Skip to main content
. 2021 May 30;21(11):3786. doi: 10.3390/s21113786

Table 4.

The summary of reviewed driver drowsiness detection papers. The meanings of the abbreviations are: TD—time-domain, FD—frequency-domain, N—nonlinear, EN—entropies, CN—complex networks, SIG—signal-based labeling, Li’s—Li’s subjective fatigue scale, SD—sleep deprivation, NREM1—labels based on the sleep stages, BE3—first and last three minutes as two labels, BE5—first and last five minutes as two labels, BIH—behavior-based labeling, WIE—Wierwille scale, RT—reaction time based labeling, EXP—expert labeling, LSTM—long-short term memory, KNN—k nearest neighbor, SVM—support vector machine, RF—random forest, ELM—extreme learning machine, GBDT—gradient boosting decision tree, NN—neural network, FLDA—Fisher linear discriminant analysis, SDBN—sparse deep belif network, HMM—hidden Markov model, and Thres.—thresholding-based algorithm.

Author Features Target Algorithm No. Classes Acc.
Chaabene et al. [174] Raw SIG CNN 2 90.14
Balam et al. [173] Raw NREM1 CNN 2 94.00
Yingying et al. [175] FD SIG LSTM 2 98.14
Zou et al. [176] EN Li’s KNN 88.74
Chaudhuri and Routray [177] EN SD SVM 2 86.00
Budak et al. [178] TD, FD, EN and special NREM1 LSTM 2 94.31
Chen et al. [179] CN BE3 SVM 2 94.40
Mehreen et al. [180] FD KSS SVM 2 92.00
Martensson et al. [181] FD, N and EN KSS RF 2 93.50
Barua et al. [182] TD, FD and EN KSS SVM 2 and 3 93.00 and 79.00
Ogino and Mitsukura [183] FD and EN KSS SVM 2 67.00
Chen et al. [184] CN KSS
Chen et al. [185] CN KSS KNN 2 98.60
Chen et al. [186] CN BE3 ELM 2 95.00
Hu and Min [187] EN BE5 GBDT 2 94.00
Dimitrakopoulos et al. [188] CN BE5 SVM 2 92.10
Hong et al. [189] FD, N and EN EBE SVM 5 99.50
Li and Chung [190] FD WIE SVM 5 93.87
Min et al. [191] FD and EN BE5 NN 2 98.30
Awais et al. [192] TD, FD and EN BIH SVM 2 80.00
Nguyen et al. [193] FD SIG FLDA 2 79.20
Hu [194] EN BE5 AdaBoost 2 97.50
Chai et al. [195] FD BE5 SDBN 2 90.60
Chai et al. [196] FD BE5 NN 2 88.20
Mu et al. [197] EN Li’s SVM 2 97.00
Fu et al. [198] FD KSS HMM 3 AUC 0.841
Ahn et al. [199] FD SD FLDA 2 75.90
Huang et al. [200] FD RT
Li et al. [201] FD BIH SVM 2 93.16
Chen et al. [202] FD, N and EN SIG ELM 2 95.60
Sauvet et al. [203] FD EXP Threshold 2 98.30
Lee et al. [204] TD and FD NREM1 SVM 4 98.50
Garces Correa et al. [205] TD and FD NREM1 NN 2 87.40
Zhang et al. [110] N and EN SIG NN 4 96.50
Hu et al. [206] FD KSS SVM 2 75.00
Picot et al. [207] FD SIG Threshold 5 80.60
Zhao et al. [208] FD Li’s SVM 3 81.60
Khushaba et al. [20] FD WIE LDA 5 95.00
Liu et al. [209] EN KSS and Li’s HMM 2 84.00