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Abstract: The study presents results of calorimetric tests of three different cements. Two Ordinary
Portland cements, CEM I 52.5 R and CEM I 42.5 R, and one Blastfurnace cement, CEM III/A 42.5 N
LH/HSR/NA, were analysed. The analysis has shown that the empirical formulas derived based
on the results can successfully replace the Arrhenius formula in determination of the hydration rate
in relation to curing temperature. It was proven that the hydration rate in relation to the curing
temperature changes with the progression of hydration. The study introduces an En coefficient which
determines the influence of curing temperature on generation of heat. Results of the study have
shown that the value of En is not constant and changes with the progression of hydration process.
Proposed method of numerical modelling of the total heat generated and generation rate based on
obtained results allows for the calculation of those two parameters for any curing conditions.

Keywords: cement; isothermal calorimetry; heat of hydration; concrete maturity

1. Introduction

Design of concrete constructions requires not only including the loads occurring
during their service life but also the ones that can appear during the execution stage.
Indirect loads generated by the hydration of cement-based materials and direct loads
from execution processes are both present. Analysis of the after-effects of the indirect
(thermal and shrinkage) and direct loads (dead loads) requires determining the influence
of temperature on the hydration processes of concrete [1,2].

The heat generated by the hydration process during execution of concrete is the
major cause of uneven heat distribution in massive elements [3]. Heat distribution and
time of temperature equalization is influenced by different heat generation rates and
total amount of generated heat. Thus, it is necessary to use admixtures for control of
generated heat and to conduct tests to determine the heat generation rates of concrete.
Based on initial test results, certain preventive actions are taken, including using low-
heat cements, increasing aggregate content in the mix, conducting measurements of the
temperature during execution or cooling with water [4]. In recent years, due to dynamic
development of admixtures and FEM modelling, the issue of heat generation was studied
by various authors [5–11].

The review of existing studies has shown different ways to describe the influence of
curing temperature on the hydration rate of cement and corresponding strength develop-
ment [12–17]. A.G. Saul [18] has proposed a time-temperature factor (TTF), also known as
a maturity index, as a way to express the development of concrete’s strength. Rastrup [19]
has introduced an equivalent age concept based on the van’t Hoff’s chemical principle in
which the rate of reaction doubles with the increase of temperature by 10 ◦C.

The issue of determining the equivalent maturing time in different temperatures was
studied by many researchers [20–25]. Currently two procedures are used to determine
the maturity of executed concrete in reference to standard curing temperature (20 ◦C).
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These procedures are Standard Practice for Measuring Hydration Kinetics of Hydraulic
Cementitious Mixtures Using Isothermal Calorimetry (ASTM C1679-08) [26] and Standard
Practice for Estimating Concrete Strength by the Maturity Method (ASTM C1074_11) [27].

Both methods in their principle refer to Arrhenius equation, which, as opposed to
both above mentioned propositions allows to include also the properties of used cement.
The reserved attitude towards this approach results from use of the activation energy E.
Kurdowski and Pichniarczyk [28] have objected to using the energy activation, that comes
from the kinetic gas theory, for considerations of cement hydration.

Despite numerous studies [23,24,29–33], there is still no consensus on which ap-
proach and variables should be used for the purpose of maturity method (i.e., apparent
activation energy).

The study presents the results of calorimetric tests of different cements under various
maturing conditions. Results of the study allowed for the proposal of a method for
describing the influence of curing temperature on heat generation of studied cements.
Empirical formulas that include the influence of physicochemical properties of cements for
the studied range of temperatures were proposed. To correlate the results acquired for the
reference temperature of 20 ◦C, the study introduces an En coefficient for each of studied
cements. The proposed approach showed good correlation of the results.

2. Materials and Methods
2.1. Materials

For the purpose of this study, three different types of cement were chosen: Ordinary
Portland Cement CEM I 52.5 R, CEM I 42.5 R and Blastfurnace Cement CEM III/A 42.5 N-
LH/HSR/NA (CEM III 42.5 N), all manufactured by Górażdże Cement in Chorula, Poland.
Cement characteristics are given in Table 1.

