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Abstract: Integrative multiomics data analysis provides a unique opportunity for the mechanistic un-
derstanding of colorectal cancer (CRC) in addition to the identification of potential novel therapeutic
targets. In this study, we used public omics data sets to investigate potential associations between
microbiome, metabolome, bulk transcriptomics and single cell RNA sequencing datasets. We iden-
tified multiple potential interactions, for example 5-aminovalerate interacting with Adlercreutzia;
cholesteryl ester interacting with bacterial genera Staphylococcus, Blautia and Roseburia. Using public
single cell and bulk RNA sequencing, we identified 17 overlapping genes involved in epithelial cell
pathways, with particular significance of the oxidative phosphorylation pathway and the ACAT1
gene that indirectly regulates the esterification of cholesterol. These findings demonstrate that the
integration of multiomics data sets from diverse populations can help us in untangling the colorectal
cancer pathogenesis as well as postulate the disease pathology mechanisms and therapeutic targets.

Keywords: microbiota; colorectal neoplasms; biomarkers; metabolomics; transcriptome;
omics integration

1. Introduction

Colorectal cancer (CRC) is the second most common cause of death due to cancer
worldwide, with an incidence of almost two million cases in 2018 [1]. Early detection
and treatment are critical factors in the course and prognosis of CRC, as the survival rate
decreases with disease progression [2]. It is thought that CRC arises due to complex interac-
tions of the transcriptome, metabolome, microbiome and immune system [3]. Assessment
of these omics platforms and their associations may reveal important pathways that can
be used for early cancer detection as well as therapeutic targets. Recent development of
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high throughput sequencing technology has enabled the quantification of the expression
labels of multiple omics data including metabolomics, transcriptomics microbiome and
inflammatory markers.

Growing evidence indicates that the gastrointestinal microbiome is strongly associated
with the development of colorectal cancer, as abundance of specific microbiota have been
found to be increased or decreased in colorectal cancer patients in comparison to healthy
controls [4]. A recent study, by Ternes et al. (2020), collated all current knowledge on
the gut microbiome in colorectal cancer; Fusobacterium, Peptostreptococcus, Porphromonas,
Prevotella, Parvimonas, Bacteroides and Gemella were identified to be the most prominent
CRC-associated bacteria [4].

The human and microbial metabolome may also play a vital role in colorectal carcino-
genesis [5]. For example, polyamines, which are thought to contribute to carcinogenesis,
show a higher abundance in the CRC patients in comparison to healthy individuals [5].
Conversely, poly- and monounsaturated fatty acids, short chain fatty acids and hydrocin-
namic acid have been found to be decreased in multiple CRC cohorts [5].

Within the transcriptomics realm, it has been estimated that 10% of the human ep-
ithelium transcriptome is regulated by the gut microbiome via the metabolome [6]. The
biological mechanisms for this relationship are not fully understood, though there are
multiple ideas theorising this relationship, as the majority of these genes are involved in
immunity, cell proliferation and metabolic pathways [6].

There are very few studies that explored the interplay between different sets of
microbiome, metabolome and transcriptomics datasets. Wang et al. recently identified
significant associations between the microbiome, butyrate-related metabolites and gene
expression in patients with CRC [7]. However, this was a pilot study which used only four
samples to identify relationships between metabolites, microbial taxa and DNA methylation
data sets. Other studies solely focused on single or two omics data sets. For example,
Clos Garcia performed an integrative analysis of faecal UHPLC-MS metagenomics and 16S
metagenomics in CRC in 224 faeces samples [7]. Differences in faecal levels of cholesteryl
esters and sphingolipids were identified. Additionally, Fusobacterium, Parvimonas and
Staphylococcus were increased in CRC whilst the Lachnospiraceae family were reduced.
Integration of this data identified tight interactions which were superior to the conventional
faecal occult blood test for CRC diagnostics. Similarly, Kim et al. identified strong gut
microbiome–metabolome associations in CRC and colorectal adenoma patients, supporting
the importance of metabolites and their interplay in the development of CRC [8]. Data
on clinical measurements, gene expression, DNA methylation and miRNA expression
have also been integrated to identify a prognostic model, which was shown to improve
prediction of prognosis in CRC patients [9].

Exploration of the relationship between the microbiome, metabolome and transcrip-
tomics is vital to improve CRC prevention, diagnosis and treatment. Integration of mul-
tiomics data sets may provide knowledge on CRC pathogenesis, in addition to which
bacteria may drive or protect against carcinogenesis. This could enable targeted probiotic
administration, antibiotic treatment, or nutritional interventions to alter the gastrointestinal
microbiome to prevent or treat CRC [10]. Metabolites could also be administered if they
are known to protect against, or halt progression, of CRC.

