits glycolysis. Knowing that ECs
are highly glycolytic and for ATP production rely on glycolysis rather than oxidative
phosphorylation, measuring the end product of anaerobic glycolysis as well as ATP levels
is useful for detecting shifts in glucose metabolism. To this end, AZ67 did not affect extra-
and intracellular L-lactate levels in activated HAOECs (Figure 3A). The same was found
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for the ATP levels, where no significant decrease upon AZ67 treatment was noticeable
(Figure 3B).
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Figure 3. AZ67 does not inhibit glycolysis in ECs. (A) HAOEC were cultured and treated with AZ67
(0.1, 1, 3 uM) supplemented with 20 ng/mL hTNF-« for 16 h. Extracellular and intracellular L-lactate
was measured to evaluate glycolysis. Data represented as mean £+ SEM; N = 6, p > 0.05 (one-way
ANOVA). (B) Total cellular ATP was measured using the CellTiter-Glo assay. Cells were stimulated
with 20 ng/mL hTNF-« (left), or 1 mM DMOG (right) for 24 h, followed by treatment with AZ67
(0.1, 1, 3, 5 uM) with the concomitant addition of hTNF-« or DMOG for an additional 24 h. Data
represented as mean + SEM; N = 4-5, p > 0.05 (one-way ANOVA).

2.5. AZ67 Inhibits Endothelial Cell Tube Formation on TNF-a Activated Cells, but Does Not
Inhibit Endothelial Cell Proliferation and Migration

Next, we investigated whether AZ67 has any effects on HAOECs proliferation and
migration, the two important steps in new vessel formation (the process of angiogenesis).
As shown in (Figure 4A,C—left), AZ67 did not inhibit the process of migration, nor
proliferation, in activated ECs. This effect was also not present in HAOECSs pre-treated
with the oncometabolite mimetic DMOG (Figure 4B,C—right). To further explore whether
PFKFB3 inhibition affects neoangiogenesis, an in vitro Matrigel assay was performed. This
assay is based on the ability of HAOECs to form tube and mesh structures when seeded
on a growth factor-enriched matrix. As PFKFB3 protein expression was highest upon
TNF-oc and DMOG stimulation/treatment, these two conditions were explored further for
this experiment. Interestingly, upon TNF-« stimulation and AZ67 treatment, a significant
reduction in tube and mesh structure formation was observed (Figure 5A). However, when
cells were pre-treated with 1 mM DMOG, AZ67 did not inhibit this process and a healthy
network of chord structures was formed independently of the AZ67 concentration used
(Figure 5B).

2.6. In Vivo Angiogenesis Is Inhibited upon AZ67 Treatment

Finally, we aimed to elucidate whether pharmacological inhibition of PFKFB3 by
AZ67 would result in the expected in vivo effects for neovessel formation. Considered
as the standard method for in vivo evaluation of pro- and anti-angiogenic compounds,
the Matrigel plug assay revealed that AZ67 significantly inhibited new vessel formation
in C57BL/6 mice. Fourteen days after implantation, the Matrigel plug containing the
vehicle formed a large blood vessel network connected with the host vasculature, with the
vessel containing blood, as seen in (Figure 6A) (red structures). In contrast, the Matrigel
plug containing AZ67 displayed no functional vessels. This was further represented by