Table 1. Properties of cements used in the study.

Characteristic CEM I 52.5 R CEM I 42.5 R CEM III 42.5 N

Composition [%]
Portland clinker 95 ÷ 100 95 ÷ 100 35 ÷ 64

Ground granulated blast
furnace slag - - 36 ÷ 65

Secondary components 0 ÷ 5 0 ÷ 5 0 ÷ 5

Compressive strength
[MPa]
2 days 36.2 29.0 14.8
28 days 63.6 56.9 58.3

Setting time (initial) [min] 170 184 201
Surface area (Blaine)

[cm2/g] 4411 3717 4636

Chemical composition [%]
SO3 2.93 2.93 2.70
Cl− 0.067 0.066 0.080

Loss on ignition 3.73 3.40 1.08
Insoluble residue 0.72 0.70 0.48

Heat of hydration (7 days)
[J/g] 325 ÷ 375 325 ÷ 375 <270

The amount of gypsum in studied cements was <5% as required by European Standards.

2.2. Test Procedure

Heat of hydration and heat flow was determined in a three-channel isothermal
calorimeter TAM AIR by TA Instruments (New Castle, DE, USA). The dual-channel system
allows one to test simultaneously cement specimen and reference specimen. The software
allows one to measure the heat in extended periods with a measuring error of ±0.02 ◦C.
Test specimen and the equipment were prepared in accordance to EN 196-11 [34].
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Cement paste specimen with a water–cement ratio of 0.5 was used in the study. After
acquiring base temperature by the paste components and calorimeter, the specimens were
prepared. Water (15 g) was added to cement (30 g) and mixed for 60 s by hand in a container
used for calorimeter. The container was insulated with a cloth to block the heat coming
from hand. The container was immediately placed into the calorimeter with base line
prepared. Time between adding water to first measurement did not exceed 2 min. The
reference specimen was prepared by replacing the cement with a silica sand. Directly after
mixing, the samples were set on a 7-day long cycle where generated heat and heat flow
were measured. The study was performed for different curing temperatures of 20 ◦C, 25 ◦C,
30 ◦C and 40 ◦C.

3. Results

Results of generated heat and heat flow for different cements are presented in Figures 1 and 2
and Table 2.
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Table 2. Results of calorimetric tests for studied cements.

Cement Temperature
(◦C)

Q7
1

(J/g)
max. dQ/dτ

(mW/g)
τmax

3

(h, min)

CEM I 52.5 R

20 366 3.06 12 h 5 min
25 390 5.10 8 h 50 min
30 396 6.38 7 h 45 min
40 384 19.17 5 h 50 min

CEM I 42.5 R

20 332 2.66 10 h 45 min
25 352 3.92 7 h 50 min
30 353 4.91 6 h 10 min
40 360 7.90 4 h 10 min

CEM III 42.5 N

20 272 1.93 11 h 25 min
25 294 2.77 8 h 55 min
30 316 3.59 7 h 30 min
40 330 8.64 8 h 15 min

1 Q7—Heat of hydration. 2 Maximum value of normalized heat. 3 Time in which dQ/dτ reaches maximum,
h (hours), min (minutes).

After 7 days of maturing the highest normalized heat of hydration, regardless of the
curing temperature, was generated by the CEM I 52.5 R (Q7 = 366 ÷ 396 J/g), and the
lowest was generated by CEM III 42.5 N (Q7 = 272 ÷ 330 J/g). Heat flow was again the
highest for CEM I 52.5 R (dQ/dτ = 3.06 ÷ 19.17 mW/g), while the lowest for CEM III
42.5 N (dQ/dτ = 1.93 ÷ 8.64 mW/g). With the increase of the curing temperature the
maximum heat flow dQ/dτ also increases. However, this does not correspond to highest
total heat generated throughout the whole cycle. Detailed results of heat flow and total
heat generated are presented in Table 2.