In this study we used public omics data sets to investigate the association between the
microbiome, metabolome, bulk transcriptomics and single cell RNA sequencing datasets,
aiming to explore their potential role in colorectal cancer pathogenesis and to postulate
causative mechanisms for associations identified.

2. Results
2.1. Microbiome and Metabolome Analysis Identified Novel Interactions

In order to identify potential microbiome–metabolome interactions, we applied a
Bayesian additive regression trees classification method (BART) to discriminate CRC
cases from healthy controls in two published datasets; Kim et al. [8] and Clos-Garcia
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et al. [11]. The BART method was chosen because it is capable of both capturing nonlinear
effects and estimating uncertainties associated with the estimates. Models were built with
(1) microbiome only and (2) combined microbiome and metabolome data. In each case,
two steps were followed. First, BART was used to select important features by local
thresholding (please see Section 4 for more details). Second, having obtained the set of
important features, a cross-validated BART model was built to optimise the classification
accuracy. Since, within Kim et al. [8] dataset, controls (n = 102) were over-represented
in relation to cases (n = 36), step 1 was repeated 10 times, each time using a different,
but balanced, data resampling, in order to reduce the bias introduced by subsampling.
Hypothesising that interactions that appear more frequently are potentially interacting
ones, potential interaction effects were examined by counting the number of times each
pair of features co-occurred in any downward path of the fitted trees. Partial dependence
plots were constructed for both individual features and high frequency interacting pairs.

Both microbiome and metabolome features, within the Kim et al. [8] dataset, were
selected (Supplementary Table S2). The out-of-sample (oos) misclassification error of
the cross-validated BART model was 0.306. When only microbiome features were used,
however, the oos error increased to 0.528, implying that the model, built on microbiome
features alone, does not convey predictive power in differentiating carcinoma from control
samples. Figure 1a,b shows the partial dependence of harmane and 5-aminovalerate, two
of the metabolic features that were selected in all 10 repeats. We observe a decrease in the
risk of cancer in relation to an increase of harmane levels, in addition, the risk is elevated as
5-aminovalerate increases. Partial dependence plots for the rest of the features, which were
selected in at least half of the runs, are presented in Supplementary Figure S1. Although
these features are selected by the model as significantly impacting the prediction of the
outcome, no strong relationship with CRC risk was observed when considered individually,
as illustrated, for example, by the partial dependence plots of ornithine, 1,2-dilinoleoyl-
GPC (18:2/18:2), glycochenodeoxycholate, cholesterol and bacterium genus Eubacterium
(OTU37). However, this inconsistency may be explained by interaction effects, which are
not captured by partial dependence, since partial dependence, by definition, averages out
the effect of all other variables.

We therefore investigated pairwise interaction effects for all selected microbiome and
metabolomic features. Figure 1c displays the interaction count matrix resulting from the
BART model. The most noticeable metabolite is 5-aminovalerate, which is shown to interact
with many other metabolites and some bacteria, in particular, the genus Eubacterium, Adler-
creutzia and SMB53. Although less prominent, 1,2-Dilinoleoyl-GPC (18:2/18:2), guanosine
and indolin-2-one also were shown to be involved in multiple interactions.

These metabolites were shown to interact with 5-aminovalerate as well amongst
themselves, as indicated by the interactions among all such pairs highlighted in Figure 1c.
This suggests that high-order interactions may be present.

The top 2% feature pairs with the highest counts in Figure 1c were selected for partial
dependence investigation. For each such pair, we estimate log-odds of cancer on a regular
2D grid of feature values of this pair, by fixing the feature values to be on the grid and
averaging over all predictions from the training instances. Among all feature pairs, higher
risk of CRC implies elevated level of 5-aminovalerate, however, increased 5-aminovalerate
does not necessarily imply higher risk of CRC, when considering the effect of other metabo-
lites (Figure 2 and Supplementary Figure S2). In particular, increased harmane, guanosine,
arabonate_xylonate, glycerate, N_Formylmethionine and Pyridoxamine levels or decreased
1,2-Dilinoleoyl-GPC (18:2/18:2), N_Acetylvaline and indolin-2-one levels, are shown to
lower the risk of CRC, even though 5-aminovalerate is abundant. When 5-aminovalerate
is not abundant, CRC risk is minimised, for example, by increasing harmane, guanosine,
or by decreasing 1,2-Dilinoleoyl-GPC (18:2/18:2) levels. In addition, the absence of the
genus Adlercreutzia is shown to lower the risk of CRC when 5-aminovalerate is elevated.
The complete results are represented within Supplementary Table S3.
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Figure 1. (a) Results from Kim et al. microbiome and metabolome analysis using BART methods; (a) Bayesian Additive 
Regression Trees (BART) model partial dependence plots for harmane, plotted at various quantiles (x-axis). Y-axis shows 
the probits, a value of 0 indicates that CRC and normal are equally likely; values above 0 indicate that CRC is more likely 
and values below 0 indicate CRC is less likely. The shaded area shows the 0.95 Bayesian credible intervals of the probits; 
(b) BART model partial dependence plots for 5-aminovalerate, plotted at various quantiles (x-axis). Y-axis shows the pro-
bits, a value of 0 indicates that CRC and normal are equally likely; values above 0 indicate that CRC is more likely and 
values below 0 indicate CRC is less likely. The shaded area shows the 0.95 Bayesian credible intervals of the probits; (c) 
matrix of counts of pairwise interactions from the BART mode, shown in the heatmap. The genera are Veillonella (OTU57), 
Eubacterium (OTU37), Haemophilus (OTU65), Adlercreutzia (OTU2), Anaerotruncus (OTU23), and SMB53 (OTU53). The met-
abolic and microbiome features are separated. 

