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work, we extend this idea to chemical compounds, constructing a profile-inspired
model for a set of related metabolites (those in the same biological pathway), based on
a fragment-based vectorial representation of their chemical structures.

Results: We use this representation to predict the biological pathway of a chemical
compound with good overall accuracy (AUC 0.74-0.90 depending on the database
tested), and analyzed some factors that affect performance. The approach, which is
compared with equivalent methods, can in addition detect those molecular fragments
characteristic of a pathway.

Conclusions: The method is available as a graphical interactive web server http://
csbg.cnb.csices/iFragMent.

Background
Studying the roles of chemical compounds in a cellular context is fundamental for
understanding living systems at the molecular level [1]. This can be achieved with exper-
imental and computational approaches. Among the last, of special interest is the analysis
of relations between the structure of a chemical compound and its biological role.
Knowledge on biological pathways is still incomplete, so pathway databases are
continuously updated, both by adding new pathways, as well as molecular compo-
nents to existing pathways. Predicting the biological role of a chemical compound,
namely the pathway(s) it is involved in, from its chemical structure would be valu-
able not only in the assignment of new compounds to known biological pathways,
but also in other applications like the functional interpretation of metabolomics
experiments or the prediction of possible biological roles of drugs. A number of
studies aimed to predict the biological pathway of a compound from its chemical
structure alone. Most biological pathways contain a reduced number of metabolites,
what could be a problem for machine learning approaches. This is one of the reasons
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why most studies have tried to predict general pathway classes [2—-7] (e.g. carbohy-
drate metabolism). While predicting the general pathway class of a compound would
be valuable in some cases, most applications will require the prediction of specific
pathways (e.g. glycolysis).

Two previous studies, in addition to predict general pathway classes, have also tried
to predict specific pathways. In the context of a wider analysis of human metabolic
pathways and their mapping in the chemical space, Macchiarulo et al. [8], using a
machine learning algorithm (random forests), assigned compounds to 52 human met-
abolic pathways defined in KEGG [9]. More recently, Hamdalla et al. [10], proposed a
family of related approaches based on a ranking algorithm and pair-wise substructure
matching that were tested in 137 KEGG metabolic pathways. Their best performing
approach (implemented as a software package, TrackSM) followed a two-step classi-
fication: in the first step, TrackSM predicts the pathway class of a compound, and in a
second step it identifies the specific pathway from that class.

In this work we propose a method, iFragMent, for the prediction of compounds
involved in specific pathways (not pathway classes), inspired by sequence profile
approaches. Sequence profiles have been widely used in the study of DNA and protein
sequences, and they are behind most modern methodologies for obtaining informa-
tion from these biological polymers. Sequence profiles are formal models that capture
the main characteristics of a set of related sequences. They are built from a multiple
sequence alignment of these related sequences using different approaches, from sim-
ple “position specific scoring matrices” (PSSMs) to complex statistical models such
as “hidden Markov models” (HMMs) [11]. Once built, these profiles allow assign-
ing new members to the family (hence predicting their function if it is unknown),
detect functionally important residues (e.g. conserved positions) or define domains,
among other things. These profile-based approaches have been designed taking into
account the polymeric nature of DNA and proteins and their underlying evolutionary
relationships.

We explore the possibility of using a conceptually (not methodologically) related
strategy for studying chemical compounds in the context of biological pathways. We
take into account the chemical composition (in the form of chemical fragments) of
the whole set of compounds participating in a pathway (e.g. metabolic, regulatory
and signalling networks). We calculate the enrichment of chemical fragments in the
pathway, and use this information to score new compounds, given the presence of the
pathway-enriched fragments in their structure. We evaluate our method in its ability
to predict the correct pathway of a chemical compound, using 861 pathways defined
in four databases: KEGG [9], Reactome [12], SMPDB [13] and enviPath [14].

Our results show that the method proposed predicts biological pathways for
chemical compounds with global AUCs (Area Under the Curve) ranging from 0.74
to 0.90 depending of the database considered. We compare our method to previous
aproaches [8, 10] and to a k-nearest neighbor approach based on pair-wise structural
similarities. In addition to the predicted pathway, our approach reports associated p
values and detects the chemical substructures responsible for a compound-pathway
assignment. The method is implemented as a web server http://csbg.cnb.csic.es/iFrag
Ment and code is available at https://github.com/jlopez-ibanez/iFragMent.
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Results

Overall performance

We tested the ability of our method to predict a compound’s biological pathway(s) as
defined in four databases: KEGG pathway, Reactome, SMPDB and enviPath, which rep-
resent metabolic, signaling, and biodegradative routes among others. We use only those
pathways with at least 10 distinct compounds.

