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ABSTRACT

Objective: To develop a computer model to predict patients with nonalcoholic steatohepatitis (NASH) using ma-

chine learning (ML).

Materials and Methods: This retrospective study utilized two databases: a) the National Institute of Diabetes

and Digestive and Kidney Diseases (NIDDK) nonalcoholic fatty liver disease (NAFLD) adult database (2004-

2009), and b) the OptumVR de-identified Electronic Health Record dataset (2007-2018), a real-world dataset repre-

sentative of common electronic health records in the United States. We developed an ML model to predict

NASH, using confirmed NASH and non-NASH based on liver histology results in the NIDDK dataset to train the

model.

Results: Models were trained and tested on NIDDK NAFLD data (704 patients) and the best-performing models

evaluated on Optum data (~3,000,000 patients). An eXtreme Gradient Boosting model (XGBoost) consisting of

14 features exhibited high performance as measured by area under the curve (0.82), sensitivity (81%), and preci-

sion (81%) in predicting NASH. Slightly reduced performance was observed with an abbreviated feature set of 5

variables (0.79, 80%, 80%, respectively). The full model demonstrated good performance (AUC 0.76) to predict

NASH in Optum data.

Discussion: The proposed model, named NASHmap, is the first ML model developed with confirmed NASH

and non-NASH cases as determined through liver biopsy and validated on a large, real-world patient dataset.

Both the 14 and 5-feature versions exhibit high performance.

Conclusion: The NASHmap model is a convenient and high performing tool that could be used to identify

patients likely to have NASH in clinical settings, allowing better patient management and optimal allocation of

clinical resources.
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INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) is a significant public

health concern affecting 30% of the adult population in the United

States.1 Characterized by excess fat accumulation in the liver,

NALFD is associated with other metabolic comorbidities, such as

arterial hypertension, dyslipidemia, obesity, and type 2 diabetes mel-

litus (T2DM).2,3 NAFLD is classified histologically as non-alcoholic

fatty liver (NAFL) or non-alcoholic steatohepatitis (NASH).4 NASH

is defined by steatosis and inflammation with hepatocyte injury (bal-

looning) with or without fibrosis2,4 and ultimately can lead to the

development of end-stage liver disease, cirrhosis, or hepatocellular

carcinoma (HCC). NASH is difficult to diagnose as symptoms are

not specific and may not be readily overt on clinical examination or

routine laboratory tests.3 The current reference standard for diagno-

sis and staging of NASH in clinical practice and investigational trials

is liver biopsy,4 which is an invasive procedure with associated risks,

such as post-procedural pain and bleeding5 as well as additional

costs. There remains a need to develop a noninvasive, accurate,

easy-to-use tool to identify patients with a high probability of

NASH.6

The use of machine learning (ML) in healthcare has increased

commensurately with the increase in electronic health records

(EHR) and the advancement of big data analytics.7,8 While use cases

for ML are broad, one interesting application is to predict the pres-

ence of disease for individual patients or in large databases. ML

models vary in complexity from artificial neural networks to boost-

ing techniques to more classic decision tree-based models. Prior

work has shown promise for applying ML to predict NASH, but

many of these approaches do not use readily available inputs or are

not yet validated in a large cohort.

The successful identification of patients at risk of having NASH

will allow for specific risk stratification, counseling, and identifica-

tion of patients outside of specialized clinics (eg, in the primary care

setting). This is of great interest to support physicians in overcoming

the low awareness of the disease.9 As such, an ML model that uti-

lizes common variables regularly collected in clinical practice could

help facilitate suspicion of NASH at its earliest stages and allow the

preselection of patients for more specific testing. Here, we present

our approach and outcomes for the development and validation of a

convenient and accurate ML model for predicting probable NASH

in electronic health records.

MATERIAL AND METHODS

Data sources
Data were derived from two sources: The National Institute of Dia-

betes and Digestive and Kidney Diseases (NIDDK) NAFLD dataset

and the OptumVR de-identified Electronic Health Record dataset.

