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ABSTRACT

Objective: The characteristics of clinician activities while interacting with electronic health record (EHR) systems

can influence the time spent in EHRs and workload. This study aims to characterize EHR activities as tasks and

define novel, data-driven metrics.

Materials and Methods: We leveraged unsupervised learning approaches to learn tasks from sequences of events

in EHR audit logs. We developed metrics characterizing the prevalence of unique events and event repetition and

applied them to categorize tasks into 4 complexity profiles. Between these profiles, Mann-Whitney U tests were

applied to measure the differences in performance time, event type, and clinician prevalence, or the number of

unique clinicians who were observed performing these tasks. In addition, we apply process mining frameworks

paired with clinical annotations to support the validity of a sample of our identified tasks. We apply our approaches

to learn tasks performed by nurses in the Vanderbilt University Medical Center neonatal intensive care unit.

Results: We examined EHR audit logs generated by 33 neonatal intensive care unit nurses resulting in 57 234

sessions and 81 tasks. Our results indicated significant differences in performance time for each observed task

complexity profile. There were no significant differences in clinician prevalence or in the frequency of viewing

and modifying event types between tasks of different complexities. We presented a sample of expert-reviewed,

annotated task workflows supporting the interpretation of their clinical meaningfulness.

Conclusions: The use of the audit log provides an opportunity to assist hospitals in further investigating clini-

cian activities to optimize EHR workflows.

Key words: Unsupervised learning, electronic health records, metrics, tasks, audit logs, human-computer interaction, clinician

activities
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INTRODUCTION

Clinician activities involving electronic health record (EHR) systems

can influence the time spent in EHRs and affect their workload,

which can induce stress and burnout.1–6 Clinicians use EHRs for

various functions, including chart review, documentation, messag-

ing, orders, patient discovery, medication reconciliation, etc.7

Healthcare organizations (HCOs) and EHR vendors have previously

investigated such usages to understand clinician EHR activities and

efficiency.8,9 These investigations measure the time spent on each

EHR function to build provider efficiency profiles.8–10

In recent years, EHR audit logs have become valuable resources

for the investigation of clinician efficiency in EHRs.8,11,12 When a cli-

nician accesses or moves between modules in the EHR interface, such

as moving from Progress Notes to Order Entry screens, a timestamped

record of that action is documented, along with clinician and patient

identifiers.13–16 One example study leveraged audit logs to identify 15

tasks, including clerical (eg, assigning Current Procedural Terminol-

ogy and International Classification of Diseases–Tenth Revision

codes), medical care (eg, reviewing an encounter note), and inbox

tasks (eg, developing a letter to a patient) completed by family medi-

cine physicians.11 Sinsky et al.12 created a set of metrics to quantify

the time spent by a physician in an EHR by using audit logs.

Our approach applies unsupervised learning methods to audit

log event sequences to identify and characterize putative EHR tasks

performed by clinicians. The goal of our work is to provide an infor-

matics framework for mining audit log data to discover EHR event

and session patterns, which we call tasks. We developed hierarchical

metrics to describe these tasks and leveraged them to investigate

task complexity and efficiency. As a pilot study, this work focuses

on task complexity, task efficiency, and task prevalence among clini-

cians. We stratify tasks by complexity and investigate differences in

task efficiency and clinician prevalence between each complexity

profile. Our methods can potentially guide HCOs to optimize EHR

activities or clinical workflows, by highlighting specific inefficient

tasks. To test our methods, we applied our approach to identify and

characterize EHR tasks for nurses involved in the care of surgical

cases in the neonatal intensive care unit (NICU).

MATERIALS AND METHODS

Here, we present our approach and the metrics we developed to de-

scribe sessions and the tasks they comprise; we also characterize

task complexity and efficiency profiles. We use a formal hypothesis

testing framework to assess the relationship between task complex-

ity and efficiency. Finally, we present evidence supporting the clini-

cal meaningfulness of our discovered tasks by applying process

mining algorithms and by examining the clinical workflow annota-

tions of a subset of the involved EHRs.