Initial rapid increase in heat generation (first peak) is caused by the absorption of
water by the cement grains and chemical reaction on their surface. The second peak is
caused by the intensified formation of the C-S-H gel, AFt phase and CH. Of importance
is also production of the 3CaO·Al2O3 and 4CaO·3Al2O3·SO4 which limits the hydration
of C3A [35]. With the increase of the surface area of cement and curing temperature, the
heat generation rate also increases. The third peak clearly visible in case of the blastfurnace
cement, especially for higher curing temperatures, is caused by the activation of the slag by
the Ca(OH)2 and SO4

2− ions [36]. This additional peak, found sometimes in other cements
at the end of the 4th stage of hydration [37], is caused by the hydration of remaining C3A
and creation of hexagonal aluminates.

4. Discussion

Results presented in this study do not allow one to directly correlate the influence
of curing temperature on the maturing of specimen. To determine the correlation, the
following equation was introduced (1):

v = Ao exp
(
−En

T

)
, (1)

in which the reaction rate v is expressed as an exponential function of En constant and
curing temperature T in Celsius degrees. The constants Ao and En can be determined based
on the experimental results of reaction rate v in different curing conditions. Equation (1)
can be transformed to:

lnv = lnAo −
En

T
= B− En

T
(2)

where the temperature T is expressed in Celsius and En determines the influence of tem-
perature on heat generation. The lnv = f (1/T) graph of (2) shows linear function with a
slope of tg∝ = En.
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To determine the En in accordance to (2), results presented in Figure 1 were
transformed into:

dQ(T)
dτ

= f (Q), (3)

in which the T stands for different temperatures of maturing. Equation (3) determines the
heat flow of cement under different curing temperatures at a given time as a total generated
heat Q. The analysis for test specimen is presented in Figures 3–5. The En was determined
for different levels of heat generated: Q = 50 J/g, Q = 100 J/g, Q = 150 J/g, Q = 200 J/g
and Q = 250 J/g. Based on presented results, the slope of function (2) changes in time and
depends on the hydration process stage. Biggest differences are observable in the first stage
of hydration for the range of Q = 50 ÷ 150 J/g. In later stages the lines are almost parallel,
meaning that the values of En are similar. In Figures 3–5, the mean value from all of the
measurements was marked with a black dotted line.
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Figure 6 presents the values of the En in relation to the level of total heat generated Q:
50, 100, 150, 200 and 250 J/g.

Results of the study have shown that the value of the En is not constant. The value
of En changes with the progression of hydration process, which can be related to changes
in the processes responsible for its rate. Performed tests have shown that after generating
100 J/g of heat, CEM I 52.5 R and CEM IIIA 42.5 N have higher values than the CEM
I 42.5 R of the En parameter (respectively En = 68.8 and En = 63.7 to En = 44.1). In the
opinion of the authors, this is probably caused by the higher surface area of two former
cements equal to 4411 cm2/g and 4636 cm2/g compared to 3717 cm2/g for CEM I 42.5 R. It
is worth mentioning that the maximum values of En occur when the heat flux dQ/dτ is
also the highest.

To determine the susceptibility of studied cements to changes in temperature during
hydration, it is better to refer to the mean value of the En. Results presented in Figure 5
allowed one to draw a conclusion that CEM I 52.5 R, with the highest strength, has the
lowest value of En = 41.9, meaning its susceptibility to temperature changes is the lowest.

The blastfurnace cement has the highest value of En = 51.3 in this study, meaning it is
the most susceptible to temperature changes from all studied cements. It was observed that
the CEM I 42.5 with the highest surface area had the most linear En = f (Q) function and
En = 46.7. The statement was rephrased. When comparing the results of conducted tests
to data presented in Table 1, it can be noticed that the hydration heat and susceptibility
to curing temperature is different between the cements. Analysis of the thermal stresses
caused by the hydration heat in mass construction should be made taking into consideration
detailed data on the hydration heat and heat flux for used cement.