To explore the largest number of chemical substructures, while at the same time not
imposing any a priori chemical knowledge, we represented compounds as binary frag-
ment vectors (see “Methods” for details).

We propose a method based on the probabilities of observing the presence of struc-
tural fragments in the compounds of a pathway just by chance. A compound having
fragments enriched in a given pathway is a good candidate to participate in that pathway.

We evaluated the performance of the method using a tenfold cross-validation
approach (see Table 1 for overall performance results). Our method is a multi-label and
multi-class approach, as it allows to assign several pathways to a compound (by taking
the top-n predictions, see “Methods”). This allowed measuring performance by building
ROC curves and calculate their AUC value (area under the curve), as we take as predic-
tions from the top-1 to the full set of predictable pathways.

For all datasets we obtained good results (i.e. AUC > > 0.50). We obtained better overall
results for enviPath (65 biodegradation pathways, 0.90 AUC), and KEGG (214 pathways,
0.88 AUC) than for SMPDB (333 pathways, 0.74 AUC) and Reactome (249 pathways,
0.74 AUC) databases. Neither the number of compounds nor the number of pathways
was found to be related to these global performances. More details of each database can
be found in Additional file 1: Table S1.

Individual pathway performance
We found that results of individual pathways varied from random to excellent perfor-
mance in all databases except enviPath (with AUC> 0.7 for all pathways) (Fig. 1a).

To compare our profile-inspired approach with a pair-wise one, we implemented
a k-nearest neighbour classifier (k-NN) using the same vectorial (fingerprint) repre-
sentation of compounds (see “Methods”). We calculate structural similarity with the
Tanimoto coefficient, widely used in chemoinformatic approaches for structural com-
parisons of fingerprint representations. Our method attained higher AUCs in a tenfold
cross validation test than k-NN in the four databases tested (Fig. 1). Details about each
individual pathway performance using both methods are provided in Additional file 2:
Tables S2-S5.

Table 1 Overall performance (AUC) of the method

Database AUC
KEGG 0.88
enviPath 0.90
SMPDB 0.74

Reactome 0.74
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Fig. 1 Distribution of AUC values for the individual pathways in the four databases tested for a iFragMent
method and b k-NN method

Table 2 Global performance (AUC for iFragMent and k-NN) for specific pathways within general
KEGG pathway classes

Pathway Class iFragMent k-NN Num. pathways
AUC AUC

Drug Development 1.00 045 1

Genetic Information Processing 0.94 0.55 2

Metabolism 091 0.51 153

Human Diseases 0.82 0.52 10

Environmental Information Processing 0.74 0.52 12

Organismal Systems 0.70 0.50 32

Cellular Processes 0.69 047 4

In the following sections, we will analyse several factors that can affect prediction per-

formance: pathway class, compound class (single or multi-pathway) and compound size.

Pathway class

We evaluated the performance of our approach for all KEGG pathways of a given gen-
eral class (same top-level of the BRITE taxonomy) (Table 2). For that with constructed
a ROC curve with the prediction results of all compounds associated with pathways
belonging to that class, and calculated the AUC value. Some classes contained a limited
number of pathways. Higher AUCs were obtained for ‘Drug development’ (1.00) (1 path-
way: Histamine H2/H3 receptor agonists/antagonists), ‘Genetic Information Processing’
(0.94) (2 pathways) and ‘Metabolism’ (0.91) (153 pathways).

Compound size

We also observed that iFragMent performance varies largely depending on the number
of chemical fragments present in a compound (a proxy of compound size) (Fig. 2). AUC
values of compounds with a small number of fragments (<32 for KEGG pathways), are
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Fig. 2 Performance of ifragMent (AUC) by number of fragments in the four databases tested. Intervals are
defined to include a similar number of compounds

Table 3 iFragMent performance (AUC) for compounds involved in a single pathway and those in
multiple pathways

Database = AUCuni  AUC multi Single pathway Multi pathway %multi path ~ AUC global

compounds compounds compounds
KEGG 0.95 0.82 4066 1170 232 0.88
enviPath 0.94 0.80 1254 91 121 0.90
Reactome 0.89 0.70 802 524 435 0.74
SMPDB 0.81 0.72 1062 346 359 0.74

very low in comparison with that of larger compounds. Similar results are obtained for
the other three databases. Performance also decreases (although to a lesser extend) for

very large compounds.