Figure 1. (a) Results from Kim et al. microbiome and metabolome analysis using BART methods;
(a) Bayesian Additive Regression Trees (BART) model partial dependence plots for harmane, plotted
at various quantiles (x-axis). y-axis shows the probits, a value of 0 indicates that CRC and normal are
equally likely; values above 0 indicate that CRC is more likely and values below 0 indicate CRC is
less likely. The shaded area shows the 0.95 Bayesian credible intervals of the probits; (b) BART model
partial dependence plots for 5-aminovalerate, plotted at various quantiles (x-axis). y-axis shows
the probits, a value of 0 indicates that CRC and normal are equally likely; values above 0 indicate
that CRC is more likely and values below 0 indicate CRC is less likely. The shaded area shows the
0.95 Bayesian credible intervals of the probits; (c) matrix of counts of pairwise interactions from
the BART mode, shown in the heatmap. The genera are Veillonella (OTU57), Eubacterium (OTU37),
Haemophilus (OTU65), Adlercreutzia (OTU2), Anaerotruncus (OTU23), and SMB53 (OTU53). The
metabolic and microbiome features are separated.
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Figure 2. Partial dependence on CRC for representative pairs of microbial/metabolomic features, shown as contour plots,
coloured by log-odds of CRC. Higher values (yellow) indicate increased risk of CRC; lower values (blue) indicate decreased
risk of CRC; a value of 0 indicates the risks are equal. Plots for more feature pairs can be found in Supplementary Figure S2.
Top to bottom: (5-aminovalerate, harmane), (5-aminovalerate, 1,2-Dilinoleoyl-GPC), (5-aminovalerate, 1-oleoyl-2-linoleoyl-
GPC), (guanosine, 5-aminovalerate).

Although when not considering interaction effects, CRC risk increases as
5-aminovalerate levels increase (Figure 1b), the result of BART interaction analysis suggests
that the risk is attenuated when controlling for other metabolites. This observation offers
additional insights to the regulation of metabolomic and microbiome markers in CRC
tumorigenesis, and could serve as a basis for future experimental and validation studies in
the search for potential targets for therapeutic intervention.

The Clos-Garcia [11] dataset analysis revealed a better performance in discrimi-
nating CRC from healthy controls, in both combined microbiome metabolome dataset
(oos: 0.094) and microbiome dataset alone (oos: 0.113). Compared with Kim et al. [8], the
Clos-Garcia [11] microbiome samples confer considerably higher predictive power. This
noticeable difference in the classification error between the two published datasets may be
partly explained by the observation that no common microbes, at the genus level, were
selected by BART. The BART interaction analysis identified three microbiome–metabolome
pairs and three microbial pairs that exhibit strong interactions compared to other feature
pairs. All microbiome–metabolome pairs involve ChoE(20:4), which is shown to inter-
act with the bacteria genera Staphylococcus, Blautia and Roseburia. Partial dependence of
ChoE(20:4) showed that the risk of CRC increases when ChoE(20:4) is high, although the
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relation is nonlinear as the risk remains low as long as ChoE(20:4) level is below some
threshold (Figure 3a). Partial dependence of these feature pairs (Figure 3b), however,
provides us with valuable insights into how the risk may be mitigated by controlling
for specific microbes. As can be seen from the contour plots, under high values (log-
normalised) of ChoE(20:4), decreasing Staphylococcus and Roseburia, or increasing Blautia,
reduces the risk of CRC. Further inspection of the contour plots for microbial interactions
reveals that the risk is minimised when Staphylococcus and Roseburia decrease simulta-
neously; and when Blautia and an unknown genus (OTU17213), from the same family
as Blautia, Lachnospiraceae, increase simultaneously. Supplementary Table S4 provides a
summary of these results.
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Figure 3. Partial results for Clos-Garcia microbiome and metabolome analysis using BART methods; (a) partial dependence
plot of ChoE(20:4); (b) contour plots for microbiome–metabolome interactions between (1) Staphylococcus (OTU7517)
and ChoE(20:4), (2) Blautia (OTU14967) and ChoE(20:4), (3) Roseburia (OTU9785) and ChoE(20:4); microbial interactions
between (1) Roseburia (OTU9785) and Staphylococcus (OTU7517), (2) Blautia (OTU5962) and an unknown genus from family
Lachnospiraceae (OTU17213), (3) OTU17213 and Blautia (OTU14967). The z-value (level) is the log-odds of CRC, interpreted
in the same way as Figure 2.

