
RESEARCH Open Access

Indoor bacterial, fungal and viral species
and functional genes in urban and rural
schools in Shanxi Province, China–
association with asthma, rhinitis and
rhinoconjunctivitis in high school students
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Abstract

Background: Studies in developed countries have reported that the prevalence of asthma and rhinitis is higher in
urban areas than in rural areas, and this phenomenon is associated with urbanization and changing indoor
microbiome exposure. Developing countries such as China have experienced rapid urbanization in past years, but
no study has investigated microbiome exposure and urban-rural health effects in these countries.

Methods: Nine high schools from urban and rural areas were randomly selected in Shanxi Province, China, and
classroom vacuum dust was collected for shotgun metagenomic sequencing. A self-administered questionnaire was
collected from 1332 students for personal information and health data. Three-level logistic regression was performed
between microbial richness/abundance/functional pathways and the occurrence of asthma and rhinitis symptoms.
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Results: Consistent with developed countries, the prevalence of wheeze and rhinitis was higher in urban areas than in
rural areas (p < 0.05). Metagenomic profiling revealed 8302 bacterial, 395 archaeal, 744 fungal, 524 protist and 1103
viral species in classroom dust. Actinobacteria (mean relative abundance 49.7%), Gammaproteobacteria (18.4%) and
Alphaproteobacteria (10.0%) were the most abundant bacterial classes. The overall microbiome composition was
significantly different between urban and rural schools (p = 0.001, Adonis). Species from Betaproteobactera,
Gammaproteobacteria and Bacilli were enriched in urban schools, and species from Actinobacteria and Cyanobacteria
were enriched in rural schools. Potential pathogens were present in higher abundance in urban schools than in rural
schools (p < 0.05). Pseudoalteromonas, Neospora caninum and Microbacterium foliorum were positively associated with
the occurrence of wheeze, rhinitis and rhinoconjunctivitis, and Brachybacterium was protectively (negatively) associated
with rhinitis (p < 0.01). The abundance of human endocrine and metabolic disease pathways was positively associated
with rhinitis (p = 0.008), and butyrate and propionate metabolic genes and pathways were significantly enriched in
rural schools (p < 0.005), in line with previous findings that these short-chain fatty acids protect against inflammatory
diseases in the human gut.

Conclusions: We conducted the first indoor microbiome survey in urban/rural environments with shotgun metagenomics,
and the results revealed high-resolution microbial taxonomic and functional profiling and potential health effects.

Keywords: Asthma, Rhinitis, Shotgun metagenomics, High school students, Urban/rural, China

Introduction
Since World War II, the prevalence of many chronic
allergic and inflammatory diseases such as asthma and
rhinitis has increased dramatically [1, 2]. The number of
asthma and rhinitis patients has been estimated to ex-
ceed 350 and 700 million worldwide, and an even higher
number of people suffer from various asthmatic symp-
toms such as shortness of breath or chest tightness [1,
3–5]. The prevalence of asthma and rhinitis may reach a
plateau in developed countries in recent years, but a fast
increasing trend is still observed in developing countries.
For example, the prevalence of doctor-diagnosed asthma
increased from 0.91% in 1999 to 6.8% in 2012 for
children 1–8 years old in China [6]. The increasing trend
of asthma and rhinitis poses a substantial economic and
medical burden for individuals and society.
An interesting phenomenon of these chronic respira-

tory diseases is that the occurrence of the diseases is
higher in urban areas than in traditional farm or rural
areas [7–11]. For example, doctor-diagnosed asthma and
rhinitis for children in the non-farming area was 88%
and 172% higher than children in the farming area [11].
Recent progress in culture-independent high-throughput
microbiome studies revealed that indoor microbiome ex-
posure was closely related to the development of asthma
and rhinitis [7, 12, 13]. Children living on farms are ex-
posed to a broader range of environmental microorgan-
isms than children living in urban areas [7]. Exposure to
diverse environmental bacteria, including Actinobacteria,
Alphaproteobacteria and Cyanobacteria, may facilitate
the maturation of the immune system and reduce allergic
and inflammatory diseases such as asthma and rhinitis
[13–15]. However, most of the studies were conducted in
developed countries such as Germany, Finland and the

USA, and no study reported microbiome comparisons
between urban and rural areas in developing countries.
Many developing countries have experienced a fast
urbanization process in the past twenty years, and it is
interesting to see the prevalence of asthma and rhinitis
and the exposed microbiome in these regions.
Amplicon sequencing of taxonomic marker genes such

as the 16S ribosomal RNA gene of bacteria and the in-
ternal transcribed spacer (ITS) region of fungi is the
standard protocol to characterize the indoor microbiome
composition. The second-generation sequencing tech-
nique from Illumina is widely used in many indoor
microbiome surveys [16–18]. However, due to the short
read length limitation, the Illumina sequencing strategy
can only produce a partial region of the marker genes,
leading to reduced taxonomic resolution [19]. Third-
generation sequencing, such as PacBio, can produce a
full-length sequence for amplicon genes with a species-level
resolution, but functional inference is not reliable [20].
Shotgun metagenomic sequencing is an amplification-free
approach to characterize microbial species and a whole
catalogue of functional genes. This approach has been
widely used in human gut microbiome studies but has been
applied in only a few microbiome studies in built environ-
ments such as in commercial aircrafts, metros and hospitals
[21–24]. However, no health data were collected in these
studies, and thus, the health effects of the microbial species,
functional genes and metabolic products were unclear.
Shanxi is a province located in the central northern