Compounds in single versus multiple pathways

We finally assessed the performance of compounds involved in a single pathway and
those involved in multiple pathways. Compounds involved in multiple pathways
achieved worse results than those involved in a single pathway (Table 3). E.g. for KEGG
pathways, single-pathway compounds where predicted with an AUC of 0.95, in contrast
to 0.83 AUC for multi-pathway compounds. As the fraction of multi-pathway com-
pounds in each database varies, this partially explained the differences in global AUCs in
the four databases studied (Table 3).
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Comparison with previous methods

RF-Labute

To compare our approach with that of Machiarulo et al. [8], which uses a Random For-
est classifier and Labute descriptors for compounds (RF-Labute), we used their human_
unique dataset (comprising 52 human pathways) and perform a tenfold cross validaton
of our method.

Neither overall performance measures nor numeric results were reported by Machi-
arulo et al. for their prediction of individual pathways (they did it only for the prediction
of pathway classes). Instead, classification errors for individual pathways were graphi-
cally shown in a blox-plot organized in seven pathway classes (see Fig. 6D in original
publication [8]). Assuming that this figure represents the out-of-bag estimate of error
provided by RF, and that this error corresponds to the false discovery rate (FDR), we
generated a similar figure for our results (Fig. 3a). As RF-Labute is a multiclass but not a
multilabel approach, we evaluated only the top-1 pathway prediction obtained by iFrag-
Ment for each compoud.

Visual comparison of both figures (Fig. 3a and Fig. 6D in [8]) reveals higher mean clas-
sification errors (FDR) of our method compared to RF-Labute for carbohydrate, lipid,
nucleotide and amino acid metabolism pathways (CM, LM, NM and AM); comparable
for both energy metabolism and cofactor and vitamins metabolism pathways (EM and
CVM); and slightly lower for other amino acids metabolism pathways (OAM).

Part of the errors obtained by iFragMent in the human_unique dataset can be due to
the small size of some of the pathways, for which reliable fragment statistics could not be
obtained (15 out of 52 pathways contained less than 5 compounds, with more than 50%
of them with less than 10 compounds).

In addition to the predicted pathway, iFragMent also provides an statistical esti-
mate for each compound-pathway prediction (p value). We have analysed the p values
obtained for each of the compound-pathway pairs (as defined in human_unique), and
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Fig. 3 False discovery rate (FDR) of ifragMent using the human_unique dataset from Machiarulo et al. a
All top-1 predictions. b Top-1 predictions with p value <0.05. CM carbohydrate, EM energy, LM lipid, NM
nucleotide, AM amino acid, OAM other amino acids, CVM cofactors and vitamins metabolism
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the rank at which they were predicted. As expected, classification errors (FDR) increase
as p value increases (Additional file 1: Fig. S1). Thus lower FDR (higher precision or
PPV) can be obtained by p value filtering, at the cost of decreasing sensitivy (TPR).

For example, considering all top-1 predictions iFragMent achieved a 0.66 TPR with a
classification error (FDR) of 0.34. If we consider only the predictions with p-val<0.05
in the top-1 positions (Fig. 3b), classification error (FDR) drops to 0.17, at the cost of
lowering sensitivity (TPR) to 0.59. Thus, by filtering with p values, we will miss some
true compound-pathway associations (mainly those that are not based on enrichment of
structural fragments), but make less mistakes.

In the previous section we compared iFragMent top-1 predictions with RF-Labute
results. As our approach is a multiclass-multilabel classifier, it allows predicting more
than one pathway for a compound. This feature can be exploited to increase the true-
positive-rate (TPR, sensitivity). By considering the top-n predictions, TPR increases
from 0.66 (top-1) to 0.79 (top-2) and 0.86 (top-3), at the cost of increasing also the num-
ber of false positives.

TrackSM

To compare our approach with TrackSM [10], we have designed a real world test scenario
where new pathway-compound associations obtained from the release 83.0 of KEGG
were predicted. To fairly compare methods, we use the same training dataset provided
by TrackSM to construct the iFragMent chemical profiles. Hence, we trained TrackSM
and iFragment with the same dataset, and generated predictions for compounds from a
more recent version of KEGG. TrackSM reported errors for 41 compounds, that were
not included in the comparison. We evaluated a total of 1313 compound-pathway asso-
ciations involving 127 distinct pathway. Through the analysis of top-1 predictions we
obtained a better performance with iFragMent (PPV =0.41) as compared to TrackSM
(PPV =0.26). (See results in Additional file 1: Table S6).