2.2. Metabolite Enrichment Analysis

The Kim et al. [8] metabolites dataset was also analysed using the IMPaLA (Integrated
Molecular Pathway Level Analysis) tool. IMPaLA is a web tool, developed for integrated
pathway analysis of metabolomics data alongside gene expression or protein abundance
data [12,13]. It works through extending over-representation and enrichment analyses
to multiple data types. Supplementary Table S5 depicts the pathways enriched with the
Kim et al. [8] metabolites. The ABC transporters and Purine Nucleoside Phosphorylase
pathways are the most significant pathways associated with the Kim et al. [8] metabolites,
KEGG (p value: 6.9 × 10−10) and SMPDB (p value: 7.65 × 10−8), respectively.

Supplementary Table S6 shows the list of IMPaLA identified enriched pathways using
the Clos-Garcia metabolite dataset. Amongst the most significantly enriched pathways
were the ABC transporter (p value: 6.09 × 10−9) and the Purine Nucleoside Phosphorylase
Deficiency (p value: 7.65 × 10−8) pathways. Cholesterol was found to be significantly
enriched among several biochemical and metabolic pathways, primarily featuring path-
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ways involving vitamin digestion and absorption (p value: 0.0003), and digestion of dietary
lipids (p value: 0.0006).

2.3. Bulk RNA Seq Analysis

A list of 6066 differential genes were obtained from COAD—TCGA (The Cancer
Genome Atlas—Colon Adenocarcinoma) [14] study after iterative undersampling, detailed
in Section 2, and the resulting p value significance of the fold change was 0.0001. Out of
the 6066 genes, 2653 (43.74%) were upregulated and 3413 (56.26%) were downregulated.
Figure 4a shows a volcano plot for the selected 6066 genes. The application of a Recursive
Feature Elimination [15] over the 6066 differential gene expression dataset resulted in the
identification of 121 unique genes. Out of these 121 genes, 76 appear more than once among
the iterations. We used Enrichr [16] for the enrichment analysis for the selected 76 genes
which revealed that the Glutamatergic synapse pathway was significantly associated
(p value: 0.001) with the GNG3, GLS2, GNG7, GRIK1, GRIA3 and GRIN2D genes (Figure 4b).
Furthermore, the alanine, aspartate and glutamate metabolism pathways were significantly
associated (p value: 0.02) with GLS2, GPT and ASPA. A list of KEGG pathways can be
found in Supplementary Table S1.
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2.4. Single Cell RNA Seq Analysis

We obtained four lists of differential genes in four different cell types described by
Li H et al. (2017) [17] listed in Supplementary Table S7. DAVID enrichment analysis was
performed to obtain the significant pathways for these genes [18]. For the case of fibroblast
cells associated dataset, the most significant pathway obtained was Proteoglycans in cancer
(p value 1.2 × 10−3) (CD63, DDX5, DCN, LUM, ITGB1). In epithelial cells, oxidative
phosphorylation was identified as the most significant pathway (p value 2.0 × 10−6)
(ATP5A1, ATP5G1, ATP5I, NDUFB1, COX6C, COX7C, UQCR10). In case of myeloid cells,
the key pathways identified were the oxidative phosphorylation (p value 2.2 × 10−3)
(ATP6, ATP8, ND6, ND8) as well as metabolic pathways (p value 8.6 × 10−2) (ATP6, ATP8,
ND6, ND8, CECR1, SAT1). For the B-cell related dataset, the most significant pathway
identified was the protein processing in the endoplasmic reticulum (p value 4.9 × 10−2)
(HSPA8, HSPH1) pathway. The 342 genes and pathways identified within the epithelial
cells related dataset (obtained from Zhang GL et al. (2019) [19]) are provided within the
Supplementary Table S8.