Int. . Mol. Sci. 2021, 22, 5970 6 of 15

microscopic images of CD31 positive vessel structures (in brown), accompanied by the
quantification (Figure 6B).
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Figure 4. AZ67 does not inhibit the migration and proliferation of HAOEC. Cells were pre-treated with 20 ng/mL TNF-alpha
(A), or 1 mM DMOG (B) for 24 h. Each well was marked below the plate surface by drawing a vertical line. A scratch
intercepting the marked line was done in each well, cells were rinsed and medium containing different concentrations of
AZ67 (0.1, 1, 3, 5 uM) together with 20 ng/mL hTNF-«, or 1 mM DMOG was added. The wound area was measured at 0
and 9 h (for TNF-« treated), and 15 h (for DMOG treated) and migration was quantified. N = 3, p > 0.05 (one-way ANOVA).
(C) HAOEC were stimulated with 20 ng/mL hTNF-« (left), or 1 mM DMOG (right) and treated with AZ67 at different
concentrations (0.1, 1, 3, 5 uM). After 24 h of incubation time, WST-1 reagent was added to all wells and incubated for an
additional 4 h. WST-1 cleavage product was measured using a microplate reader. N =4, p > 0.05 (one-way ANOVA).
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Figure 5. AZ67 inhibits tube and mesh formation of HAOEC upon TNF-« (A) but not DMOG (B) pre-treatment. ECs were
pre-treated with 20 ng/mL hTNF-«, or 1 mM DMOG for 24 h. Cells were seeded onto a Matrigel matrix and treated with
different concentrations of AZ67 (0.1, 1, 3, 5 uM) supplemented with hTNF-&, or DMOG for 8-9 h. Representative images of
tube and mesh-like structures were captured using an inverted microscope. Scale bar = 200 um. Tube length: * p < 0.05 vs.
0 uM (ANOVA, followed by Dunnett test); Number of meshes * p < 0.05, ** p < 0.01 vs. 0 uM, Kruskal-Wallis test, followed
by Mann-Whitney test.
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Figure 6. AZ67 inhibits (neo)angiogenesis in vivo. (A) Representative macroscopic images of the
plugs from the in vivo Matrigel assay. Growth factor reduced Matrigel was mixed with either vehicle,
or an equal amount of volume of AZ67 in two different doses: 0.115 mg/kg body weight, and
11.5 mg/kg body weight. The mixture was injected subcutaneously into the flank area of 6-week-old
C57BL/6 mice, while under anesthesia. Two weeks after injection the mice were sacrificed, and plugs
were harvested for immunohistochemistry processing. (B) Top panel: representative macroscopic
images of the Matrigel sections. Anti-CD31 antibody was used to delineate ECs. Images were
acquired using an Olympus BX43 Microscope. Bottom panel: quantification of CD31 positivity of
the microscopic images. Scale bar = 200 um. * p < 0.05 vs. vehicle (one-way ANOVA, followed by
Dunnett test).

3. Discussion

We evaluated AZ67 activity on the angiogenesis process. AZ67, which is a small
molecule inhibitor with high potency and selectivity for isoform 3 of the PFKFB family,
showed a remarkable ability to alter angiogenesis in vitro as well as in vivo. Importantly,
all this occurred by using AZ67 at concentrations as low as 100 nM in in vitro assays
(approximating the determined KD value from Figure 1), and 115 pg/kg body weight in
an in vivo animal model. Surprisingly, the disrupted angiogenesis process resulted with
no detectable inhibition of two preceding steps of angiogenesis, being proliferation and
migration (of ECs). Interestingly, we have highlighted a novel approach for angiogenesis
inhibition through the PFKFB3 target, with no detectable effects on the glycolytic pathway.

First, by using isothermal titration calorimetry, we demonstrated binding of AZ67 to
the human recombinant PFKFB3 enzyme. Thereafter, stimulation with a pro-inflammatory
cytokine, or treatment with the oncometabolite mimetic DMOG, demonstrated an evident
upregulation of the PFKFB3 protein in HAOECs. Furthermore, in accordance with these
results, we also found a significant decrease in tube- and mesh-like structure formation
upon AZ67 in activated ECs. The process of angiogenesis encompasses a multitude of
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factors. ECs, as the harbingers of this chain, together with pericytes, play a central role [1,2].
During the process of angiogenesis, the dynamics between endothelial migratory (tip)
and proliferatory (stalk) cells are cooperatively controlled by VEGF-A stimulation and
DLL4-Notch signaling [38]. VEGF-A induces angiogenesis by stimulating EC migration
and proliferation, while DLL4-mediated activation of Notch signaling in neighboring cells
suppresses VEGFR2 expression and promotes a stalk cell phenotype [39]. Interestingly,
even though Notch signals promote proliferation of ECs in vivo, the same effect leads to a
reduction in EC proliferation in vitro [40]. In addition, as there is a relationship between
this signaling pathway and PFKFB3-driven glycolysis [11], we can hypothesize that AZ67,
through PFKFB3 (inhibition), could play a role in the upstream or downstream pathway
of Notch signaling. ECs have the remarkable ability to switch metabolism according to
their needs. Upon anaerobic glycolysis inhibition, ECs can shift towards side pathways
such as the pentose phosphate pathway (PPP) and the hexosamine biosynthesis pathway
(HBP) [41], which are very important for generating intermediates for cell growth and
proliferation [42]. Upon PFKFB3 blockage by AZ67, a shift could have taken place, leading
to uninterrupted proliferation and migration of ECs.