Characterizing events in EHR audit logs
There are multiple types of events in EHR audit logs, such as placing

medication orders, creating progress notes, assigning diagnosis, and

so on.13–18 Each event belongs to 1 of the 4 access types, a categori-

zation inherent to Epic audit log systems (Epic Systems, Verona,

WI): export (eg, operating report printed), modify (eg, flowsheets

data saved), system (eg, barcode scanned), or view (eg, form

viewed). Intrinsically, EHR audit log data describe who did what,

when it was performed, and to which patient records. An illustration

of these data is provided in Table 1. The definitions of event termi-

nology are provided in Supplementary Table A1. Because the event

terminology in this study is specific to the Epic system, we provide

examples of generic representations of such event terms in Supple-

mentary Table A2, as interpreted by our NICU experts. Further clin-

ical definitions of the Epic terms included in this study can be found

at Epic’s EHR UserWeb (userweb.epic.com).

Learning sessions from events through sessionization
The notion of a session is based on the definition used in web analyt-

ics as described by Arlitt.19 A session represents a group of individ-

ual user interactions performed within a certain time frame to

accomplish some given clinical function using the EHR. In our case,

this group of user interactions may be EHR workflow activities (eg,

administering medication orders, chart reviewing notes, inputting

data into flowsheets). We utilize these sessions, each of which con-

sists of a series of consecutive audit logged EHR events, to abstract

clinically meaningful functions. We employ time-oriented sessioni-

zation to segregate sequences of events. This framework assumes

that multiple consecutive events can be aggregated into a single ses-

sion, given some time threshold. This assumption is consistent with

our observation that clinicians perform EHR tasks in discrete ses-

sions of consecutive actions. Further, we extend our time-oriented

sessionization procedure by initializing new sessions each time a cli-

nician accesses a different patient’s records.

Still, a challenge in time-oriented sessionization is the determina-

tion of a time interval threshold. We used a data-driven heuristic,

described by Satop€a€a et al.20 as “knee point” finding, to estimate

Table 1. Example sessions identified from EHR audit logs

Clinician ID Patient ID Timestamp Session Action/Event Access Type

Session 1

A 1 2:10 PM IN BASKET MESSAGE OF ANY TYPE DISPLAYED IN HYPERSPACE VIEW

A 1 2:11 PM VISIT NAVIGATOR TEMPLATE LOADED VIEW

A 1 2:11 PM THE PROBLEM LIST IS VIEWED VIEW

A 1 2:11 PM PEND A NOTE MODIFY

A 1 2:12 PM IN BASKET MESSAGE OF ANY TYPE DISPLAYED IN HYPERSPACE VIEW

A 1 2:12 PM AN EXISTING PATIENT IS SELECTED FROM PATIENT LOOKUP VIEW

A 1 2:14 PM PATIENT SIDEBAR REPORT ACCESSED VIEW

Session 2

A 2 2:18 PM IN BASKET MESSAGE OF ANY TYPE DISPLAYED IN HYPERSPACE VIEW

A 2 2:19 PM PATIENT SIDEBAR REPORT ACCESSED VIEW

A 2 2:19 PM A FORM IS VIEWED VIEW

A 2 2:21 PM PATIENT DEMOGRAPHICS FORM ACCESSED VIEW

EHR: electronic health record.
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this threshold and ensure generalizability with other systems or

organizations, where sessions may have different lengths. This heu-

ristic is often used to find operating points in complex systems and

this “knee” is akin to geometric curvature, formally described by

Satop€a€a et al for any continuous function f as:

Kf ðxÞ ¼
f 00ðxÞ

1þ f 0ðxÞ2
� �1:5

Where Kf (x) represents a standard closed-form defining the cur-

vature of f at any point as a function of its first and second deriva-

tive. We find some time threshold, x, for our sessionization function

which maximizes curvature (of the resulting normalized session

number curve) through the Kneedle algorithm.20 Still, each chosen

threshold needs to be validated for clinical meaningfulness in its re-

spective setting, which we do for a subset of selected tasks and ses-

sions through process mining and expert review.

Figure 1 illustrates our process for the sessionization of events and

their relationship to tasks. Clinicians PA and PB committed 2 sessions

represented by squares (S0PA and S1PA for PA, and S0PB and S1PB for

PB) to the EHR of a patient. In Figure 1A, the interval between ses-

sions S0PA and S1PA is greater than a threshold. Examples of sessions

identified from EHR audit logs are provided in Table 1. Figure 1B

depicts the aggregation of functionally similar sessions through unsu-

pervised clustering, on the basis of their event count similarities.

Learning tasks from sessions
Though sessionization helps to abstract clinical meaning from indi-

vidual events, information from multiple sessions can be further in-

tegrated to define action patterns, which we call tasks. Each session

can be thought of as an observation with N features represented by

the number of times an event was performed within that session.