part of China. The capital of Shanxi Province is Taiyuan,
an industrial city with approximately four million resi-
dents. The prevalence of doctor-diagnosed asthma and
rhinitis among pupils was lower in Taiyuan than in
megacities of China such as Beijing and Shanghai [25],
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but the prevalence of asthmatic symptoms such as
wheeze and shortness of breath in Taiyuan was compar-
able with these megacities [6]. The low prevalence of
doctor-diagnosed asthma in this region might be due to
the unawareness of the disease in society or lack of
access to medical services or other protective factors
[25, 26]. The prevalence of asthma and rhinitis among
adolescents was not reported in Shanxi Province.
In this study, we conducted the first shotgun metage-

nomic sequencing in urban and rural indoor environ-
ments. Nine high schools in Shanxi Province were
randomly selected to characterize the bacterial, fungal,
archaeal and viral composition. The prevalence of
asthma and rhinitis symptoms, including wheeze, short-
ness of breath and rhinoconjunctivitis, was surveyed in
students, and the association between the indoor micro-
biome and functional genes/pathways and respiratory
symptoms was assessed.

Materials and methods
Study design and health data collection
In this study, ten high schools, five from urban areas and
five from rural areas, were randomly selected in Shanxi
Province, China. Urban and rural areas were defined ac-
cording to the local administrative management system;
urban areas have a much higher density of population
and traffic than rural areas. Rural schools were located
approximately 30–40 km from Taiyuan city, the capital
of Shanxi Province, and urban schools were located in
Taiyuan city (Figure S1). Rural schools were defined as
school numbers 1–5, and urban schools were defined as
school numbers 6–10 (Table S1). In each school, 4 or 5
classes were randomly selected to collect vacuum dust
for microbiome profiling. Ten samples failed to produce
enough high-quality DNA. In total, 33 dust samples
from 9 schools (4 rural and 5 urban) were qualified and
sequenced by amplification-free shotgun metagenomics.
In each class, ~ 40 students were randomly selected to
collect the health data, and in total, 1332 students com-
pleted the self-administered questionnaire. Vacuum dust
and self-administered questionnaires were collected in
March 2008. The study was approved by the School
Board of Taiyuan city, principals and teachers in each
school and Ethics Committee at Fudan University
(IRB#08-03-0119), Shanghai, China. All students gave
their formal written consent, and the records were kept
at Fudan University.
A self-administered questionnaire in Chinese was dis-

tributed to all participants to collect personal information,
including gender, age, smoking habits, and parental
asthma and allergy, as well as health data, including
asthma and rhinitis symptoms in the last 12 months.
Questions about doctor-diagnosed asthma and asthma
symptoms were obtained from the European Community

Respiratory Health Survey (ECRHS), and questions about
rhinitis and rhinoconjunctivitis were obtained from the
International Study of Asthma and Allergies in Childhood
(ISAAC) study. The questions were the following:
“Have you had diagnosed asthma by a doctor?”
“Have you had wheezing or whistling in the chest in

the last 12 months?”
“Have you had daytime shortness of breath during rest

or after exercise in the last 12 months?”
“Have you had a problem with sneezing, or a runny or

a blocked nose when you DID NOT have a cold or the
flu in the last 12 months?” (rhinitis), and if the answer is
yes, “Has this nose problem been accompanied by itchy
watery eyes?” (rhinoconjunctivitis).
Students answered the questionnaire at home with the

help of their parents, and medical staff from our re-
search group went through the questionnaire. The stu-
dents had no information regarding the sampling and
data collected in the classrooms when answering the
questionnaire.

Vacuum dust sampling, DNA extraction and shotgun
metagenomics sequencing
Dust in a classroom was collected by a vacuum cleaner
(400 W) equipped with a dust sampler and a Millipore
filter (ALK Abello, Copenhagen, Denmark). The Millipore
filter was made of cellulose acetate with a pore size of 6
μm, retaining 74% of particles in the 0.3–0.5-μm size
range, 81% in 0.5–1.0 μm, 95% in 1–10 μm and 100% par-
ticles in > 10 μm. Each classroom was vacuumed for 4
min, vacuumed for 2 min on the floor and vacuumed for
2 min on the upper surfaces of desks, chairs, bookshelves,
teaching platforms and curtain surfaces. The dust samples
were sieved through a 0.3-mm mesh screen to obtain fine
dust. The fine dust was stored in a − 80 °C freezer until
DNA extraction.
DNA extraction and shotgun metagenomic sequencing

were conducted at Personal Biotechnology Co., Ltd.
(Shanghai, China). Total microbial genomic DNA in
dust was extracted by a DNeasy PowerSoil Kit (QIAG
EN, Hilden, Germany), following the manufacturer’s in-
structions. The quality and quantity of the extracted
DNA were assessed by agarose gel electrophoresis and a
NanoDrop ND-1000 spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA). The qualified DNA was
processed to construct the shotgun metagenomics se-
quencing library by a TruSeq DNA Nano High
Throughput Library Preparation Kit (Illumina, San
Diego, CA, USA). The sequencing strategy was paired-
end 150 bp reads with an insert size of 400 bp. A dual
indexed barcode structure was applied for multiplexing,
and 1% PhiX Control v3 was added into the library for
quality monitoring. The prepared libraries were stored at
– 20 °C before sequencing. The sequencing platform
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was Illumina HiSeq X-ten (Illumina, San Diego, CA,
USA). The cluster density was in the range of 1255–
1412 K clusters/mm2, and the error rate was < 0.05% for
the sequencing run.