NIDDK NAFLD data consist of adult patients with NAFLD ob-

served over a 4-year period (2004-2009). The patients were classi-

fied based on their liver status as NASH or non-NASH as confirmed

through liver biopsy and histological assessment. Available data in-

clude demographic, histological, clinical biomarkers, and imaging

variables. Patients with other liver diseases (eg, viral hepatitis, alco-

holic cirrhosis) or excessive alcohol consumption were excluded.

Complete inclusion and exclusion criteria as well as patient charac-

teristics captured from NIDDK data are provided in the Supplemen-

tary Methods and Supplementary Table I.

The Optum dataset is a real-world dataset consisting of �86 mil-

lion adult patient records collected by 150,000 providers, 2,000 hos-

pitals, and 7,000 clinics in the United States from 2007-2018. This

heterogeneous dataset contains patients with NAFLD based on In-

ternational Classification of Disease (ICD) 9 and 10 codes and po-

tential, yet undiagnosed or unconfirmed, NAFL and NASH patients.

Patient records consist of demographics, diagnoses, procedures,

medications, labs, and physician notes.

Cohort selection
Patients from the NIDDK database with confirmed NASH or non-

NASH status by biopsy were included in this study. The index date

was the date of liver biopsy. Patient data closest to the index date

were used for analyses. For Optum EHR, true NASH and potential

NASH patients were selected based on presence of liver biopsy read-

ing and ICD-9 and 10 codes. Broad inclusion criteria containing

both NAFLD and associated comorbidities, such as T2DM, were

used to construct an initial cohort. This cohort was then classified as

NASH or non-NASH. Patients with a biopsy and an ICD-10 diagno-

sis of NASH (K75.81) were identified as true NASH patients.

Patients with the NAFLD-associated comorbidities used for inclu-

sion but no ICD-9 or 10 diagnosis for any form of NAFLD were

considered as non-NASH diagnosed (though they may be undiag-

nosed NASH). Patients with other diagnosed liver diseases (eg, hepa-

titis C infection), diagnosed alcohol dependence, or positive tests or

treatment for other liver diseases were excluded from the analysis.

The complete patient inclusion and exclusion criteria for the Optum

EHR dataset are provided in the Supplementary Methods.

Statistical methods
Statistical applications for data analyses and model development in-

cluded R and the packages eXtreme Gradient Boosting (XGBoost)

and caret. The following methods were used:

• Correlation, t-tests, and chi-squared tests were performed to de-

termine the degree of association between patient data and

NASH diagnosis. These were used to supplement manual review

of data and not for variable selection.
• K-nearest neighbor (kNN) was used for data imputation in cases

of missing NIDDK data. kNN replaces missing values with the

mean value of the feature from the k most similar neighbors for

data imputation.10 We determined �26% of patients to have at

least one missing feature value requiring imputation. Multiple

values of k were tested ranging from 1 to 15 with a final selected

value of k¼5 yielding the best performance.
• Random forest (RF) was tested as a potential model. Random

forest is a tree-based ensemble method that utilizes parallel deci-

sion trees built on subsets of the data to develop an optimized

predictive model.11 This idea of building multiple models from

randomly selected subsets of the data is sometimes referred to as

bagging or bootstrap aggregation. When predicting, each indi-

vidual tree in the random forest votes based on its prediction,

and the classification with the most votes becomes the overall

model’s prediction. In this way, random forest uses a large set of

uncorrelated trees to make a prediction as an ensemble that’s

more accurate than a single tree.
• XGBoost was also tested as a potential model. XGBoost is a pop-

ular ML approach that implements gradient boosting with deci-

sion trees as the underlying learners. Whereas random forest

employs its individual trees in parallel to solve the same problem,

XGBoost builds its individual trees sequentially. Each tree is

trained to resolve the prediction error remaining after the prior

tree and therefore improves the prediction.12 This provides an-
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other approach to building more complex and accurate models

with trees, while controlling individual tree depth and complex-

ity. XGBoost has shown very good performance across a wide

variety of ML problems.