Table 2 shows an example of a session feature matrix.

We apply term frequency–inverse document frequency21 and

principal component analysis22 to normalize the data and to reduce

noise and dimensionality. The principal components learned from

principal component analysis are used to initialize a t-distributed

stochastic neighbor embedding (t-SNE), which is a machine learning

algorithm for visualizing high-dimensional datasets.23 For unsuper-

vised clustering, we used the Leiden community detection algo-

rithm24 to learn session clusters from the low-dimensional

representation of the data generated by t-SNE; each detected cluster

of sessions is considered a task in this study.

Visualizing task event flows using process mining and

sampled session validation
Because it is difficult to infer clinical meaningfulness from task-

aggregated sessions, which consist of long sequences of events, we use

process mining to orient each task into a process tree for workflow re-

view. We apply an inductive miner algorithm implemented in ProM,

which is an open-source framework for process mining and process

tree generation.25 A process tree is a directed hierarchical graph in

which each node is an event with child events representing potential

subsequent events within the same session, thus showing the ordered

relations among events. Because a task can include hundreds to thou-

sands of sessions, we downsample tasks of interest before process tree

generation, by randomly selecting 1000 sessions without replacement.

Fundamentally, a task is oriented as a process using ProM, in which

batches of sessions are grouped to form a single process tree. In our

NICU case study, we leverage the expertise of a NICU nurse and a

neonatologist with information derived from EHRs to validate a sub-

set of sessions and tasks for clinical meaningfulness. This focused an-

notation was accomplished by reviewing the events in a session and

analyzing the activities of clinicians that occur during the session

through reviews of EHRs (eg, clinical notes, orders, measurements, di-

agnoses, procedures). For each session, the NICU experts provide a

summary statement. We further incorporate 4 event access types (ex-

port, modify, system, and view) to subclassify the events and aid in

the interpretability of clinical function per session.

Developing hierarchical metrics to describe sessions

and tasks
Our metrics’ definitions depend on structured layers of abstraction,

starting from raw, unabstracted audit log entries to abstracted ses-

Figure 1. (A) An illustration of using events to learn sessions. A session corresponds to a sequence of consecutive events committed by a healthcare professional

to the electronic health records of a patient. Each circle is an event and each square is a session. There are 4 sessions in this figure. Sessions S0PA and S1PA were

performed by healthcare professional PA, and S0PB and S1PB were performed by PB. Events sharing the same timestamp are parsed into different sessions per

healthcare professional and new sessions are established under 2 conditions: if the sessionization time threshold is passed or the healthcare professional

accesses a different patient’s electronic health record. (B) The relationship between events, sessions, and tasks (eg, T1 and T2) is enabled through unsupervised

clustering of sessions on the basis event count similarities after sessionization.
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sions and tasks. This study examined metrics on 3 levels of abstrac-

tion: system level, session level, and task level.

System-level metrics are at the lowest level of abstraction and

simply describe events’ characteristics on a system-wide level. Spe-

cifically, these system-level metrics describe audit log entries given

the clinician and patient involved, the type of event recorded, and its

timestamp.

Session-level metrics operate on groups of observed events. For

example, we define a session’s duration as the sum of its constitutive

event durations. These session-level abstractions arise from time-

oriented sessionization performed on unabstracted audit log entries.

Outside of time metrics, we use the number of unique events to

quantify the event diversity of a session. Table 3 shows the formal

definition of this session diversity coefficient (session_diversity_-

coef). Similarly, specific event types can appear in a single session re-

peatedly. We developed a metric to describe event repetitiveness

within a session, which is formally defined in Table 3 (session_repe-

tition_coef).

Task-level metrics are derived from the aggregation of sessions

and their respective metrics. Definitions and examples of these met-

rics are shown in Table 3. We also describe the prevalence of a task

by calculating the number of unique clinicians whose performed ses-

sions are clustered within that task. A task affiliated with many

unique clinicians demonstrates that it is highly prevalent in the work-

flows of a given clinical setting. This metric is designed to help HCOs

identify tasks that impact many clinicians. The investigation and op-

timization of such tasks may be used to maximize clinician benefit

compared with less prevalent tasks. A complete list of the metrics we

developed at different levels can be found in our online repository

(https://github.com/bobchen1701/Single_Session_Analysis).