Significant downregulated pathways identified were the oxidative phosphorylation
(p value 0.000347) (NDUFB1, COX6B1, COX7A2, COX7C, ATP5C1, ATP5G1, ATP5H) and
the nitrogen metabolism (p value 0.000595) (CA1, CA7, CA2) pathways. The p53 signalling
pathway (p value 0.00244) (ATR, MDM2, PERP, SESN3) was depicted as significantly
upregulated. We further compared the 121 significant genes obtained from the bulk RNA-
seq analysis and compared them to the 342 genes obtained from single-cell epithelial
cells. A total of 17 genes were identified to be present in both analyses (Figure 4c). All
17 genes show a similar regulatory pattern in both the bulk and single-cell RNA-seq and
are represented in Table 1. A heatmap for the 17 genes reveals a differential gene expression
pattern across both the bulk (Figure 5a) and single cell RNA seq datasets (Figure 5b).
We then employed the Network Analyst platform [20] and constructed a tissue specific
interaction network using these 17 genes (Figure 5c). In the resulting network the seed
nodes are shown in red while the genes that are involved in metabolism are shown in blue.

Table 1. List of the 17 genes and evidence of their involvement in regulation across normal and CRC patients.

Gene Symbol Normal vs. CRC (Bulk RNA Seq) Normal vs. CRC (Single-Cell RNA Seq)
Epithelial Cells Reference

ADH1B Downregulated Downregulated [21]
KIAA1199 (CEMIP) Upregulated Upregulated [22–27]

CDH3 Upregulated Upregulated [5,28,29]
CA7 Downregulated Downregulated [30,31]

GUCA2B Downregulated Downregulated [32–34]
ABCC13 Downregulated Downregulated [35]
ABCG2 Downregulated Downregulated [36–41]
CPNE7 Upregulated Upregulated [42]
HHLA2 Downregulated Downregulated [43,44]

CEACAM7 Downregulated Downregulated [45,46]
AQP8 Downregulated Downregulated [47]
GTF3A Upregulated Upregulated [48]
MMP28 Downregulated Down regulated [49,50]
LGALS4 Downregulated Downregulated [51–55]

HSD11B2 Downregulated Downregulated [56–58]
CHP2 Downregulated Downregulated [59]

NR3C2 Downregulated Downregulated [32,34,60–62]
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Figure 5. (a) Shows the heatmaps for the 17 genes in the bulk RNA sequencing dataset; (b) heatmap for the 17 genes (single
cell RNA sequencing). Red denotes upregulation, white indicates no expression or zero expression and blue depicts low
expression; both heatmaps were performed using hierarchical clustering on the rows. The three clusters are coloured as red,
black and green; (c) the network was generated using the 17 genes that were found to be differentially expressed in the
network. The seed genes are labelled and shown in red, while the proteins connected to these genes are shown in green. The
interactions between the genes and the proteins are shown in red. The blue coloured proteins or seed genes are involved in
the metabolic pathways from KEGG.
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2.5. Qualitative Integration

We attempt to integrate multiple features from diverse data sets based on the en-
richment analysis and literature review. ABCG2 and AQP8 genes are responsible for
bile secretion (AQP8 is downregulated), which is converted to cholesterol by the gut
enzymes[63]. Cholesterol is further converted to coprostanol by members of the Lach-
nospiraceae family, including Blautia and Roseburia [64]. In Figure 6, we provide an example
of the qualitative integration.
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3. Discussion

In this study, we used multiomics data sets from different populations to understand
pathophysiological pathways and identify potential therapeutic CRC targets. In an effort to
understand the complex interactions between microbiome and metabolome we employed
two datasets (Kim et al. [8] and Clos-Garcia [11]) and quantified the top ranked interactions
using the BART model. We observed a decrease in the predictive risk of CRC as the level
of harmane increased with estimated credible intervals from BART. In our BART model,
sex and age were used as a covariate. Kim et al. also considered age, sex, and smoking
status (smoker/non-smoker) as covariates. Moreover, we were able to show that this
predictive risk is elevated as serum levels of faecal 5-aminovalerate increases. In this case,
5-aminovalerate are considered as interactions as they appear in a contiguous downward
path of the tree from the root node to a terminal node. Moreover, a partial dependence of
ChoE(20:4) showed that the risk of CRC increases when cholesteryl ester, ChoE(20:4), is
high. Importantly, a pairwise interaction analysis suggests that the risk may be mitigated by
controlling for other microbial and/or metabolomic features, as shown in Supplementary
Tables S3 and S4. This offers great potential for targeted experimental pathophysiology
studies which could provide further evidence for our findings. To make our analysis
consistent across the two datasets of Kim et al. and Clos-Garcia et al., we removed the
adenoma samples and considered only the carcinoma and healthy controls, instead of
pooling adenomas and carcinomas together. Clos-Garcia et al. identified increased levels
of Fusobacterium, Parvimonas and Staphylococcus, with decreased levels of Lachnospiracaea
family members in CRC [11]. We also note that in Clos-Garcia et al., a logistic regression
model was only fitted to 16 genera and 6 metabolites, which were identified by comparison
with their previously published results. Conversely, in our case all available microbiome
and metabolome features were included in BART modelling. Kim et al. identified multiple
associations between bacteria and metabolites [8].