Model building
Step 1: Developing the model with NIDDK data

The target study population with confirmed NASH and non-NASH

patients was split into train and test datasets. The following two-

class models were trained: logistic regression, classification and re-

gression trees (CART), random forest, and XGBoost.11–14 We

started with 24 demographic variables and clinical biomarkers as

features and then refined our models with recursive feature elimina-

tion (RFE) for feature selection. In RFE, all original features are

ranked according to importance to the model, and each iteration

results in the (backward) elimination of the weakest feature(s).15

RFE produces a feature subset that can improve generalization per-

formance by reducing overfitting and improving efficiency. Applica-

ble model hyperparameters were optimized for each model (eg,

number of trees, maximum tree depth, minimum leaf size, observa-

tion sampling, feature sampling, and gamma) using model appropri-

ate techniques (eg, cross validation and grid search).

Step 2: Evaluating the model on NIDDK data and selecting a model

The test dataset was used to evaluate model performance. Models

were compared on key performance criteria that included sensitivity,

specificity, precision, accuracy, and area under the curve (AUC).

AUC was considered the primary criteria for overall model perfor-

mance comparison and model selection as it is not dependent on the

cut-off value. Of the remaining metrics, sensitivity and precision

were considered first, given the focus on the positive class and po-

tential for a very large negative class in real-world application of the

model. Sensitivity-precision thresholds for each model were calcu-

lated to balance classifier sensitivity (classifying as NASH all true

NASH patients) against precision (classifying as NASH only true

NASH patients).

We conducted two further performance analyses using the

NIDDK data. We repeated the training process 1,000 times with dif-

ferent random samples to ensure our performance is reproducible

and generate an AUC confidence interval. We also analyzed perfor-

mance including AUC, sensitivity, and specificity for T2DM patients

and non-T2DM patients. T2DM is a common comorbidity in

NAFLD, and these are two of the most important types of patients

to understand model performance.

Step 3: Evaluating the model with Optum
VR

EHR

Next, Optum data were used to evaluate model performance. For

each patient, the best 6-month analysis window based on data com-

pleteness was identified, preferring the latest such window when

multiple data were available. Complete records over a 6-month pe-

riod were included in the analysis with 22% of patient records hav-

ing all required features. Outliers were identified based on

interquartile range (IQR, Q1 � 1.5*IQR and Q3þ1.5*IQR). Out-

liers were capped or floored at the 99th and 1st percentiles respec-

tively with thresholds calculated for both NIDDK and Optum data

then the more permissive value used. The top performing classifier

from step 2 was then applied to Optum data. Standard techniques

for determining an appropriate prediction score cut-off were limited

by the uncertainty of true NASH status in patients without a NASH

diagnosis. Therefore, models were calibrated at a positive prediction

rate (PPR) of 30% among these undiagnosed patients, which was

approximately the same cut-off as used in the NIDDK dataset.

RESULTS

A total of 453 patients with NASH and 251 without NASH (non-

NASH) from NIDDK were split into train (422) and test (282) data-

sets. The ratio of NASH to non-NASH (64:36) was maintained

when splitting the train and test datasets. After splitting, demo-

graphics of the datasets were similar. The mean 6 standard devia-

tion (SD) age in the train and test datasets was 49.9 6 9.8 and

48.6 6 10.3 respectively. The gender distribution of the train dataset

was 43% male, 57% female and 37% male, 63% female in the test

dataset. Descriptive statistics for the NIDDK NAFLD cohort are

provided in Supplementary Table II.

RFE led to a set of 14 features important for NASH classifica-

tion. Table 1 shows these features in order of importance along with

their relative feature importance in the final model. Class means for

continuous variables are provided in Table 2.

The performance of various ML models was evaluated on the

NIDDK test dataset (Table 3). A 14-feature XGBoost model exhib-

ited superior performance as determined by AUC (0.82) when com-

pared to logistic regression (0.77) and CART (0.72) and comparable

performance to random forest (0.82) with the same features. This

XGBoost model exhibited 81% sensitivity and 81% precision to

predict NASH. A larger 24-feature XGBoost model was the best per-

forming model at 24 features and had equivalent AUC (0.82) but

higher accuracy (78% vs. 75%), sensitivity (83% vs. 81%) and pre-

cision (83% vs. 81%) compared to the 14-feature XGBoost model.