Stratifying tasks into their respective complexity

profiles
Intuitively, we provide a 2-dimensional definition of task complex-

ity, with task diversity and task repetitiveness. We define highly

complex tasks as diverse, involving many unique event types, and re-

petitive, involving sequences of repeated actions. Our task-level met-

rics can then be assembled to further stratify learned tasks with

respect to complexity, formally defined by the relative rank of the

task_session_repetition_coef and task_session_diversity_coef met-

rics. Based on this rank-based framework, we divided the learned

tasks into quadrants, representing 4 complexity profiles: low diver-

sity/low repetition (LDLR), low diversity/high repetition (LDHR),

high diversity/high repetition (HDHR), and high diversity/low repe-

tition (HDLR).

Examining differences in duration, clinician prevalence,

and event access type between tasks of different

complexity profiles
This project aims to identify which types of tasks are time-

consuming and impact large portions of clinicians. We hypothesized

that the diversity and repetition coefficients of a task may impact

the time spent on it as well as its prevalence among clinicians. Addi-

tionally, we measure the differences in event access types between

tasks of different complexity profiles, which demonstrate variations

in clinical workflows in utilizing EHRs to complete tasks. We con-

ducted pairwise tests to compare the differences in the duration, the

event access type representation, and the number of clinicians affili-

ated with tasks belonging to the 4 defined complexity profiles. Our

null hypotheses are that between any pair of task complexity profiles

(1) there is no difference in the task durations, (2) there is no differ-

ence in the proportion of event access types, and (3) there is no dif-

ference between the number of affiliated clinicians. Because the

distributions of durations, the proportion of event access types, and

Table 2. An example of a session feature matrix, with correspond-

ing event metadata

Session 0 Session 1 Session . . . Session S

Event 1 0 0 30 12

Event 2 0 0 5 1

Event . . . 3 2 1 0

Event E 0 10 0 4

Provider Patient Timestamp

Session S

Event E

1 B 01:07:00

1 B 01:09:00

1 B 01:11:00

1 B 01:44:00

Table 3. Metrics characterizing the time duration, diversity, and repetitiveness of sessions and tasks

Metric Abbreviation Definition

Session level

session_time s_time Time to complete a session (seconds). Ex. A NICU nurse completed a session related to the in-basket-mes-

sage, and the session took 56 seconds.

session_repetition_coef s_rep_co Total events per session/total unique events per that same session. Ex. A NICU nurse completed a session

consisting of 100 events, and the unique number of events is 10, then the repetition coefficient is 100/

10¼ 10.

session_diversity_coef s_dst_co The diversity of events within a session, relative to the diversity of events in the system. The number of

unique events in a session/total number of unique events in the system. Ex. A NICU nurse completed a

session with 100 unique events. The total number of unique events in the system is 300. Then the diver-

sity coefficient is 100/300.

Task level

task_session_time t_s_time Mean value of “session_time”

task_session_repetition_coef t_s_rep_co Mean value of “session_repetition_coef”

task_session_diversity_coef t_s_dst_co Mean value of “session_diversity_coef”

task_provider_diversity t_p_dst For a given task, the number of unique healthcare professionals who performed it. Ex. if 30 NICU nurses

perform a task, then the provider diversity coefficient is 30 for the task.

NICU: neonatal intensive care unit.
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the number of clinicians per task are non-Gaussian, we use the

Mann-Whitney U test, which is a nonparametric test for non-

Gaussian distributions, and Bonferroni corrections at a significance

level of .05.26

Our analyses were performed using Python 3.7. Libraries used in-

clude scikit-learn, scipy, pandas, numpy, anndata, scanpy, kneedle,

and pegasuspy.20,27 Further documentation of our methods can be

found o (https://github.com/bobchen1701/Single_Session_Analysis).

RESULTS

NICU case study
We introduce a case study on the management of patients, by nurses,

who received surgeries and had stayed in the NICU. We studied 3

months of EHR audit logs generated by 33 NICU nurses. The total

number of events, sessions, and tasks are 1 130 589, 57 234, and 81,

respectively. We used a time interval threshold of 120 seconds for ses-

sionization; this was the point of maximum curvature, or “knee

point,” determined through the Kneedle algorithm for the normalized

curve generated from 17 tested thresholds, ranging from 5 to 1500

seconds (Figure 2; Supplementary Table A3). In the audit logs, we

detected 326 uniquely performed events. The resulting 57 234 ses-

sions were treated as observations defined by these 326 unique events.