To add biological pathway information on the metabolomics and microbiome data
sets, we used enrichment analysis. Interestingly, based on an analysis of the Kim et al.
metabolomics dataset, we identified many biochemical pathways enriched with
5-aminovalerate. We found 5-aminovalerate to be significantly enriched within the arginine
and proline metabolism (p-value: 0.00243) and D-arginine and D-ornithine metabolism
(p value: 0.0541) pathways. Lysine, proline and arginine have previously shown antitu-
mour effects on cancer cell line HCT 116 by inhibiting MMP expression and invasion [65].
Although it may be thought that their metabolism would be downregulated in cancer if a
tumour has been able to develop, a systematic review evaluating the effects of arginine
on colorectal cancer found decreased tumour production and crypt cell hyperproliferation
during the initiation stage of carcinogenesis, but a stimulation of tumour growth during the
promotion stage [66]. Evidence also indicates that the gut microbiome plays an important
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role in the production of 5-aminovalerate. Lower levels of 5-aminovalerate are found
in germ free mice in comparison to normal mice [67,68], and high levels are thought to
indicate bacterial overgrowth [69]. In addition to that, 5-aminovalerate is thought to be a
metabolite of dietary proteins, particularly lysine, produced by bacteria in the gastrointesti-
nal tract and has also been found to be increased in a haem-enriched diet, which has also
been associated with a higher risk of CRC [70].

A metabolic pathway enrichment analysis also identified the short chain fatty acids
(SCFAs) acetate, propionate and butyrate to be significantly associated (p < 0.05) with
CRC. However, in the data set the expression label was low, so it might be due to the
quantification of the metabolomics experimental process. Fibre is digested by anaerobic
bacteria in the gut to produce these SCFAs [71]. SCFAs have been detected in higher levels
in healthy individuals in comparison to CRC patients, and have been shown to inhibit
histone deacetylase activity and interact with cell surface receptors in enterocytes affecting
the epigenetic gene expression [72]. Their role is postulated to be protective against CRC,
as they have been shown to arrest growth and differentiation in human colon carcinoma
cells [73].

In our analysis we performed an integration of metabolomic, microbiome and tran-
scriptome datasets from multiple different CRC cohort studies to identify potential new
disease targets. Methodologically it is different from Acharjee et al. [73], and Quraishi
et al. [74]. In both of these studies, omics integration was performed from the same cohorts
for obesity and inflammatory bowel disease. The data integration performed here for
different CRC patient cohorts is being done for the first time. However, in the case of
humanised microbiome mouse models [75] the transcriptome, microbiome and metabolites
were integrated.

In this analysis, we identified 17 genes common between bulk and single cell RNA
sequencing datasets and these genes were used for the pathway analysis. Interestingly
several genes like KIAA1199, CDH3, GUCA2B, LGALS4, CA7, NR3C2, ABCG2, AQP8, etc.
were found to be implicated in CRC pathophysiology. Few genes that we have identified
are involved in various metabolic processes, for example HSD11B2 (converts cortisone to
cortisol), NR3C2 and HSD11B2 (Aldosterone regulated sodium reabsorption), ABCG2 and
AQP8 (Bile secretion), CA7 (nitrogen metabolism). In our metabolic analysis we identified
choE(20:4), also known as cholesteryl ester, as a significant metabolite. It is synthesised
by the esterification of cholesterol; the enzyme responsible for it is ACAT1 [76]. Our
network analysis suggests that ACAT1 and several other metabolic genes are interacting
with the 17 genes we identified either directly or indirectly. Metabolites with high ranking
seem to be interacting with multiple microbiome species, for example Indolin-2-one is a
tryptophan metabolite, likely of gut microbiome origin [77]. Indolin-2-one compounds have
been identified as an effective cancer treatment, with indolin-2-one derivatives showing
anticancer effects in vitro against ovarian cancer cells [78–80]. Louis et al. [81] have also
identified higher log blood harmane concentration in colon cancer and other cancers in
comparison to those without cancer.