The slight reduction in performance at 14 features was considered

acceptable, and the 14-feature XGBoost was selected as the pre-

ferred model. For this model, the Brier score was 0.19 and the area

under the precision recall curve was 0.90. The final hyperparameters

for this model are provided in Supplementary Table III. A reduced

model was created with only five top performing predictive features

(HbA1c, AST, ALT, total protein, and triglycerides). In the reduced

model, XGBoost demonstrated slightly lower performance (AUC

0.79), sensitivity (80%), and precision (80%) for NASH prediction

as compared to the 14-feature model (Table 3). Figure 1 compares

the receiver operating characteristic (ROC) curve of the two

Table 1. NIDDK feature rank

Feature Rank Relative Feature Importance

HbA1c 1 100%

AST (units/L) 2 86%

ALT (units/L) 3 75%

Total protein (g/dl) 4 71%

AST/ALT 5 69%

BMI (kg/m2) 6 66%

Triglycerides (mg/dl) 7 64%

Height (cm) 8 61%

Platelets (cell/ll) 9 58%

WBC (1000 cells/ll) 10 55%

Hematocrit (%) 11 49%

Albumin (g/dl) 12 42%

Hypertension 13 16%

Gender 14 12%

Abbreviations: Hemoglobin A1C (HbA1c), alanine transaminase (ALT),

aspartate transaminase (AST), white blood cell count (WBC), body mass in-

dex (BMI).
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XGBoost models. These two XGBoost models were further tested

with 1,000 random repetitions of the training process on different

train-test splits. The mean AUC of these was 0.82 indicating our

results are not an outlier (standard deviation 0.02, median 0.82, 5th

percentile 0.78, 95th percentile 0.85). For the 5-feature XGBoost

model, the performance as measured by AUC was again consistent

across repetitions (mean 0.80, standard deviation 0.02, median

0.80, 5th percentile 0.76, 95th percentile 0.83). These data indicate

that the XGBoost models using either 14 features or five features ex-

hibit high performance for NASH classification.

We examined the performance of our 14-feature model in

T2DM (112) and non-T2DM (169) patients in the NIDDK test

dataset. Among T2DM patients, 75% had NASH while 57% of the

non-T2DM patients had NASH. The AUC was 0.79 in T2DM

patients and 0.82 in non-T2DM patients. Sensitivity and precision

were higher in T2DM (86% and 88% respectively) compared to

non-T2DM (77% and 74%). While HbA1c is the most important

feature in our model, NASHmap is able to predict NASH for both

T2DM patients and non-T2DM patients.

The Optum dataset was analyzed to further evaluate model per-

formance. Of the patients remaining following application of inclu-

sion and exclusion criteria, �3 million had data for all 14 features in

NASHmap and 22,946 of those had an ICD-10 code for NASH.

Model validation was done with the classified NASH (1,016

patients with ICD-10 NASH and biopsy) and non-NASH patients

(2,886,653 patients with no ICD-9 or 10 NASH/NAFLD code). De-

scriptive characteristics of Optum patients used for analyses are pro-

vided in Supplementary Table IV.

The full model exhibited good performance (AUC: 0.76), sensi-

tivity (72%), and precision (80%) in NASH classification (Figure 2).

The reduced 5-feature model demonstrated slightly lower perfor-

mance (AUC: 0.74) and sensitivity (66%) when compared to the full

model. Taken together, these data indicate that the proposed model,

built on common clinical variables, exhibits good NASH classifica-

tion and can maintain performance with diverse patient data.

DISCUSSION

Here, we report on the development of NASHmap an ML model for

the prediction of NASH. The model was trained and tested in

Table 2. NIDDK feature values

Mean Value 6 Standard Deviation T-Test

Laboratory test NASH (N¼ 453) Non-NASH (N¼ 251) P-value

HbA1C (%) 6.3 6 1.4 5.8 6 1.1 <.01

AST (units/L) 67.1 6 44.3 44.9 6 29.9 <.01

ALT (units/L) 88.7 6 60.2 57.3 6 41.3 <.01

Total Protein (g/dl) 7.4 6 0.5 7.1 6 0.6 <.01

AST/ALT 0.8 6 0.3 0.9 6 0.5 .13

BMI (kg/m2) 34.0 6 5.4 33.4 6 5.8 .16

Triglycerides (mg/dl) 189 6 112 155 6 86 <.01

Height (cm) 167 6 9 169 6 9 .01

Platelets (cell/ml) 233 877 6 65 296 239 905 6 70 449 .24

WBC (1000 cells/ml) 7.1 6 1.8 6.7 6 1.7 .01

Hematocrit (%) 41.8 6 3.6 42.0 6 3.7 .45

Albumin (g/dl) 4.3 6 0.4 4.2 6 0.4 <.01

Abbreviations: Hemoglobin A1C (HbA1c), alanine transaminase (ALT),

aspartate transaminase (AST), white blood cell count (WBC), body mass in-

dex (BMI).