We calculated a Pearson’s correlation coefficient between the

session-ending event distribution (frequency of an event serving as

endings of sessions) and global event distribution (frequency of an

event in all sessions). We observed an r value of 0.96 with a P value

<.0001, which indicated that the session-ending event distribution

matched global event distributions with no skew introduced through

sessionization.

We selected 50 principal components, which covered over 90%

of the data’s variation. These components were used to initialize a t-

SNE embedding with the following parameters: perplexity ¼ square

root of the number of total observations, early exaggeration ¼ 12,

and learning_rate ¼ 1000. We used the Leiden community detection

algorithm with a resolution of 0.1 and the number of nearest neigh-

bors set to the square root of the number of total observations.

Session- and task-level metrics describe NICU inpatient

EHR activities
Figure 3 shows the 81 tasks that we learned for NICU nurses

(Figure 3A) and the distribution of multiple, session-level metrics:

time to perform a session (session_time, Figure 3B), repetitiveness in

events (session_repetition_coef, Figure 3C), and diversity in events

(session_diversity_coef, Figure 3D) listed in Table 3. As shown in

Figures 3B and 3C, sessions on the right-hand side of the embedding

exhibit higher repetition coefficients (Figure 3C) and also take more

time to complete (Figure 3B). As shown in Figure 3D, sessions with

high diversity in events are distributed across the whole embedding.

Figures 3E to 3H show the distributions of abstracted task-level

metrics (described in Table 3): time to perform a task (task_session_-

time) (Figure 3F), repetitiveness in events (task_session_repetition_-

coef) (Figure 3G), and diversity in events (task_session_diversity_coef)

(Figure 3H). Figure 3E shows the number of unique clinicians associ-

ated with each task, most of which have a large number of clinicians

(25-30 NICU nurses) involved. There are some tasks at the bottom of

the embedding that have only a small number of nurses involved,

which are introduced in the following section.

NICU nurse EHR tasks can be divided into 4 complexity

profiles
Figures 4 and 5 show the distributions of tasks across 4 complexity

profiles. We discover 28, 27, 14, and 12 HDHR, LDLR, LDHR, and

HDLR tasks, respectively. The number of HDHR and LDLR tasks is

much larger than the LDHR and HDLR tasks. HDHR tasks have

34 403 sessions in total (see Supplementary Table A4), consisting of

Figure 2. The data-driven detection of a stable sessionization threshold, by finding the point of maximum curvature in the normalized session number curve. This

curve was derived through testing 17 thresholds, which yielded a diminishing number of sessions, each represented by a labeled point ranging from 5 to 1500

seconds. Here, the selected sessionization time threshold is highlighted in red, being 120 seconds, and was the point of maximum curvature estimated through

the Kneedle algorithm.
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60.1% of the total sessions. This suggests that most of the activities

performed by NICU nurses are highly complex in the context of event

diversity and repetition. The number of NICU nurses involved in

HDHR and LDLR are similar (27 vs 26, as shown in Supplementary

Table A5). Many more NICU nurses are involved in HDHR and

LDLR tasks than those involved in HDLR and LDHR. The mean ses-

sion times are 292, 144, 185, and 190 seconds in the HDHR, LDLR,

LDHR, and HDLR profiles, respectively. The descriptive statistics of

each complexity profile, in terms of session times and the clinician

prevalence, are shown in Supplementary Tables A4 and A5.

Pairwise statistical testing suggests significant

differences in task duration but not in clinician

prevalence per task complexity profile
The non-Gaussian distributions of session times and unique clinician

numbers per task are depicted in Supplementary Figure A1. We per-

formed pairwise Mann-Whitney U tests to examine the statistical

differences between our 4 task complexity profiles. With the excep-

tion of the LDHR and HDLR profile pair, all 5 of the other profile

pairs had significant differences in the duration at the corrected sig-

nificance level of 0.008333, with a P value <.0001. The results are

shown in Table 4. We confirmed that there is no significant differ-

ence (with a P value >.008333) in clinician prevalence between task

groups, with the exception of the HDHR and LDLR profile pair.

The test results are shown in Table 4.