There are some limitations of this study. Firstly, the different cohorts of populations
employed exhibit heterogeneity which limits comparability of results. Secondly, we only
considered pairwise interactions. However, it is anticipated that higher order interactions
may be present, as indicated by all pairwise interactions between Staphylococcus, Roseburia
and ChoE(20:4) (Cholesterol Ester). Thirdly, nutrition, exercise and other lifestyle factors
strongly influence the composition of the gut microbiome and metabolome. Unfortunately,
these could not be considered in our analysis. Fourthly, the targets (metabolites, genes and
microbiota) generated from this study were not validated in follow-up for the participants
as only one stool sample was collected. Potential future studies could include the collection
of multiple longitudinal stool samples for causal analysis to improve validity of results.

A small proportion of colorectal cancers, which are not included in our analysis, are
directly caused by inherited gene mutations, including mutations of the MUTYH gene or
mismatch repair genes [82]. Nonetheless, alterations in gene expression are seen across



Int. J. Mol. Sci. 2021, 22, 5763 12 of 19

all patients with colorectal cancer [82]. Mutations in the APC, Kirsten-ras and p53 genes
are thought to be an alternative pathway in tumour development [83]. Additionally, the
transcription of other genes may be upregulated or downregulated in CRC [84], as seen in
our analysis.

4. Materials and Methods

We used existing public datasets (Table 2) to identify potential mechanisms and
interactions between microbiome, metabolome and genes for CRC. A workflow of all the
methods and processes are described in Figure 7.

Table 2. Description of the microbiome, metabolome, bulk RNA sequencing and single cell sequencing datasets.

Data Set Features Sample Reference

Kim et al., 2020 16S rRNA and metabolomics Normal (N = 102) vs.
Colorectal cancer (N = 36) [8]

Clos-Garcia et al., 2020 16S rRNA and metabolomics Normal (N = 77) vs.
Colorectal cancer (N = 99) [11]

The Cancer Genome Atlas (TCGA)
ColonAdenocarcinoma RNA sequence Normal (N = 41) vs.

Colon Adenocarcinoma (N = 459) [85]

Li et al., 2017 Single-cell transcriptomes Normal (N = 1591 cells) vs.
Colorectal cancer (N = 1591 cells) [17]

Zhang et al., 2019 Single-cell transcriptomes Normal (N = 160 cells) vs.
Colorectal cancer (N = 272 cells) [19]Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 13 of 19 
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The R package “bartMachine” [86] is a Bayesian model characterised by the sum of
regression trees. Consider an input x = (x1, · · · , xp) with “p” predictors, the prediction label
“y” is modelled as y = f (x) + ε, ε∼N(0, 2), where f (x) = ∑m

k=1 Tk(x), and Tk(x) represent
regression trees.

Given an input x, Tk assigns x to one of the terminal node values which is consistent
with the rules used to split the predictors in x in the tree, and the prediction target is
obtained by summing all Tk(x), k = 1, · · · , m from the m trees, plus some Gaussian noise.

Tree-based machine learning methods, such as decision tree and random forest, typi-
cally directly learn from the data the partition and the terminal node values. For the case
of the BART method, these are assigned priors, and inference is drawn from the posterior
distribution of the sum of trees given the data observed. One distinct feature of BART is
the specification of the priors. First, as in many Bayesian machine learning methods, the
prior is chosen to regularise the fit so that individual tree effect is small and no single tree
dominates the prediction, a property shared by gradient boosted trees (GBM); however,
unlike GBM, the number of trees m required in BART is often much smaller—studies
have shown that BART performs well with no more than 200 trees across a variety of
datasets [87] and in some cases the performance improvement is only marginal for using
more than 50 trees [86].

Second, data-informed priors for terminal node values and observation variance are
used are used to ensure that they do not deviate much from what the training data entails,
a desirable property when external information is unavailable. The posterior distribution
of sum-of-trees given data is simulated through the backfitting MCMC algorithm [87].
Parameter estimates and predictions can then be obtained from the posterior. Additionally,
the uncertainty of the estimates can be quantified through Bayesian credible intervals.
With some modification to the backfitting algorithm, the BART probit model for (binary)
classification: P(Y = 1|x) = Φ(f (x)) can be used.

The variable importance was assessed by the fraction of times each variable is used to
split the nodes in the posterior sum of trees, called “inclusion proportion”. Variables that
appear frequently in the trees, hence higher inclusion proportion, are likely to be important.
Significance was assessed by local thresholding [86], that is, a variable will be selected
if its inclusion proportion exceeds the 0.95 quantile of its null distribution obtained by
permuting the response. The interaction effect was estimated by counting the number of
times a set of variables appear together in a downward path of the tree from the root node
to a terminal node [86]. When the number of trees m is large, the flexibility offered by so
many trees means that inclusion of irrelevant variables is unlikely to significantly degrade
the fit, and so these variables could appear frequently in the trees, resulting in spurious
interactions and less effective variable selection. Therefore, by limiting the number of trees
to be small and forcing the variables to compete to enter into the model, BART can be an
effective method for determining variable importance and interaction effect.