Table 3. Model performance based on number of features (14 and

5 features) and method used (NIDDK test dataset)

Performance Logistic Regression CART Random Forest XGBoost

14-Feature Model

AUC 77% 72% 82% 82%

Accuracy 73% 70% 75% 75%

Precision 79% 76% 80% 81%

Sensitivity 79% 78% 82% 81%

5-Feature Model

AUC 75% 73% 78% 79%

Accuracy 73% 69% 70% 74%

Precision 78% 77% 77% 80%

Sensitivity 80% 75% 77% 80%

Abbreviations: Classification and regression trees (CART), area under the

curve (AUC).

Figure 1. Model performance in NASH prediction using NIDDK data. Area under the curve (AUC), false positive rate (FPR).
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NASH and non-NASH patients as confirmed through liver biopsy

and further validated in a real-world dataset (Optum EHR). Both

versions of our model, with either the full 14 features or the reduced

five features, achieved high performance, sensitivity, and precision

to detect NASH in both the NIDDK and Optum datasets. This

model represents a performant, non-invasive method for NASH

screening, which could improve risk stratification measures and clin-

ical management.

There are several key design choices and results that make

NASHmap valuable. First, the model was developed and validated

in two different databases. It was trained on the NIDDK NAFLD

adult database with confirmed NASH status. While the dataset is

not large by ML standards, it is one of the largest biopsy-confirmed

datasets distinguishing NASH and non-NASH within the NAFLD

disease spectrum. Biopsy-confirmed diagnoses ensured we trained

the model on the best available input. Second, a broad set of features

comprising demographic, laboratory and clinical variables were in-

cluded and RFE was used to identify the optimal subset for NASH

prediction. Similar to other variable selection approaches, RFE

reduces the number of inputs required to apply the model while aim-

ing to retain generalization performance. Unlike manual feature se-

lection, RFE places the data first and clinical review second. As

such, we relied less on existing clinical expectations in deriving the

final list of features. Finally, the model exhibited high performance

when tested on a holdout NIDDK dataset. As expected, model per-

formance was slightly reduced when evaluated using the Optum

dataset. A drop is inevitable as the Optum dataset contains heteroge-

neous patient data and the biases of today’s mis- or underdiagnosis

of NASH in clinical practice. Nevertheless, the model performed

well when applied to this real-world dataset.

The utilization of ML to predict disease allows for wider recog-

nition, timely intervention, and targeted treatments to improve or

mitigate disease progression. Other published studies have examined

the utility of ML to predict or diagnose various forms of

NAFLD.6,16–20 Perakakis et al. (2020) have compared a wide variety

of models using different types of omics on a variety of NAFLD pre-

diction problems. We compare a few such models and their differen-

ces (objectives, target cohort, methods, type of variables used,

outcomes and applicability) to our study (Table 4).

Cheng et al. (2017) developed support vector machine (SVM)

and random forest (RF) classifiers to identify presence of NAFLD in

a Taiwanese high-tech industry worker cohort.16 Model perfor-

mance was high with accuracy ranging from �80% in females (RF)

to �87% in males (SVM). However, the models were built on a ho-

mogenous cohort that depended solely on ultrasound imaging for

NALFD diagnosis. The models were not tested on a broader popula-

tion. Atabaki-Pasdar et al. (2020) applied a least absolute shrinkage

and selection operator (LASSO) model for feature selection and de-

veloped a series of random forest models with the objective of pre-

dicting if liver fat was <5% or �5%, consistent with non-NAFLD

vs. NAFLD.17 Multi-omics and clinical variables were used as pre-

dictors while the target liver fat variable was quantified by magnetic

resonance imaging (MRI). Multiple models were developed; one of

the models (labeled model 3) achieved an AUC of 0.82 with nine

clinically available features while a larger model with all omics and

clinical features achieved an AUC of 0.84.