Pairwise statistical testing suggests significant

differences in “exporting” and “system” event access

types but not in “view” and “modify” per task

complexity profile
The non-Gaussian distributions of proportions of event access types

per task are depicted in Supplementary Figure A2. Generally,

“view” and “modify” were the 2 most common event access types

(Supplementary Table A6), which encompassed common activities

involving flowsheet interactions (eg, flowsheets activity opened,

flowsheets data saved). With the exception of the HDHR and

LDHR profile pair, none of the other 5 profile pairs exhibited statis-

tically significant differences in the “view” events. From Table 4, it

can be seen that no significant differences were identified for any of

the 6 profile pairs in the “modifying” events. Further disparities in-

volved significant differences in “exporting” and “system” event ac-

cess types, primarily between task profiles with different diversity

rankings (HD vs LD in contrast with HDHR vs HDLR or LDHR vs

LDLR); though these event access types were far less common than

“view” and “modify,” these results suggest that our diversity strati-

fication of task profiles may be useful in differentiating tasks with

respect to their functional niches in a clinical workflow.

Process mining and reviewing clinical workflow

annotations suggest clinically meaningful task learning
By illustrating these 4 task complexity profiles, we further investi-

gate tasks within each of these categories. We randomly selected 1

task from each of the 4 profiles to visualize as a process tree (see

Supplementary Figures A3-A6). To investigate the clinical work-

flows involved, we randomly selected a session from each of these

tasks for the expert review of their clinical workflow annotations

(listed in Supplementary Tables A8-A11). We include definitions of

terms used in these reviews in Supplementary Tables A1 and A2.

These workflow annotations, derived from task sessions, suggest

that clinically meaningful processes can be learned through our

methods. The annotations of 4 task sessions are described in Supple-

mentary Table A7. Notably, a comparison of the annotations be-

tween an HDHR session (Supplementary Table A8) and an LDLR

session (Supplementary Table A11) suggests that the patient associ-

Figure 3. (A) The 81 learned tasks for neonatal intensive care unit nurses are visualized using t-distributed stochastic neighbor embedding (t-SNE). Tasks are sep-

arated by colors and labeled by task IDs. Each point is a session. (B-D) Distributions of the 3 session-level metrics (duration, repetitiveness, and diversity) across

individual sessions. (B) The session_time is measured as seconds. (C) The session_repetition_coef is calculated using total events per session/total unique events

per that same session. (D) The session_diversity_coef is measured as the number of unique events in a session/total number of events in the system. (E-H) Distri-

butions of the 4 task-level metrics (number of unique clinicians involved, duration, repetition, and diversities in events). (F) The task_session_time is measured as

the mean of session_time of all sessions within a task. (G) The task_session_repetition_coef is measured as the mean of session_repetition_coef of all sessions

with a task. (H) The task_session_diversity_coef is calculated as the mean of session_diversity_coef of all sessions in a task. (E) The task_provider_diversity is

measured as the number of clinicians observed performing sessions associated with a particular task.

Journal of the American Medical Informatics Association, 2021, Vol. 28, No. 6 1173



Figure 4. Task complexity profiles. Tasks are categorized into 4 complexity profiles based on their diversity and repetition coefficients. The 4 complexity profiles

are high diversity/high repetition (HDHR), low diversity/low repetition (LDLR), high diversity/low repetition (HDLR), and low diversity/high repetition (LDHR). t-

SNE: t-distributed stochastic neighbor embedding.

Figure 5. Tasks across the 4 complexity profiles. Each embedding highlights the tasks associated with a particular task complexity profile. Also, the 6 pairs be-

tween the 4 complexity profiles are depicted. HDHR: high diversity/high repetition; HDLR: high diversity/low repetition; LDHR: low diversity/high repetition; LDLR:

low diversity/low repetition.
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ated with the HDHR session had significantly more complex clinical

interactions than the patient associated with the LDLR session (Sup-

plementary Table A7).

DISCUSSION

EHR utilization is one of the contributory factors for clinician work-

load, stress, and burnout.1,28 Studies to date have created metrics to

measure the amount of time spent by clinicians in EHRs and the

tasks that clinicians perform while interacting with EHR systems,

primarily in outpatient and ambulatory settings. Yet few studies

have focused on inpatient settings or have developed metrics to

model task complexity in EHR utilization.29–31 This study created

an unsupervised learning framework to identify clinician tasks per-

formed in EHRs and developed hierarchical metrics to describe

EHR task complexity, which is lacking in the existing literature. We

tested the effectiveness of our metrics and approach in learning EHR

tasks and task complexities for nurses in the NICU. Our hierarchical

metrics capture contextual information of a task beyond its explicit,

session-level content. For instance, we confirmed that clinicians re-

quire much more time to perform HDHR tasks. In our case study,

over 60% of sessions exhibited this complexity profile. We further

demonstrated that these tasks were associated with complex patient

health conditions (patient 1 in Supplementary Table A7). Ulti-

mately, by applying the approaches described in this study, investi-

gators can better understand clinician activities in EHRs with

reduced manual effort with the utilization of machine learning.