Metagenomics data assembly and analyses
Raw sequenced reads were first processed to obtain
high-quality clean reads. Adapter sequences were re-
moved by Cutadapt (v1.2.1) [27], and raw reads were
processed by a 5-bp sliding window to trim low-quality
sequences (< Q20, read accuracy < 99%). Trimmed reads
with length > 50 bp and no ambiguous bases were kept
for further analyses. Human reads were removed by
KneadData (v0.9.0) and BMTagger (v3.101). The proc-
essed clean reads were deposited in the Genome Sequence
Archive (https://bigd.big.ac.cn/gsa) in the National Gen-
omic Data Center, Beijing Institute of Genomics with the
accession number CRA003476 [28, 29]. The clean reads
were assembled by MEGAHIT (v1.0.5) with a succinct de
Bruijn graph approach [30]. The coding sequences (CDS,
> 300 bp) were predicted by MetaGeneMark (v3.25) [31].
CDSs were clustered by CD-HIT (v4.8.1) [32] at 90%
amino acid sequence identity to obtain a non-redundant
gene catalogue. The abundance of genes was calculated as
the number of aligned reads by SOAPdenovo2 (v1.0) [33].
The taxonomy was annotated by searching against the
NCBI-NT database by BLASTN (e value < 0.001) and an-
notated by MEGAN with the lowest common ancestor ap-
proach [34]. The functional gene was annotated by
searching the sequence of the non-redundant genes
against the KEGG databases (release 90.0) by DIAMOND
protein aligner (v2.0.4) with e value < 0.001 and coverage
ratio > 40% [35]. LEfSe (linear discriminant analysis effect
size) analyses [36] were analyzed on the Galaxy website
(http://huttenhower.sph.harvard.edu/galaxy/, v1.0) for the
characteristic microbial taxa and functional genes/path-
ways in urban and rural schools. Microbial compositional
variation (beta diversity) was calculated by Bray-Curtis
distance metrics and visualized by non-metric multidi-
mensional scaling (NMDS) hierarchical clustering [37,
38]. Permutation analysis (10,000 permutations) was con-
ducted for microbial taxonomic and functional compos-
ition between urban and rural samples by the Adonis
function in R (v3.6.1). The growth rate of high abundance
bacteria was calculated by GRiD with – c = 0.2 [39].
Twenty-two species were included in the GRiD analysis
with the following criteria: species relative abundance >
0.5%, taxa annotation resolved at the species level with a
high-quality reference, species coverage > 0.2 and low spe-
cies heterogeneity < 0.3. Reference genomes were down-
loaded from the prokaryote database of the NCBI genome
browser (https://www.ncbi.nlm.nih.gov/genome/browse#!/
prokaryotes/). If multiple reference genomes were avail-
able, the genome with the smallest number of scaffolds

was chosen. The Quantitative Insights Into Microbial
Ecology (QIIME, v1.8.0) pipeline and R (v3.6.1) were used
throughout the study for data processing, analysis and
visualization [40].

Association analysis between microbial diversity/
abundance and symptoms
Three-level (class and school as second and third level)
logistic regression was calculated between microbial
richness and asthma and rhinitis symptoms by StataSE
15.0 (StataCorp LLC). Current smoking, gender and par-
ental asthma and allergies were adjusted in the regres-
sion model. The microbial richness was represented as
the number of observed species in major microbial line-
ages, including the domains Bacteria, Archaea, Eukaryota
and Viruses, the kingdom Fungi and Protista and the
major taxonomic classes. The associations between the
relative abundance of microbial species and KEGG func-
tional genes/pathways and asthma and rhinitis symptoms
were also calculated by three-level logistic regression with
the same adjustments. To reduce the number of multiple
comparisons, we tested only microbial species and KEGG
pathways differentially present in urban and rural schools
(LDA score > 2) in the regression analyses. Associations
with a p value < 0.01 were considered significant results
throughout the study, and the false discovery rate (FDR)
was also calculated by the p.adjust function with the
Benjamini-Hochberg procedure in R (v3.6.1).

Results
Prevalence of asthma and rhinitis symptoms
In this study, self-administered questionnaires were col-
lected from 1332 students in the selected classrooms to
assess the prevalence of asthma and rhinitis symptoms.
All students were Chinese. The students were aged from
15 to 18 years, with a mean age of 16.1 years. A total of
610 students were female (45.8%), and 722 students were
male (54.2%). A total of 924 students were from urban
schools (69.4%), and 411 students were from rural
schools (30.6%). The prevalence of doctor-diagnosed
asthma was low in Shanxi (0.9%), and the prevalence in
urban schools was higher than in rural schools, with
borderline significance (1.2% vs 0.2%, p = 0.09). The
prevalence of wheeze was significantly higher in male
students than in female students (7.5% vs 4.6%, p =
0.03), and the prevalence of shortness of breath was sig-
nificantly higher in female students than in male stu-
dents (28.0% vs 37.7%, p < 0.001). The prevalence of
wheeze (7.1% vs 4.1%) and rhinitis (41.9% vs 32.4%) was
significantly higher in urban schools than in rural
schools (chi-square test, p < 0.05; Table 1). The preva-
lence of shortness of breath (33.5% vs 30.4%) and rhino-
conjunctivitis (15.9% vs 13.3%) was also higher in urban
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schools than in rural schools but did not reach statistical
significance (p > 0.05).

Shotgun metagenomics sequencing statistics
The sequenced samples were referred to as “S1-03”
(school number 1–class number 3) throughout the study
(Tables S2 and S3). In total, 837.6 Gb raw sequence data
were produced with 5.6 billion reads. All samples had >
90% nucleotides with base accuracy > 99% (Q20) (Table
S2). Human DNA fragments mainly from the skin
accounted for a large proportion of our data. A total of
66.2% of reads were removed as having a human annota-
tion, and 261.8 Gb clean microbial data were kept for
further analyses (2.2 to 20.8 Gb per sample; Table S2).
The maximum scaffold length ranged from 54 kb (S9-
04) to 523 kb (S8-04), and the total length of the assem-
bled scaffolds ranged from 2.2 Gb (S10-03) to 3.3 Gb
(S10-02; Table S3).