Canbay et al. (2019) utilized an ensemble method for feature

identification (Ensemble Feature Selection21) and logistic regression

for the classification of NAFL or NASH using an obese cohort with

confirmed NAFL/NASH.18 The model, consisting of five features,

exhibited moderate to good performance (AUC: 0.70) with an inde-

pendent validation cohort. While the model was also trained on

NAFL/NASH patients as confirmed through liver biopsy, the selec-

tion of obese patients for the model limits its application in other,

non-obese populations.

Fialoke et al. (2018) developed a NASH classifier (NASH vs.

healthy) using XGBoost in the Optum Integrated Claims-Clinical

dataset (2007–2017). The model was trained and tested using ICD-9

and ICD-10 codes for NASH classification.19 The model’s good per-

formance (AUC: 0.88) could be attributed, in part, to the degree of

expected separation between the two classes. NASH and healthy

patients may be more differentiated than NASH and non-NASH

NAFLD. Perakakis et al. (2020) note this is a complication in inter-

preting performance for models that include healthy patients.6

While Fialoke et al. applied their model to other NAFLD patients,

they did not measure performance on that cohort given the limita-

tions of diagnoses in Optum. The model also made use of longitudi-

nal data; performance was significantly improved by inclusion of

Figure 2. Model performance in NASH prediction using Optum data. Area under the curve (AUC), false positive rate (FPR).
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statistical summary features for AST, ALT, AST/ALT, and platelet

data. The model highlights some of the advantages (easy availability

of longitudinal data for features) as well as some of the limitations

(bias in baseline diagnosis, difficulty defining the negative or non-

NASH class) of training directly on real-world EHR data.

Perakakis et al. (2019) also developed an ML model for NASH.

They included NASH, NAFL, and healthy patients, treating it as a

3-class problem and applying a one-vs-rest (OvR) approach.20 They

collected serum samples from 31 NAFLD patients (16 NASH) and

49 healthy patients. These samples allowed them to measure 365

lipid species along with glycans and hormones. Their best perform-

ing models were support vector machines (SVMs) with 29 lipid fea-

tures or 20 total features including lipids and glycans or hormones.

This work supports the conclusion that NASH can be accurately

identified using lipids and other serum markers. While the authors

achieved very high performance, the large number of laboratory

markers they use are not commonly captured in clinical care. This

model would likely require additional, specific testing to be per-

formed and could not be readily applied to existing EHR data. The

authors note availability of this testing is currently limited and the

cost of testing was $605 per patient in their study though it could be

reduced in the future.

There are limitations to our approach. The ability of ML to pre-

dict NASH effectively is dependent on the quality of features within

the model and the data used for training. The best set of features

may also depend on the population under study as the incidence of

NASH can vary across different ethnic groups.22 Our model could

be improved by training on a larger dataset that includes other eth-

nic groups and broader, more diverse populations. Such a model

could even reveal more about the pathophysiological processes asso-

ciated with the development and progression of NASH. Addition-

ally, while we tested the applicability of the model on Optum data,

measurement of performance on that data is limited by the con-

straints of real-world data such as the inability to obtain confirma-

tory biopsies for non-NASH patients. Non-invasive ML models to

predict NASH from clinical and lab data have yet to be prospec-

tively validated in a large cohort.6 Finally, a further development of

the model could be focused on predicting the specific NAFLD activ-

ity score (NAS) and fibrosis stage. However, the data requirements

for training such a model are substantial. While ML and more spe-

cifically NASHmap will not be able to overcome the inherent limita-

tions that liver biopsy has with regards to staging of NASH,23 it

holds the promise to support physicians and other health care pro-

viders even outside of specialist practices.

CONCLUSION

The NASHmap model with 14 features is a robust model with 72-

81% sensitivity at predicting NASH in patients from large, real-

world datasets. Given NASH is perceived as a silent and greatly

underdiagnosed disease, this model could be utilized as an initial

screening tool to select patients with potential NASH for further

confirmatory diagnostic steps and clinical management. Because it

uses commonly available features, it could be automated through

EHR systems and integrated into physicians’ workflows leveraging

laboratory tests already being performed.