Chemical substructures associated to a biochemical pathway

Our method allows not only to assign compounds to their biological pathways (hence
predicting their biological role) but also to detect the chemical substructures (frag-
ments) that contribute most in such assignments (i.e. the matched components of the
pathway Pv vector that are statistically significant).

Figure 4 highlights the three fragments with lowest p values for the KEGG pathway
“sphingolipid metabolism” (map00600) on the structures of the compounds associated
to this pathway. It can be seen that these three fragments clearly delineate the the hydro-
carbon chain and the polar head of sphingosine (C00319), while they are also highlighted
in other compounds of the pathway.

Examples
To highlight the advantages as well as the limitations of our approach, we discuss here
two examples taken from iFragMent Server, corresponding to predictions of compounds
with known biological pathways (see Additional file 1: figures S2-S3).

Correct predictions for histidine (C00135 in KEGG) include ‘Histidine metabolism’
as the top-ranking pathway, based on the recognition of fragments in the histidine side
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chain, and ‘Biosynthesis of amino acids’ based on fragments of the amino and carboxyl
functional groups. As these later fragments are common to all amino acids, they also
lead to incorrect predictions of other amino acid-related pathways (like ‘lysine degrada-
tion; ‘arginine and proline metabolism’ or ‘lysine biosynthesis’).

iFragMent fails to predict ‘Quoring sensing’ for phospho-DPD (C20959), the signaling
pathway in which it is involved according to the KEGG database. In contrast, it predicts
some metabolic and signaling pathways with good p values (e.g. ‘Glycolysis/Gluconeo-
genesis, ‘Glugacon signaling pathway, ‘Pentose phosphate pathway’), based on fragments
of its phosphate group attached to the hydrocarbon structure, a substructure commonly

found in many metabolic pathways.

Discussion

Profile methods are extensively used in the analysis of biological sequences (proteins,
RNA and DNA) [15-18]. They are often used to infer the structure and function of an
uncharacterized sequence by its similarity to a group of sequences (used to build the
profile), as they detect remote homologies with greater accuracy than pair-wise simi-
larities [19]. Sequence profiles are linear models, built upon the evolutionary relation-
ships established among a group of biological sequences. Although we cannot establish
evolutionary relations among chemical structures, chemical profile-inspired approaches
have been successfully used in the classification of drug targets [20] relating receptors by
ligand similarity, and the prediction of drug ‘off-targets’ [21] as compounds that bind to
a protein have typically similar structures or substructures.
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The ability of profile-inspired approaches to assign compounds to their biological path-
ways has not been explored. As metabolic reactions proceed step-wise, substrate-reac-
tant pairs are structurally related. But given the linear or branched topology of reactions
in pathways, we don’t know to what extend all compounds of a pathway are structurally
related. Indeed, in some cases, structurally similar compounds tend to participate in the
same metabolic pathway [22]. Additionally, the recent hypothesis of the “conquest of the
chemical space” as the evolutionary driving force of the biological species [23] might
suggest that evolution can also be indirectly reflected in chemical networks.

We demonstrate that a profile-inspired approach can be used to predict the potential
biological pathway of a chemical compound from its chemical structure alone. We pro-
pose a method that relies on enrichment of structural fragments. Although performance
varied largely depending on the pathway, we obtained good performances, especially for
KEGG metabolic pathways and enviPath biotransformation pathways.

In this work pathways have been defined according to four public databases. KEGG,
Reactome and SMPDB include not only metabolic but also other types of pathways such
as disease, drug actions, transporting, signaling, etc. Yet, we found some general trends.
In all databases, results for compounds involved in a single pathway are much better
than for multi-pathway compounds. The percentage of multi-pathway compounds var-
ied largely in the four databases, partially explaining differences in overall database per-
formance. This could be due to the fact that multi-pathway compounds have “mixed”
characteristics from more than one pathway, what might confound the predictor. This is
equivalent to multi-domain proteins, for example.

Pathways for small compounds (e.g.<32 fragments in KEGG) were identified with
less accuracy than for medium-size compounds. This trend was observed in the four
databases analyzed. This could be related to the absence of enough information in their
chemical structures to discriminate the pathway they belong to.