Microbiome composition in urban and rural schools
We characterized 11,070 microbial species in this study,
including 8302 bacterial, 395 archaeal, 1268 eukaryotic
and 1103 viral species. The eukaryotes included 744
fungal and 524 protist species. The plateau curve of the
rarefaction analysis indicates that the sequencing depth
is deep enough to cover the majority of taxa in the
samples (Figure S2). The relative abundances of bacter-
ial, archaeal, eukaryotic and viral taxa were 99.0%, 0.03%,
0.80% and 0.17%, respectively. Actinobacteria (mean
relative abundance 49.7%), Gammaproteobacteria
(18.4%), Alphaproteobacteria (10.0%), Bacilli (7.0%) and
Betaproteobacteria (5.1%) were the most abundant bac-
terial classes, and Dothideomycetes (0.37%) was the
most abundant fungal class (Fig. 1A). The top bacterial,
archaeal, fungal, protist and viral taxa are presented in
Table 2. The most abundant bacterial species included
uc Actinobacteria (uc means uncharacterized; 5.1%), uc
Psychrobacter (3.2%), Micrococcus luteus (3.1%), uc Bra-
chybacterium (1.8%) and Janibacter indicus (1.6%). The
highly abundant archaeal species were from the class
Nitrososphaeria, including Candidatus Nitrocosmicus
oleophilus (0.003%) and Candidatus Nitrosocosmicus
exaquare (0.001%), and the class Halobacteria, including
uc Halobacteria (0.001%) and Halorubrum trapanicum

(0.0009%). The most abundant fungal species were
common mould species, including Alternaria alternate
(0.22%), Alternaria solani (0.10%), Aspergillus glaucus
(0.04), Mucor racemosus (0.007%) and Aspergillus acu-
leatus (0.005%). The highly abundant protist species
were from the class Apicomplexa, including Neospora
caninum (0.07) and Babesia bigemina (0.005%). The
highly abundant viruses were mainly bacteriophages,
including Silicibacter phage DSS3phi2 (0.044), Psychro-
bacter phage Psymv2 (0.008%) and Caudovirales phage
(0.004%).
We further characterized the overall microbiome com-

position variation by non-metric multidimensional scal-
ing (NMDS) hierarchical clustering. Samples from urban
and rural schools were clustered mainly on the left and
right sides of NMDS1, respectively (Fig. 1B), indicating
that urban and rural classrooms contain different micro-
bial compositions. The variation was also confirmed by
the permutation analysis (p = 0.001, Adonis, 10,000
permutations). School 5 showed large compositional
variation compared with schools 1–4 along the axes of
NMDS2 (Fig. 1B), suggesting that other environmental
characteristics were also involved in shaping the
variation.
To characterize the feature species in urban and rural

schools, we conducted LEfSe analysis. Species enriched
in urban schools were mainly from classes Betaproteo-
bacteria (uc Neisseria), Gammaproteobacteria (Acineto-
bacter lwoffi, uc Xanthomonadaceae, Acinetobacter
johnsonii, uc Lysobacter), Bacilli (uc Streptococcus,
Staphylococcus epidermidis, Carnobacterium sp.) and
Actinobacteria (uc Microbacterium, uc Actinomyces,
Cutibacterium acnes, Agrococcus carbonis, Neomicrococ-
cus aestuarii; LDA > 3). Species enriched in rural
schools were mainly from classes Actinobacteria (Micro-
coccus luteus, Brachybacterium sp., Kocuria palustris,
Dietzia sp., Derinicoccus sp, Janibacter indicus) and
Cyanobacteria (Microcoleus sp. Oscillatoria nigro-viridis;
Fig. 2A).
The potential pathogens defined by NIAID (National

Institute of Allergy and Infectious Diseases, USA) were
also characterized. Overall, the potential pathogens were
present in low abundance (Table S4; total abundance
0.057%). Clostridium pefringens (0.021%) and Listeria

Table 1 Prevalence of wheeze, breathlessness, rhinitis and rhinoconjunctivitis among students (N = 1332) in urban and rural high
schools in Shanxi, China. p values were calculated by Chi-square test. Significant p values (p < 0.05) were formatted with bold font

Symptoms Number Prevalence (%) Male (%) Female (%) p value Urban (%) Rural (%) p value

Doctor’s diagnosed asthma 12 0.9 1.1 0.5 0.22 1.2 0.2 0.09

Wheeze 83 6.3 7.5 4.6 0.03 7.1 4.1 0.04

Shortness of breath 432 32.4 28.0 37.7 < 0.001 33.5 30.4 0.26

Rhinitis 518 38.9 39.5 38.2 0.63 41.9 32.4 0.001

Rhinoconjunctivitis 199 15.1 15.3 14.8 0.82 15.9 13.3 0.22
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Fig. 1 Microbial taxonomic composition and NMDS analysis of taxonomic composition in high schools in Shanxi, China. A The taxonomic
composition is presented as the relative abundance of major microbial classes. Schools 1–5 are from rural areas, and schools 6–10 are from urban
areas. B NMDS ordination of the classroom microbiome was calculated based on the Bray-Curtis distance matrix. Ordination plot between axes
NMDS1 and NMDS2 is shown
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monocytogenes (0.011%) were the top pathogens in the
school environment, with other pathogens all < 0.01%.
Interestingly, the abundance of pathogens was higher in
urban schools than in rural schools (p = 0.046, t test; rural
average abundance 0.034%, urban 0.066%). Specifically, L.
monocytogenes, Campylobacter jejuni, Yersinia pestis and
Toxoplasma gondii were present in higher abundance in
urban schools than in rural schools (p = 0.001, 0.043,
0.018 and 0.002, t test). Burkholderia pseudomallei was
the only species present in higher abundance in rural
schools than in urban schools (p < 0.001). However, shot-
gun metagenomics data were assembled in fragmented
scaffolds, and thus, the potential health effects of these
pathogens should be interpreted with caution.
We also compared the bacterial assemblage of this