In their efforts to design potent and selective inhibitors of metabolic kinase PFKFB3,
Boyd et al., reported a series of inhibitors with high selectivity over the related PFKFB3
isoform. Among these, AZ67 was the focus of our study, as it has a high selectivity for
PFKFB3 compared to other isoforms, it decreases F-2,6-P; levels, and it inhibits PFKFB3
kinase activity—showing good activity in the cell assays, albeit with no apparent effects on
lactate production [33,36]. This latter effect, later also confirmed in astrocytes [36], was an
interesting point when confirming angiogenesis reduction upon PFKFB3 blockage with
no impact on the glycolysis pathway. This was important as other groups have reported
that PFKFB3-driven glycolysis directly modulates vessel sprouting [11]. This shift could
be attributed to the fact that other research groups used non-specific PFKFB3 inhibitors,
where off-target effects could not be ruled out (3PO does not bind to PFKFB3; PFK158 has
no effect on PFKFB3 enzymatic activity; PFK15 showed a much higher ICsy compared to
what has been reported) [33-36].

Previous anti-angiogenic therapies have attempted to inhibit vascular growth sig-
nals, such as VEGEF, but their success was limited due to cell adaptation and therapy-
resistance [7-9]. The shift to EC metabolism seems promising, especially after demon-
strating that PFKFB3 is the driving force, driving vessel sprouting in response to genetic
signals [11]. The most well-studied compound in this regard, 3PO, displays a 30-40% reduc-
tion in glycolysis in treated ECs in vitro, resulting in decreased proliferation, migration and
sprouting. However, as the latest findings revealed that PFKFB3 is not the primary target, if
any, of 3PO, with a much higher attribution to monocarboxylate transporter blockage [35],
additional avenues need to be explored.

In vivo, AZ67 showed a remarkable inhibitory potency by reducing angiogenesis
formation with a dose as low as 115 ug/kg of body weight. Compared to other anti-
angiogenic therapies which require a range of mg/kg dosing regimens [43], this provides
new hope for designing treatments for pathological angiogenesis, with very low to limited
adverse effects.

Despite the variety of angiogenic mechanisms, most of the current research is focused
on the mechanism of sprouting angiogenesis because this mechanism was first described
and because most existing experimental models are related to sprouting angiogenesis [44].
Consequently, the mechanism of intussusceptive angiogenesis is often overlooked in angio-
genesis. However, in intussusceptive angiogenesis, also known as splitting angiogenesis,
a new blood vessel is created by splitting of an existing blood vessel into two [45-47].
Intussusceptive angiogenesis is currently considered an important alternative and comple-
mentary form of sprouting angiogenesis [48]. Because it remains elusive whether this type
of angiogenesis is affected by AZ67, the present in vitro and in vivo observations could be
complemented in future studies using other markers and electron microscopy that make it
possible to follow the morphofunctional basis of the different types of angiogenesis as well
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as the behavior of the other components of the vessel wall, including pericytes [49]. Indeed,
Folkman and Haudenschild dispute on the necessity of pericytes in capillary tube forma-
tion in vitro [50]. These cells play an important role in in vivo chain [2], thus an interplay
of these components in an appropriate animal model, be it cancer-based or other excessive
neovascularization related disease-based, remains an attractive aspect for future studies.
Taken together, our findings provide novel insights into a particular approach for
targeting angiogenesis-related diseases, such as cancer, and this could also be extended to
other diseases with excess neovascularization. Even though PFKFB3-inhibiton has been
demonstrated in anti-angiogenic approaches, its association with glycolysis inhibition has
been intertwined. Here, a glycolysis-independent angiogenesis inhibition was demon-
strated. Most importantly, the inhibitor used in this study exceeds the already known
angiogenesis inhibitors in terms of dose-efficacy (regimen), while the level of angiogenesis
inhibition does not surpass 20-30%, alluding to even lower expected side effects.