The performance of our profile-inspired approach is higher than that obtained for a
pair-wise similarity approach (k-NN method) in all databases tested. We also compared
our method with the two previously described approaches that addressed the prediction
of individual pathways [8, 10]. The three approaches differ both in the structural descrip-
tors used to represent compounds and the algorithms. Our method (iFragMent) and
TrackSM are multi-class and multi-label approaches, thus both enable the prediction of
more than one pathway for a compound. Labute-RF can only predict one pathway for a
compound (i.e. cannot handle multi-pathway compounds).

Testing a reduced set of single-pathway compounds involved in 52 human pathways,
Marchiarulo et al. [8] reported lower classification errors than that obtained with iFrag-
Ment in its top-1 predictions. Half of the pathways contained less than 10 compounds
(bellow the limit set in our work to obtain reliable statistical estimates of fragments).
In contrast to machine learning approaches, like Random Forest, we establish a model
beforehand to base our predictions: matching pathway-enriched fragments. This allows
to provide an statistical estimate (p value) to each prediction, which can be used to
decrease classification errors (at the cost of missing some true positives).

In a real-world scenario, where newer compounds never seen by the systems were
tested, iFragMent achieved higher PPV than TrakSM [10]. Our method does not con-
sider pathway classes, while TrackSM predicts an individual pathway among those in
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a class previously predicted. Errors in pathway class prediction might limit TrackSM

performance.

Conclusions

As we accumulate more data on the landscape of small chemicals underlying biological
systems, new methodologies are required to mine it so as to extract useful information.
Sequence profiles of biological polymers (DNA, RNA and proteins) are behind most
approaches that allow mining and interpreting the massive genomic datasets. Conse-
quently, we need similar approaches for the metabolism. A profile-inspired approach
grouping functionally related metabolites is useful for assigning new metabolites to the
group, as well as for detecting the structural fragments associated to that group (equiv-
alent, for example, to the conserved/functional positions in protein profiles). The last
allows getting insight into the chemical basis of the biological activity of a given group of
functionally related compounds, in case it is unknown. Both, the assignment of chemical
compounds to biological pathways and the detection of the informative fragments using
this methodology can be performed by any interested user via the interactive graphical
web interface developed.

Methods

Datasets

We compiled pathways and their associated compounds from four resources: KEGG
(“pathway” section, release 83.0), Reactome (version v61), SMPDB (release 2.75) and
enviPath (EAWAG-BBD dataset, version 0.3.1). Compounds were compiled regard-
less the organism they are eventually assigned to. We selected those pathways with at
least ten chemical compounds, excluding the very general pathways (e.g. from KEGG
‘Metabolic pathways’ (map01100); ‘Biosynthesis of secondary metabolites’ (map01110);
‘Microbial metabolism in diverse environments’ (map01120); ‘Biosynthesis of antibiot-
ics’ (map01130) and ‘Degradation of aromatic compounds’ (map01220)).

Structural data files of compounds were downloaded from their respective database
for KEGG, EnviPath and SMPDB pathways. For Reactome pathways, we retrieved chem-
ical structure files from ChEBI [24] using the cross-references provided in Reactome.
Datasets (excepting KEGG, due to license requirements) are available at https://github.
com/jlopez-ibanez/iFragMent.

Compound structural descriptors
From their structural data file, we generated a vectorial representation of compounds
using the molecular fragments obtained with ISIDA Fragmentor [25]. We generated all
linear fragments of 1-7 atoms and all atom centered fragments of 2—4 atoms (ISIDA
Fragmentor parameters -t3 -12 -u7 -t6 -u4 -t0). We then coded each chemical compound
as a binary vector, where each vector component represents the presence or absence of
a given fragment. The vector length depends on the database analyzed (Additional file 1:
Table S1).

In some cases, we found compounds with the same vectorial representation. These
redundant compounds were merged and treated as a single compound in the evaluation
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of the method. This avoids identical compounds to be present both in the training and test
sets.

Scoring

From the vectorial representation of the compounds in a given pathway, we obtain a vector
representation for that pathway (Pv) (Fig. 5). Each vector component corresponds to a frag-
ment in the database, and represents the probability (Pv) of observing it by chance in the
compounds of the pathway, compared to a background distribution (all the compounds in
the database). For each fragment and pathway, p values are calculated with the cumulative
hypergeometric distribution:

e (0

=

where M is the total number of compounds in the database, K is the total number of

(1)

compounds in the database with the fragment, N is the number of compounds in the
pathway and x is the number of compounds in the pathway with the fragment.
With this pathway representation, we define a score for quantifying the matching of a
given compound (X) against a pathway P, Sc, as:
_ — iy log (Pv) - X;

Sc (2)
;1:1 Xi

where Xi is the ith component in the fingerprint representation of compound X, and Pv
is the probability vector of the presence of fragments in the pathway as defined in Eq. 1.