study to previously reported habitats (Table 3). The bac-
terial composition in Shanxi high schools was more
similar to the air and human skin microbiomes than to
the soil, freshwater, human gut and saliva microbiomes
(calculated from the Earth Microbiome Project [41]).
Additionally, some high-abundance bacterial genera in
Shanxi high schools were also present in high abundance
in other indoor environments such as the dormitories of
Shanxi University, China and junior high school class-
rooms in Malaysia [12, 42].

Associations between microbial richness/abundance and
asthma and rhinitis symptoms
The associations between microbial richness and asthma
and rhinitis symptoms were examined by three-level

logistic regression. The prevalence of doctor-
diagnosed asthma was very low and was not included
in the analysis. The microbial richness in the domains
of bacteria, archaea and eukaryotes and the kingdoms
of fungi and viruses were not significantly associated
with the wheeze, breathlessness, rhinitis and rhinocon-
junctivitis (p > 0.05; Tables S5-S8). Similarly, no sig-
nificant associations were found between the richness
of major microbial classes and these symptoms (p >
0.05; Table S5-S8).
The associations between microbial species abundance

and wheeze, shortness of breath, rhinitis and rhinoconjunc-
tivitis were examined with the same regression model. To
reduce the number of tests, we examined only 117 micro-
bial species differentially present in urban and rural schools
(LDA > 2) (Table S9). Five bacteria and one protist were as-
sociated with these symptoms. An uncharacterized Pseu-
doalteromonas from the class Gammaproteobacteria was
positively associated with wheeze (p = 0.008; Table 4). Bra-
chybacterium sp. P6-10-X1 was protectively/negatively as-
sociated with rhinitis (p = 0.009), and uncharacterized
Betaproteobacteria and Pseudoalteromonas were positively
associated with rhinitis (p = 0.002 and p < 0.001). Unchar-
acterized Pseudoalteromonas was positively associated with
both wheeze and rhinitis. The protist Neospora caninum
was positively associated with rhinitis (p = 0.002). An
uncharacterized Flavobacteriaceae species was negatively
associated with rhinoconjunctivitis (p = 0.009), and Micro-
bacterium foliorum was positively associated with rhino-
conjunctivitis (p = 0.006).

Fig. 2 LEfSe analysis for characteristic microbial species in urban and rural schools in Shanxi, China. Only microbial species with LDA score > 3
is shown
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Abundance of functional genes in urban and rural
schools
In this study, 15 million non-redundant functional genes
were extracted from the shotgun metagenomic assemblies.
The functional genes were annotated according to the
KEGG Orthology database and classified into different
KEGG functional pathways. More than half of the func-
tional genes were annotated as “Metabolism” (56.4%),
followed by “Genetic Information Processing” (10.7%),
“Environmental Information Processing” (7.7%), “Human

Diseases” (6.8%), “Cellular Processes” (6.1%), “Organismal
Systems” (5.1%) and “Not included in Pathway” (7.4%;
Fig. 3A). Samples from urban and rural schools were also
separately clustered in the NMDS analysis (Fig. 3B), and
the variation was also supported by the permutation ana-
lysis (p = 0.005, Adonis, 10,000 permutations).
The differential KEGG functional pathways in urban

and rural schools were also characterized by LEfSe ana-
lysis. Pathways at the second KEGG hierarchical level are
shown in Fig. 4. A higher abundance of genes related to

Table 3 Average relative abundance of the top 15 bacterial genera in high schools in Shanxi and their relative abundance in other
habitats. The bacterial abundance in air, non-saline soil and freshwater, and the human gut, saliva and skin environment were
calculated from the Earth Microbiome Project [41]. The bacterial abundance in the university dormitory and junior high school was
calculated from two recent publications [12, 42]. Taxa with relative abundance > 0.1% were formatted with bold font

Taxa High school (%) Air
(%)

Soil
(%)

Water
(%)

Human gut
(%)

Human
saliva (%)

Human skin
(%)

University
dormitory,
China (%)

Junior high school,
Malaysia (%)

Psychrobacter 5.36 0.12 < 0.01 0.01 0 < 0.01 0.18 0.04 0

Kocuria 3.82 < 0.01 < 0.01 < 0.01 < 0.01 0.02 0.43 0.25 1.43

Brachybacterium 3.41 0.16 0.02 < 0.01 0.03 < 0.01 0.59 0.23 0.71

Micrococcus 3.22 0.10 < 0.01 < 0.01 < 0.01 < 0.01 0.65 0.54 0.82

Acinetobacter 2.99 2.30 0.10 1.37 0.02 0.21 4.93 23.2 2.21

Microbacterium 2.93 0.03 0.10 0.06 < 0.01 < 0.01 0.03 0.75 0

Paracoccus 2.80 0.18 0.01 0.13 < 0.01 < 0.01 0.32 0.13 3.13

Nocardioides 2.55 0.06 0.03 0.01 0 < 0.01 0.04 0.03 0.46

Streptococcus 2.09 5.46 0.16 0.16 0.37 19.97 10.78 0.49 1.45

Pseudomonas 2.04 1.41 1.29 2.57 < 0.01 0.01 5.44 1.88 0.80

Corynebacterium 1.71 1.06 0.04 0.02 0.89 0.43 7.66 0.95 1.77

Janibacter 1.56 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.04 0.04 0.64