4. Materials and Methods
4.1. Isothermal Titration Calorimetry (ITC)—Binding Assay

Binding of AZ PFKFB3 67 (abbreviated as AZ67, Tocris, Bio-Techne Ltd, Abingdon,
UK) to PFKFB3 was analyzed by isothermal titration calorimetry using a MicroCal Peag-
ITC isothermal titration calorimeter (non-automated version, Malvern Pananalytical Ltd,
Malvern, UK). Prior to ITC analysis, recombinant human PFKFB3 produced in E. coli
(Flemish Institute for Biotechnology (VIB), Protein Service Facility, University of Ghent,
Ghent, Belgium) was dialyzed against 2 L buffer (20 mM Tris, 500 mM NaCl, 5 mM MgCl,,
2mM DTT at pH 7.4) for 2 h at 4 °C under constant stirring, followed by switching to a
novel 2 L buffer vial and overnight dialysis. For this purpose, Slide-A-Lyzer Dialysis G2
cassettes (Thermo Scientific, Waltham, MA, USA) were used. The concentration of the
sample after dialysis was determined by UV-absorbance at 280 nm using a Spectramax Plus
384 (Molecular Devices, San Jose, CA, USA). A small amount of the second dialysis buffer
volume was kept for matching the ligand solutions (AZ67). All buffers were prepared in
ultrapure water (18.2 M().cm), equilibrated to room temperature and degassed for 15 min
in an ultrasonication bath before use.

The reference cell of the Peag-ITC was filled with degassed ultrapure water. 40 uM
of AZ67 was titrated into 3.4 uM recombinant PFKFB3. Due to the solubility properties
of AZ67 and the need to match titration solutions, both solutions contained 1.01% DMSO
and 0.05% Ethanol. The PFKFB3 solution was put in the sample cell after 2 min of pre-
equilibration with the assay buffer (same recipe as dialysis buffer). The ligand solution
was administered in the injection syringe. Titration conditions were as follows: one initial
injection of 0.4 uL was followed by 15 injections of 2.5 uL. The initial spacing was set to
180 s, while the remaining spacing was set to 150 s. The sample cell was continuously
stirred at 750 rpm. Temperature was set at 37 °C before loading and kept constant during
the complete assay run. The DP (differential power between the reference and sample cells
to maintain a zero-temperature difference between the cells) was set to 5.

To determine the dilution heats, a control titration was performed consisting of injec-
tions of ligand into the buffer-filled cell (thus in the absence of PFKFB3, without binding).
Thermograms were analyzed using the Microcal Peaq-ITC Analysis software, using the
‘one set of sites” binding model, by including the corresponding control titration. The
AZ67-PFKFB3 titration was run in triplicate. Fitting results were verified by repeating
data analysis using Nitpic-Sedphat and Origin 7, confirming the accuracy of the MicroCal
Analysis software fitting (data not shown).