Metabolic enrichment analysis was conducted using IMPaLA, a publicly available
web platform, that has been developed for integrated pathway analysis of metabolomics
data alongside gene expression or protein abundance data [12]. It performs an over-
representation or enrichment analysis with user-specified lists of metabolites and genes
using over 3000 preannotated pathways from 11 databases. It provides pathway over-
representation and enrichment analysis functionality with user-specified lists of
genes/proteins and/or metabolites, generally termed physical entities.

We analysed the differential expression of genes involved in colon adenocarcinoma
using. The TCGA-COAD (The Cancer Genome Atlas—Colon Adenocarcinoma) mRNASeq
level 3 raw count data [14] generated by the UNC version 2 analysis pipeline. The in-
spected 20,532 gene loci out of which 29 were hypothetical loci and 500 samples (Colon
adenocarcinoma: 459 and Normal: 41). We used DESeq2 to investigate the RNAseq raw
count and identify differentially expressed genes [88]. DESeq2 reduces the number of genes
tested by removing the genes unlikely to be significantly differentially expressed prior to
testing and performs gene-level quality control. The p-values are attained by the Wald



Int. J. Mol. Sci. 2021, 22, 5763 14 of 19

test and are corrected for multiple testing using the Benjamini and Hochberg method. The
number of genes, in the output table of DESeq analysis with the significance cutoff set to
0.1, was the same as the original (20,532). As unbalanced class distribution of labels (Colon
adenocarcinoma: 459 and Normal: 41) can affect predictive performance, specifically for
minority class [89], we performed under sampling of the data [90]. We chose 41 colon
adenocarcinoma samples and 41 normal samples iteratively (not repeating the samples)
and analysed them using DESeq2. We then combined the results by taking the union of
the list of genes in the resultant table from each iteration. We subset the results iteratively
by decreasing the significance cut off from 0.05 to 0.0001 (0.05, 0.01, 0.001, 0.0001), which
resulted in 12,290 genes with p adjusted < 0.001. We then selected the overlapping genes
across all the iterations, 6066 genes.

We used Recursive Feature Elimination (RFE) to select a small subset of genes from a
broad range of gene expression data [15]. RFE fits a model, like random forests (rfFuncs),
and removes the weakest feature (or features) until the specified number of features is
reached. We used the RFE via CARET [91]. Due to the unbalanced classes, we performed
RFE iteratively on the undersampled data as we did earlier. We used random forest to
select the subset of genes from each iteration. This results in a list of 345 genes collectively
from all iterations. Taking the union of the list of genes from each iteration resulted in a
list of 121 genes and out of 345 genes 76 appeared more than once among 11 iterations.
For the 76 genes selected, we used Enrichr for the enrichment analysis [16]. Enrichr
is an integrative web-based software application that includes new gene-set libraries,
an alternative approach to rank enriched terms, and various interactive visualisation
approaches to display enrichment results.

The FPKM values of the significant genes from the single-cell data for four different
cell types were obtained from the Li et al. [13] and Zhang et al. [19] datasets. The list of
genes used in this study can be found in Supplementary Table S1.

We used the DAVID (Database for Annotation, Visualization and Integrated Discovery)
online tool [18] to find the significant pathways that are enriched for the different single
cells’ significant genes lists.

The heatmaps were generated using gplots package heatmap2 function in R. The
network analysis was done using NetworkAnalyst (v3.0) [91] where a tissue specific
coexpression network was built with the degree filter of 1.0 on all the nodes. The seed genes
are shown in red colour and are labelled while the proteins connected to the seed are shown
in yellow. The blue colour nodes are the proteins involved in the metabolic processes.

We used enrichment analysis to associate and integrate genes and metabolites iden-
tified from transcriptomics and metabolomics datasets derived from diverse popula-
tions. Moreover, a literature-based validation was performed to gain insights to CRC
associated pathways.

5. Conclusions

Our microbiome and metabolome analysis identified novel interactions related to
5-aminovalerate and cholesterol. Using bulk and single cell RNA sequencing, we identified
17 genes (e.g., KIAA1199, CDH3, GUCA2B, LGALS4, CA7, NR3C2, ABCG2, AQP8, etc.)
including several metabolic genes (HSD11B2, NR3C2, ABCG2, CA7) associated with CRC
pathophysiology. A metabolic enrichment analysis revealed a prominent of cholesterol
pathways in CRC physiology. Finally, our qualitative integration approach catered the
identification of the downregulation of ABCG2 and AQP8 genes, responsible for bile
secretion, which directly increases the cholesterol synthesis facilitated by gut microbes.
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