Planococcus 1.50 < 0.01 0.02 < 0.01 0 0 < 0.01 <0.01 0

Arthrobacter 1.39 0.21 0.39 0.04 < 0.01 0.02 0.13 0.09 0.48

Serinicoccus 1.32 0.07 < 0.01 < 0.01 < 0.01 < 0.01 0.04 <0.01 0

Table 4 Association between the abundance of indoor microbial species and wheeze, rhinitis and rhinoconjunctivitis in high
schools in Shanxi, China. The β coefficient and 95% confidence interval (CI) were calculated by 3-level logistic regression models
adjusted for gender, smoking and parental asthma and allergy. Regression analyses for wheeze and rhinitis were conducted for
species differentially present in urban and rural schools (LDA > 2) and mean relative abundance > 0.05%; and thus, 117 species were
analyzed. Regression analyses for rhinoconjunctivitis were only conducted for 21 species that were potentially associated with
rhinitis (p < 0.05). Only associations with p < 0.01 are presented in this table. The false discovery rate (FDR) was calculated by the
Benjamini-Hochberg (BH) procedure. “uc” means uncharacterized

Symptoms Domain/
kingdom

Class Species Relative abundance (%) β (95% CI) p value FDR

Urban Rural

Wheeze Bacteria Gammaproteobacteria uc Pseudoalteromonas 0.08 0.05 0.11 (0.03, 0.19) 0.008 0.16

Rhinitis Bacteria Actinobacteria Brachybacterium sp.
P6-10-X1

1.36 2.75 − 0.12 (− 0.21, − 0.03) 0.009 0.17

Betaproteobacteria uc Betaproteobacteria 0.10 0.08 0.08 (0.03, 0.13) 0.002 0.08

Gammaproteobacteria uc Pseudoalteromonas 0.08 0.05 0.06 (0.03, 0.10) < 0.001 < 0.01

Protista Conoidasida Neospora caninum 0.09 0.01 0.03 (0.01, 0.04) 0.002 0.08

Rhinoconjunctivitis Bacteria Flavobacteriia uc Flavobacteriaceae 0.20 0.31 − 0.29 (− 0.51, − 0.07) 0.009 0.09

Actinobacteria Microbacterium foliorum 0.08 0.06 0.14 (0.04, 0.24) 0.006 0.09
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human disease and the immune system was detected in
urban schools, including “Human disease; Infectious dis-
ease Bacterial”, “Human disease; Infectious disease Viral”,

“Human disease; Cancers Specific types”, “Organismal
Systems: Immune system” and “Organismal Systems: Di-
gestive system” (LDA > 3). A higher abundance of

Fig. 3 Microbial functional gene composition and NMDS analysis of functional pathways in high schools in Shanxi, China. A The relative
abundance of first-level KEGG functional pathways. Schools 1–5 are from rural areas, and schools 6–10 are from urban areas. B NMDS ordination
of classroom functional genes was calculated based on the Bray-Curtis distance matrix. Ordination plot between NMDS1 and NMDS2 is shown
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metabolic genes was detected in rural schools, including
“Lipid metabolism”, “Amino acid metabolism”, “Carbohy-
drate metabolism”, “Metabolism of cofactors and vita-
mins” and “Xenobiotics biodegradation and metabolism”
(LDA > 3). A recent study reported that the production of
short-chain fatty acids (SCFAs) by gut microbiota, includ-
ing butyrate and propionate, protected against allergic in-
flammation in the lungs [43]. Thus, we further conducted
LEfSe analysis specific for carbohydrate metabolism at the
third KEGG hierarchical level. We found a higher abun-
dance of genes from “Butanoate metabolism” (LDA = 2.7,
p = 0.004) and “Propanoate metabolism” (LDA = 2.9, p =
0.002) pathways in rural schools than in urban schools, in-
dicating that more butyrate and propionate may be pro-
duced by the indoor microbiome in the rural
environment.
The associations between the abundance of KEGG func-

tional genes/pathways and health symptoms were also ex-
amined by regression. A higher abundance of the “Human
Disease; Endocrine and metabolic diseases” pathway was
associated with a higher occurrence of rhinitis (p = 0.008,
β = 0.55), but no specific gene was significantly associated
with rhinitis (p > 0.01). Genes involved in primary metab-
olism were protectively associated with rhinitis. Two
enzymes involved in butyrate metabolism, including 4-
aminobutyrate aminotransferase and diaminobutyrate-2-
oxoglutarate transaminase, were protectively associated
with rhinitis (p < 0.01), consistent with the LEfSe analysis.
Two acyltransferases, including NAD-dependent deacety-
lase and streptothricin acetyltransferase, were protectively
associated with rhinitis (p < 0.01).

Bacterial growth rate in urban and rural schools
Recent progress in bioinformatics tools enables us to es-
timate the growth rate of bacterial species by calculating
the read coverage in replication origin and terminal

regions [39]. Twenty-two species with high read cover-
age were analyzed. The majority of the species (21 out of
22) had stopped growing or had a very low growth rate
(GRiD score < 1.3). Arthrobacter agilis was the only spe-
cies with a GRiD score > 2 (Table S10). Compared with
fast-growing species such as Bdellovibrio in aquaculture
(GRiD score > 5) [39], the indoor species from high
schools had a relatively slow growth rate. Additionally,
the growth rates of these species were not significantly
different in urban and rural schools (p > 0.05, t test).
This result indicates that the high microbiome variation
between the urban and rural schools is not due to bac-
terial growth in the indoor environment; rather, it
should be due to the variation in the sources of microor-
ganisms, such as outdoor greenness, traffic or other en-
vironmental characteristics.