Figure 7 presents an example of temperature influence calculated based on (4) on the
equivalent time te of CEM I 52.5 R in different temperatures. Based on the results it can
be said that the maturing time t = 100 h in T = 40 ◦C equals equivalent time te = 300 h in
Ta = 20 ◦C.
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By analysing the influence of temperature T on the amount of generated heat of
hydration Q(T,te) = Q(Ta,t) based on (1), the equivalent time was derived te = f (t):

te = exp
[
−En

T

(
Ta − T

Ta

)]
t (4)
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Figure 8 presents the heat generated by hydration of studied cements in T = 20, 25, 30 i
40 ◦C as a function of equivalent time te calculated with (5). The equivalent time te expressed
by (5) and derived from (1) allows one to transform the results of the generated heat of
hydration Q in reference temperature Ta to expect values of generated heat in any given
temperature T. Numerical modelling of the hydration processes has a great significance
in analysing the indirect load caused by the heat of hydration kinetics, particularly in
mass concretes.
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Many experimental numerical models calculate the development of hydration in
relation to its chemical composition, surface area, water–cement ratio, internal pressure
or maturing temperature. Validation of those models is typically based on calorimetric
measurements. As the number of characteristics influences the heat of hydration in ce-
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mentitious materials, determination of which of them has the greatest influence requires
extensive testing [38]. Several studies proposed simpler modelling methods with parame-
ters assumed for particular cement types which were determined in experimental tests.

Among those studies presented in [39], the model proposed by Wesche [40] seems
particularly interesting. The heat of hydration of different cements is calculated as:

Qt = Q· exp
(

P1·tP2
)

, (5)

where Q is the heat of hydration, P1 i P2 are the parameters related to class and type of
cement and t is the time of hydration. The function (5) works in a range of t (t→ 0+, ∞)
assuming values between 0 ÷ Q. The derivative of the function (6):

dQ
dt

= Wt = Qt·P1·P2·t(P2−1), (6)

assumes values of Wt = 0 at t→ 0+ and t = ∞, and reaches its peak also in this range.
Wesche has estimated the mean values of the P1 and P2 for higher class cements (in
accordance to DIN standards): Z 55 (P1 = −11.1 i P2 = −1.0) and Z 25 L (P1 = −74.8 i
P2 = −1.5).

Further analysis of the kinetics of hydration processes of studied cements in various
temperatures was made using transformed (5) in which the absolute hydration time t was
replaced by the equivalent time te, including the induction time ti.

The estimation of unknown parameters of Equation (5) for all three studied cements
and reference temperatures allowed for the derivation of the following formulas:

For CEM I 52.5:

Qo20(t) = 353· exp
(
−21.4·(t− 1.5)−0.94

)
(ti = 1.5 h En = 41.9) (7)

For CEM I 42.5 R:

Qo20(t) = 345· exp
(
−16.0·(t− 1.5)−0.97

)
(ti = 1.5 h En = 46.7) (8)

For CEM III/A-42.5N:

Qo20(t) = 305· exp
(
−9.7·(t− 3.0)−0.77

)
(ti = 3.0 h En = 51.3) (9)

Figure 9a presents an example of comparison between experimental results of heat
generation Qe20 and results of We20 calculated using (7) for CEM I 52.5 R and reference time
To = T = 20 ◦C. Figure 9b shows the experimental results for temperature of 40 ◦C (Qe40 i
We40) in comparison to results modelled using (4) and To = 20 ◦C and T = 40 ◦C.

Similar analysis was performed for blastfurnace slag, results of which are presented
in Figure 10.

Relatively good compliance of the test results and calculated model was acquired in
the study. Presented simple method of numerical modelling of generated heat of hydration
and heat flow for determined influence of temperature En allows for the transformation
of the reference results to any given hydration conditions. The concept, however, re-
quires further studies for different cement pastes and concretes cured in isometrical and
adiabatic conditions.
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5. Conclusions

The conducted tests performed on three different types of cements have shown that
replacing classic Arrhenius formula with empirical equations that take into account the
influence of curing temperature on hydration heat can provide good evaluation of sus-
ceptibility of those cements to temperature changes. Results of this study have shown
that the susceptibility of cement to thermal conditions changes with the development of
hydration process. Mean values of the susceptibility parameter determined for the first
7 days of hydration vary for different cement class and type. The presented simplified
method of numerical modelling of heat generation and generation rate for determined
value of the En parameter (influence of curing temperature on cement hydration) allows for
the recalculation of the results acquired in reference conditions for any given temperature.
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