The scope of this study and its limitations
Our project is a pilot study, and there are limitations that we want to

acknowledge as guidelines for further studies on the EHR audit logs.

First, an EHR task performed by a clinician is determined by the

setting, the clinician’s role, and the patients managed. Thus, the

learning of tasks should be fixed to a specific setting and specific

healthcare professional. Our case study was limited to NICU nurses

and their management of patients undergoing surgery; however, our

approach is generalizable to other settings and clinician roles if

adjustments are made to the sessionization and event annotation

procedures. Similarly, task validation strategies will differ depending

on the target clinician role, clinical setting, and EHR system used.

This case study focuses on task complexity metrics, rather than on

the content of tasks, and further validation, such as a formalized

qualitative study, examining each of the 81 identified tasks is neces-

sary to fully realize task function in a clinical workflow.

Second, some Epic terms do not have one-to-one mappings to ge-

neric terms that are utilized by non-Epic systems. The mapping of

system-specific terms is an open question in EHR interoperability,

but we note that specifications detailed in ASTM E2147-18,32 which

was the basis of this case study’s generic term mapping, may be help-

ful in this type of mapping. Further limitations specific to our case

study’s Epic EHR originate from the limited granularity of certain

logged actions. For instance, the event “A PRINT GROUP BASED

REPORT (LRP) IS VIEWED” is common in our case study’s exam-

ple sessions and reflects users viewing consolidated patient informa-

tion reports in a number of potential locations, such as summary

reports, patient lists reports, or snapshots in the EHR. This event

lacks the specificity needed to describe precise clinician actions, but

highlights critical areas that audit logging systems can be improved.

Third, we note that flowsheet data in our case study are limited

to manually entered vital signs and custom structured data, owing

to the EHR system used. Our results show that EHR tasks involve

nursing activities related to flowsheet data entry, saving, and view-

ing (Supplementary Table A13), but these activities do not use

streams of mapped data from monitors, infusion pumps, ventilators,

or other medical devices. Our analysis would benefit from the inte-

gration of more granular and diverse sources of human-computer in-

teraction data.

Fourth, it should be recognized that clinicians may operate in care

teams, performing EHR tasks simultaneously. In this study, we only

focused on the learning of nonsimultaneous, individual clinician tasks.

This aspect of care team–oriented tasks and the development of corre-

sponding metrics is a natural next step for this line of research.

Last, we acknowledge that there may exist clinical events that are

not captured by the EHR audit log, occurring within intervals be-

tween our defined sessions or wholly undocumented in our EHR sys-

tem. To address this, we show that the majority of intersession

intervals are short, which reduces the windows of time that potentially

contain unrecorded clinician activities (Supplementary Figure A11

and Supplementary Table A12). Still, our event duration calculation

assumes there are no time gaps between sequential actions performed

within the same session, which may not be true in clinical practice.

We refer to a study conducted at Vanderbilt University Medical Cen-

ter33 investigating the capability of audit logs in capturing clinician ac-

tivities. This study shows that the log-generated breadcrumbs

encounter summary can capture all interactions documented in clini-

cal notes, with the exception of physical exams. Based on their obser-

vations, we assume that audit logs can provide functionally accurate

representations of clinician activities in EHR systems.

CONCLUSION

EHR audit logs are a rich resource that can be leveraged to understand

clinician EHR activities as well as their efficient performance. Such a

resource could potentially be used to model clinician workload, stress,

and burnout. Without efficient informatics tools, it is difficult to ex-

plore audit logs and mine EHR usage patterns. We developed unsuper-

vised learning approaches and applied them to EHR audit logs to learn

tasks and develop metrics describing their complexities. We designed

multiple hypothesis tests based on these novel metrics to evaluate task

efficiency, and we tested the effectiveness of our framework for specific

healthcare professionals—NICU nurses—in the management of

patients receiving surgeries, staying in the NICU. The results of the

case study show that our approaches and metrics can identify complex

and time-consuming tasks for future optimizations.
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