Discussion
In this study, we conducted the first shotgun metage-
nomic sequencing in an urban/rural indoor environment
and assessed the health effects of microbial exposure.
Like Western countries, the prevalence of asthma and
rhinitis symptoms was higher in urban areas than in
rural areas in China. The overall indoor microbiome
taxonomic and functional composition was significantly
different between urban and rural schools. Specifically,
species enriched in urban schools were mainly from the
class Actinobacteria and Cyanobacteria, and species
enriched in rural schools were mainly from the class
Betaproteobacteria, Gammaproteobacteria, Bacilli and
Actinobacteria. Potential NIAID-defined pathogens were
present in higher abundance in urban schools. Five bac-
terial and one protist species were significantly associ-
ated with wheeze, rhinitis and rhinoconjunctivitis.
Microbial genes in human diseases and immune systems
were enriched in urban schools, whereas genes in

Fig. 4 LEfSe analysis for characteristic KEGG functional pathways in urban and rural dust samples in Shanxi, China. The second-level KEGG
functional pathways are presented. Only pathways with LDA scores > 3 are presented in the figure
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butanoate and propanoate metabolic pathways were
enriched in rural schools. The abundance of genes in the
“Human Disease; Endocrine and metabolic diseases”
pathway was positively associated with the occurrence of
rhinitis.

Strengths and limitations of the study
This is the first study to reveal urban/rural microbiome ex-
posure and asthma and rhinitis in an Asian developing
country, complementing previous observations in Western
countries. Another strength is that we applied shotgun
metagenomic sequencing to characterize microbiome com-
position in the school environment. Compared with trad-
itional amplicon sequencing, the technique expands the
scope of microbiome detection by characterizing bacteria,
archaea, fungi, protists and viruses together with high taxo-
nomic resolution. Additionally, shotgun metagenomics is
not subject to PCR amplification biases in 16S rRNA and
ITS sequencing, which enables accurate microbial abun-
dance estimation. In addition, the technique enables func-
tional inference, which is not feasible by amplicon
sequencing.
A limitation of this study is that the cross-sectional

study design restricts causal inference. Additionally, the
questionnaire-based study relies on self-assessment of
illness or symptoms, but medical staff went through the
questionnaire and explained the uncertainty to the par-
ticipants. The prevalence of doctor-diagnosed asthma
was low in Taiyuan (0.9%), and thus, we did not conduct
microbial association analysis. The low prevalence is
likely due to unawareness of the disease in society and
not access to medical services [6, 25, 26]. Unawareness
of the disease is probably more common in less devel-
oped or rural regions such as Shanxi, than in megacities,
such as Shanghai or Beijing. In this study, eleven stu-
dents in urban schools reported diagnosed asthma,
whereas only one student in rural schools reported diag-
nosed asthma. The numbers were too low to make a
solid statistical inference, but it is in line with the idea
that unawareness of the disease is more common in
rural regions. Unlike diagnosed asthma, the prevalence
of wheeze and shortness of breath in Shanxi were com-
parable or even higher than in developed countries [6,
25]. Thus, it is important to survey asthma symptoms to
represent respiratory health in Shanxi. In this study, we
conducted a false discovery rate correction (Benjamini-
Hochberg procedure) to control type I error and poten-
tially false-positive results in regression [44]. The ap-
proach was widely used in genome-wide association
studies (GWAS) but was suggested to be overly conser-
vative for microbiome association analysis [45, 46]. A
recent algorithm, dsFDR, was proposed to increase
the efficiency and power of detection [45]. However,
the algorithm does not support multilevel adjustment,

which is important in school microbiome studies with
several levels of nested data (individual, class, school
levels). An alternative solution could relax the stand-
ard threshold in the FDR test (< 0.05) to improve the
sensitivity of detection. Thus, we reported six poten-
tial species associated with asthma and rhinitis symp-
toms (p < 0.01), and the FDR values were all < 0.2.
Finally, metagenomics can provide the functional po-
tential of the microbial community surveyed but does
not confirm that the relevant proteins or gene prod-
ucts are expressed and present in the dust. Thus, the
functional implications should be treated with
caution.

Microorganisms in urban and rural schools and health
implications
We found significantly different microbiome composi-
tions between urban and rural schools in Shanxi. Specif-
ically, urban schools were enriched with species from
Betaproteobacteria, Gammaproteobacteria, Bacilli and
Actinobacteria, and rural schools were enriched with
species from Actinobacteria and Cyanobacteria. The re-
sults were consistent with a home study in farm and
non-farm areas from Finland and Germany [13]. In that
study, the authors reported that Streptococcaceae (a
family of Bacilli) was enriched in homes from the non-
farm area, and Alphaproteobacteria, Actinobacteria and
Cyanobacteria were enriched in homes from the farm
area; the latter taxa might provide protective effects
against the development of asthma.
In addition to the abundance analysis, a more stringent