G Cy Cn

POl 0]f..[1

P2l 1 10]..[1

P31 111..10

Z lg(pvi)-X;
Sc=—
= XI

puise?] oso | [343¢]

X{o[1].[1]
Fig. 5 Example of calculating the score of a query compound (X) against a profile using iFragMent. Columns
(f) represent fragments, rows represent compounds: in blue (p) those involved in pathway (P) and orange
(b) those that are not (background). Presence/absence is coded with 1/0. Vector pv contains the probability
of observing a fragment in the compounds of the pathway by chance, considering their distribution in the
background. The score of X against P (Sc) is calculated as shown
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To avoid log(0), those fragments with a p value equal to zero were assigned a probability
equal to the smallest p value obtained divided by 50. Note that only fragments present in
compound x (i.e. with a “1” in the vectorial representation) are taken into account with this
formulation.

We observed, as expected, that scores Sc of compounds belonging to a pathway P tend
to be higher than the scores of compounds not associated with that pathway (even if we
exclude the compound to calculate Pv) (data not shown). However, scores of the same
compound in different pathways are not comparable, so they can not be directly used as
to predict in which pathway a compound participates. To solve this, we devised a ran-

dom statistical model.

Statistical model

In order to compare and rank the scores of a compound X in different pathways we
calculate the corresponding z-scores using a null model, using a similar approach to
[26]. For each pathway, we obtained a random distribution of scores (Sr). For that, we
performed 100,000 randomizations of the matrix (NxM) of N compounds and M fin-
gerprints (being N all the compounds in the corresponding database), and scored the
resulting N randomized compound fingerprints against the pathway. Mean and stand-
ard deviations of Sr were obtained, and used to calculate z-scores from scores (Sc). We
checked that Sr followed a extreme value distribution, as in [26]. Parameters character-
izing each random distribution of scores (scale and location) were calculated with evfit
function (MATLAB 2010b) and used to analytically calculate p values from z-scores.

To predict the pathway of a compound, we calculate the z-scores and corresponding p
values of the compound against all pathway pv models. We then rank the pathway p val-
ues by increasing value. We take those pathways in top-n ranking positions as the pre-
dictions, creating a whole family of predictors with increasing sensitivity and decreasing
specificity. A Receiving Operating Characteristic curve (ROC curve) is calculated as n
increases from 1 to the total number of pathways. Overall performance was quantified
as the area under the ROC curve (AUC). A value of AUC=0.5 would represent a ran-
dom prediction (correct and incorrect pathways uniformly distributed in the ranked
list), while values higher than that represent good predictions (correct pathways closer
to the top of the list).

Both p values and z-scores are reported by the iFragMent web server. The chemical
substructures that are characteristic (enriched) in a biological pathway are obtained
from the pathway Pv vector as those with the highest enrichment in that pathway (i.e.
lowest p value). These are used to highlight matched enriched fragments in the query
compounds.

K-nearest neighbour method

We implemented a k-nearest neighbour (k-NN) approach using the same vector repre-
sentation of compounds. We calculate the structural similarity of a query compound to
all the compounds in the database using the Tanimoto coefficient. We finally assign the
pathways of the top-k most similar compounds. ROC curves and AUC values are calcu-

lated as previously explained.
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Evaluation
We evaluated our method, as well as the k-NN approach, with a tenfold cross validation,
using exactly the same partition of training datasets for both methods.

Comparison with previous approaches

Dataset human_unique was downloaded from the Supplementary material of Marchi-
arulo et al. [8]. We used this dataset to perform a tenfold cross validation of our method,
and compare results with those reported in [8]. TrackSM software [10] was downloaded
from https://dna.engr.uconn.edu/?page_id=648. TrackSM training dataset was obtained
from the Config directory files, and were used to calculate iFragMent profiles, so that
both methods can be compared trained in the same sets. Novel compounds in KEGG
(release 83.0) not included in this TrackSM training dataset were used to predict path-
ways with both TraskSM and iFragMent.
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