4.2. Western Blot Analyses

Human aortic ECs (HAOECs) were purchased from Sigma Aldrich (304-05a) and
were used at passages 3 to 9. HAOECs were cultured in Endothelial Cell growth Medium
(Sigma-Aldrich, St. Louis, MO, USA) supplemented with 1% penicillin/streptomycin. To
investigate the expression of PFKFB3 protein, HAOECs were seeded into 24-well plates in
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complete medium until 80-90% confluency. Cells were stimulated with different stimuli
(20 ng/mL hTNF-a (PHC3015; Fisher Scientific), or 10 ng/mL hVEGF (PHC9394; Fisher
Scientific, Waltham, MA, USA), or 1 mM dimethyloxalylglycine—DMOG (71210-50; San-
bio, Cayman Chemical, Ann Arbor, MI, USA)) for 24 h. After washing with ice-cold
PBS, cells were lysed in an appropriate volume of Laemmli sample buffer containing
-mercaptoethanol and boiled for 5 min. Protein samples were then loaded on precast
Bolt 4-12% Tris-Bis gels and after electrophoresis transferred to Immobilon-FL PVDF mem-
branes using pre-mixed Tris/glycine transfer buffer. The membranes were blocked for 1 h
with Odyssey blocking buffer diluted in PBS (1:5). An overnight incubation at 4 °C with pri-
mary antibodies (anti—3-actin (ab8226; Abcam, Cambridge, UK), and anti-PFKFB3 antibody
(ab181861; Abcam, Cambridge, UK)), was followed by a 1 h incubation with IRDye-labeled
antibodies (goat anti-mouse IgG, 926-68070, and goat anti-rabbit IgG, 926-32211) at room
temperature. Antibody detection was achieved using an Odyssey SA infrared imaging
system (LI-COR Biosciences, Lincoln, NE, USA) with Image Studio Software used as a tool
to quantify the intensity of the protein bands.

4.3. Viability Assay

Cell viability was measured using a ToxiLight bioassay Kit (Lonza, Basel, Switzerland),
following the manufacturer’s protocol. Briefly, HAOECs resuspended in Endothelial
Cell Growth Medium, supplemented with 1% antibiotics were plated into 96-well plates
(5 x 10* cells/mL), and subsequently treated with vehicle or different concentrations of
AZ67(0.1,1, 3,5 uM). After 24 h, 20 uL of cell supernatant was transferred to a luminescence
compatible 96-well plate. One hundred microliters of AKDR reagent was added, following
an incubation of 5 min and luminescence was measured using a Luminoskan plate reader
on a 1 s integrated time reading per sample.

4.4. L-Lactate Measurements

Intracellular and extracellular lactate levels were measured in vitro using an L-lactate
Assay Kit (Cayman Chemical, Ann Arbor, MI, USA) according to the manufacturer’s
protocol. HAOECs were seeded into a 12-well plate in Endothelial Cell Growth Medium
supplemented with 1% antibiotics, and upon 80-90% confluency cells were treated with
different concentrations of AZ67 (0.1, 1, 3 pM) supplemented with 20 ng/mL hTNF-«.
After a 16 h incubation time, the supernatant was removed to quantify extracellular L-
lactate levels, while the cell pellet was used for intracellular L-lactate determination. A cell
count was performed with an automated cell counter (Countess® II FL, Life Technologies,
Carlsbad, CA, USA). After deproteinization with cold metaphosphoric acid (0.25 M for cell
pellet, and 0.5 M for supernatant), potassium carbonate (5 M) was added to neutralize the
acid. Following centrifugation (10,000 g for 5 min) at 4 °C, the supernatant was assayed.
Lactate fluorescent substrate was used as a fluorophore while fluorescence (Aex = 540 nm;
Aem = 595 nm) was measured and normalized to the cell number.

4.5. ATP Assay (Measurements)

Analysis of total cellular ATP was performed using the CellTiter-Glo® assay, according
to the manufacturer’s protocol. HAOECs seeded at a cell density of 5 x 10* cells/mL, were
stimulated with 20 ng/mL hTNF-c«, or 1 mM DMOG for 24 h. Cells were then treated with
different concentrations of AZ67 (0.1, 1, 3, 5 uM) supplemented with either hTNF-«, or
DMOG. After 24 h of incubation, cells were lysed using the CellTiterGlo reagent, while
intensively shaken for 2 min. Cell lysates were transferred into the wells of white 96-well
plates (PerkinElmer, Waltham, MA, USA) and read on a Luminoskan plate reader under
standard luminescence settings.
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4.6. Proliferation and Migration Assays

e  Proliferation assay

Proliferation activity of HAOECs with AZ67 treatment was monitored using a colori-
metric WST-1 assay according to the manufacturer’s instructions (Sigma-Aldrich, St. Louis,
MO, USA). HAOECs were seeded into a 96-well plate, and upon reaching 80-90% conflu-
ency, stimulated with 20 ng/mL hTNF-«, or 1 mM DMOG, and AZ67 was added at the
stated concentrations. After a 24 h incubation time, WST-1 reagent was added to all wells at
a 1/10 dilution and incubated for an additional 4 h. WST-1 cleavage product was measured
at 450 nm (sample) and at 650 nm (background) using a microplate reader. WST-1 plus
medium alone served as blank, which was subtracted from all values. The proliferation
rate was calculated using the following formula: (WST-1 value/diluent control) x 100.