regression model with multiple adjustments was also ap-
plied to examine the potential health-related microorgan-
isms. Brachybacterium sp. P6-10-X1 and uncharacterized
Flavobacteriaceae were negatively associated with rhinitis
and rhinoconjunctivitis. These two taxa are found in a
wide variety of outdoor environments, including marine,
freshwater, soil, sediment, plants and animals [47, 48], but
no study has reported their potential health effects. Three
bacteria (uncharacterized Pseudoalteromonas, uncharac-
terized Betaproteobacteria and Microbacterium foliorum)
and one protist species (Neospora caninum) had potential
risk effects on wheeze and rhinitis. Pseudoalteromonas
species are Gram-negative bacteria inhabiting soil, lakes
and marine environments [49]. The genus is well-
known for its wide application in the pharmaceutical
industry. For example, Pseudoalteromonas phenolica
can produce phenolic substances that suppress the
growth of methicillin-resistant Staphylococcus aureus
(MRSA) [50]. Pseudoalteromonas species can also pro-
duce cyclodigiosin hydrochloride, suppressing T-cell
proliferation as an immunosuppressant therapeutic
agent [51]. Homoeostasis between the type 1 and type
2 immune responses suppresses the development of
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asthma [14]. Severe immunosuppression in humans over-
activates the type 2 response, and prolonged type 2 im-
munity could increase the risk of atopic sensitization and
asthma [52]. Thus, Pseudoalteromonas species could pro-
vide potential beneficial antibiotic effects and detrimental
health effects for asthma. Microbacterium foliorum is a
Gram-positive bacterium widely used in the production of
food ingredients. The species were assessed and found to
be non-mutagenic and non-clastogenic in a murine model
[53], but no study reported the potential health effects on
asthma and rhinitis. Neospora caninum can cause abor-
tion and neurologic disease in cattle, and the occurrence
of Neospora infection is common in dairy herds in the
USA [54], but an antibody titer test showed that the spe-
cies was unlikely to infect humans directly [55]. Addition-
ally, no study has reported the potential health effects of
the species on asthma and rhinitis.
In this study, Brachybacterium sp. and Pseudoaltero-

monas were associated with rhinitis, and Microbacter-
ium foliorum and uncharacterized Flavobacteriaceae
were associated with rhinoconjunctivitis. Different
species were linked to rhinitis and rhinoconjunctivitis,
probably because rhinoconjunctivitis is more specific
for allergic rhinitis, while rhinitis also includes non-
allergic rhinitis [2, 4, 56].
Another interesting finding of this study is that the po-

tential pathogens were more enriched in urban schools
than in rural schools, including L. monocytogenes, Cam-
pylobacter jejuni, Yersinia pestis and Toxoplasma gondii.
This result is consistent with the concept that
urbanization may increase infectious diseases [57]. A re-
cent shotgun metagenomics survey also reported that
antibiotic-resistant pathogens were commonly detected
in the sewage of major cities in China [58], raising
awareness of pathogens spreading through the septic
system in urban areas.

Functional genes and health implication
In this study, we found that the genes and pathways re-
lated to metabolism were enriched in rural schools and
that the pathways related to human diseases and im-
mune systems were enriched in urban schools. The re-
sults were supported by a relaxed abundance analysis
(LEfSe) and a stringent logistic regression analysis. A
study in European countries reported that exposure to
rural environments in early life increased the maturation
rate of gut microbiota, leading to increased production
of short-chain fatty acids (SCFAs), including butyrate
and propionate [43]. These SCFAs impair the viability of
eosinophils and are particularly important in mediating
the protective effect on asthma and inflammatory bowel
disease (IBD) [43, 59] [60, 61]. A higher abundance of
Bacteroidetes, Alistipes and Lactobacillus in the murine
gut produced a higher level of butyrate, increasing the

expression of MUC2 and intestinal epithelial barrier
function and further reducing gastrointestinal inflamma-
tion [61, 62]. In this study, we found that SCFAs in the
indoor environment may also have anti-inflammatory ef-
fects, as in the human gut. The genes and pathways re-
lated to butanoate and propanoate production were
significantly enriched in rural schools compared with
urban schools (p < 0.005). Modern humans spend more
than 90% of their time in the indoor environment [63];
numerous microorganisms and their metabolic products
in the air can be inhaled into the human body. The ele-
vated production of butyrate and propionate by microor-
ganisms in the indoor environment could provide the
same protective effects as the microorganisms inhabiting
the human gut. Thus, this finding may provide a new
perspective for future prevention and remediation strat-
egies for asthma and rhinitis.
In this study, a higher abundance of genes in the

“Human Disease; Endocrine and metabolic diseases”
pathway was associated with a higher occurrence of
rhinitis. The association between metabolic dysfunc-
tion, such as obesity and asthma, is supported by
many studies [64, 65]. The prevalence of asthma in-
creases with the body mass index (BMI) of children
[66]. Recent progress has also reported that other
metabolic dysfunctions also affect the prevalence of
asthma. One study surveyed 4000 people in Korea
and reported that the number of metabolic dysfunc-
tions, including insulin resistance and systemic in-
flammation, was positively associated with asthma
[67], consistent with our finding. Thus, exposure to
microorganisms related to metabolic diseases in the
indoor environment may also increase the occurrence
of asthma.

Conclusions
We conducted the first shotgun metagenomics sequen-
cing between urban and rural indoor environments, re-
vealing high-resolution microbial taxonomic and
functional profiling and potential health effects. A sig-
nificantly higher prevalence of asthma and rhinitis symp-
toms in urban areas compared with rural areas in
Shanxi, China. Microbial composition also varied signifi-
cantly between the two areas, and several potential pro-
tective and risk microorganisms were associated with
these symptoms. Genes and pathways related to butyrate
and propionate metabolism were significantly enriched
in rural schools, in line with previous findings that these
short-chain fatty acids in the human gut protect against
various inflammatory diseases. This study expanded our
understanding of the indoor microbiome and respiratory
health, providing new insights for indoor microbial ex-
posure from a functional perspective.
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