e  Scratch assay

The wound healing assay, also known as the scratch assay, is a standard in vitro tech-
nique for determining collective cell migration [51]. For this assay, HAOECs plated at
5 x 10* cells/mL were grown to confluency in Endothelial Cell Growth Medium supple-
mented with antibiotics. Subsequently, cells were stimulated with 20 ng/mL hTNF-«,
or 1 mM DMOG for 24 h. Each well was marked below the plate surface by drawing
a vertical line. A scratch intercepting the marked line was done in each well using a
200 pL sterile tip. Cells were rinsed with PBS to remove cell debris, and medium con-
taining indicated concentrations of AZ67 together with hTNF-o, or DMOG was added.
Photos of scratches were taken at timepoint 0 h, and after 9 h (W\TNF-« treated) or 15 h
(DMOG treated) incubation. The migration rate was calculated using the following formula:
% closure = ((scratched area at 0 h—scratched area at 9 or 15 h)/scratched area at 0 h) x100.

4.7. In Vitro Angiogenesis Assay

To visually analyze the anti-angiogenic ability of AZ67, an in vitro tube formation
assay was performed. Briefly, 10 uL of Growth Factor Reduced Matrigel matrix (Corning®,
Corning, NY, USA) was transferred to ibidi angiogenesis p-slides (Ibidi GmbH, Grafelfing,
Germany) and then incubated at 37 °C for 1 h. The HAOECs (1 x 10% cells/well) pre-
treated with 20 ng/mL hTNF-«, or 1 mM DMOG for 24 h, were seeded onto Matrigel
matrix with 50 uL. DMEM supplemented with 10% FBS, and different concentrations of
AZ67 respectively, with supplemental addition of 20 ng/mL hTNF-«, or 1 mM DMOG and
incubated at 37 °C for 8-9 h. The tube- and mesh-like structures were photographed under
an inverted microscope (Celena® Digital Imaging System, Logos Biosystem, Villeneuve
d’Ascq, France) at x4 magnification, and the total tube length and number of formed
meshes were analyzed using the angiogenesis analyzer of Image J.

4.8. In Vivo Angiogenesis (Matrigel Plug) Assay

The subcutaneous Matrigel plug assay in mice is the standard method for in vivo
evaluation of the pro- and anti-angiogenic potential of different compounds. The assay
was performed as described previously [52,53]. Briefly, Growth Factor Reduced Matrigel
(Corning®, Corning, NY, USA), thawed overnight at 4 °C, was mixed with either vehicle
(control group), or with an equal amount of volume of AZ67 compound (0.115 mg/kg body
weight, or 11.5 mg/kg body weight). Six hundred microliters of this mixture was injected
subcutaneously into the flank area of 6-week-old C57BL/6 mice (Charles River, Wilmington,
MA, USA), while under anesthesia. Two weeks after injection, mice were sacrificed,
Matrigel plugs were removed and photographed using a dissection microscope to show
the extent of vascularization. Next, Matrigel plugs underwent immunohistochemistry
processing (fixation in 2% paraformaldehyde for 24 h, followed by paraffin embedding,
sectioning and staining). Anti-CD31 antibody (77699S; Cell Signaling, Beverly, MA, USA)
was used to delineate ECs. Sections were examined by light microscopy and photos
were taken using an Olympus BX43 microscope (x5 magnification). CD31 positivity was
quantified using the Image] Macro language. All animal procedures were approved by
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the ethical Committee of the University of Antwerp (protocol code 2017-81 and date of
approval: November 2017).

4.9. Statistical Analyses

All data are expressed as mean & SEM. Statistical analyses were performed using
SPSS software (version 25). Statistical tests are specified in the figure legends. Probability
values <0.05 were considered to be significant.
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