FUNDING

This study was funded by Novartis Pharma AG.

SUPPLEMENTARY MATERIAL

Supplementary material is available at Journal of the American

Medical Informatics Association online.

AUTHOR CONTRIBUTIONS

All authors designed the study. M.D., S.A.R., G.C., and M-M.B. ex-

ecuted and refined the analysis. M.D., S.A.R., G.C., M-M.B., Q.Y.,

A.T., J.L., J.C., M.C.P., and J.M.S. interpreted results and devel-

oped the manuscript. All authors approved the final version of the

manuscript.

DATA AVAILABILITY

No new data were collected in support of this research. The data un-

derlying this article were provided by NIDDK and Optum, respec-

tively, under license. Interested parties should reach out to the data

Table 4. Comparison of reported model performance

Performance NASHmap Modela Cheng et al.16,b Atabaki-Pasdar

et al.17,c

Canbay et al.18 Fialoke et al.19 Perakakis et al.20,d

Task NASH vs. non-

NASH

NAFLD vs. non-

NAFLD

NAFLD vs. non-

NAFLD

NASH vs. non-

NASH

NASH vs. Healthy NASH vs NAFL

vs. Healthy

Cohort NAFLD Taiwanese high-

tech workers

T2DM and non-

T2DM at high

risk

Obese with

NAFLD

NAFLD and Healthy Greek NAFLD and

Healthy

Number of features 14 8 9 5 23 29

AUC 82% – 82% 70% 88% 95%

Accuracy 75% 87% 74% – 80% 88%

Precision 81% – – – 81% –

Sensitivity 81% 90% 74% – 77% 89%

Specificity 66% 81% 73% – – 94%

F1 Score 81% 70% 79%

Abbreviation: Type 2 Diabetes Mellitus (T2DM).
a 14-feature model on NIDDK data,
bmale data,
cmodel 3 in IMI DIRECT,
d29 lipid non-linear SVM OvR model with healthy >27.5 BMI.
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owners to license this data: https://repository.niddk.nih.gov/studies/

nafld_adult/ and https://www.optum.com/business.html.

CONFLICT OF INTEREST STATEMENT

J.M.S. reports consultancy: BMS, Boehringer Ingelheim, Echosens,

Galmed, Genfit, Gilead Sciences, Intercept Pharmaceuticals, Madri-

gal, Nordic Bioscience, Novartis, Pfizer, Roche, Sanofi, and Siemens

Healthineers. J.M.S. reports research funding: Gilead Sciences.

J.M.S. is a speaker for Falk Foundation and MSD. M.D. and Q.Y.

are employees of ZS Associates. S.A.R., G.C., M-M.B., N.J., A.T.,

J.L., and M.C.P. are employees and own stocks of Novartis Pharma

AG. J.C. is an employee and owns stocks of Novartis Pharmaceuti-

cals Corp.

ACKNOWLEDGEMENTS

The authors would like to thank Joanna Huang for her contributions to the

study while at ZS, and Kirk Evanson and Superior Medical Experts for re-

search and drafting assistance.

REFERENCES

1. Younossi ZM, Marchesini G, Pinto-Cortez H, Petta S. Epidemiology of

nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: implica-

tions for liver transplantation. Transplantation 2019; 103 (1): 22–7.

2. Suzuki A, Diehl AM. Nonalcoholic steatohepatitis. Annu Rev Med 2017;

68 (1): 85–98.

3. Brunt EM, Wong VW, Nobili V, et al. Nonalcoholic fatty liver disease.

Nat Rev Dis Primers 2015; 1 (1): 15080.

4. Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management

of nonalcoholic fatty liver disease: practice guidance from the American

Association for the Study of Liver Diseases. Hepatology 2018; 67 (1):

328–57.

5. Rockey DC, Caldwell SH, Goodman ZD, Nelson RC, Smith AD. Ameri-

can Association for the Study of Liver D. Liver biopsy. Hepatology 2009;

49 (3): 1017–44.

6. Perakakis N, Stefanakis K, Mantzoros CS. The role of omics in the patho-

physiology, diagnosis and treatment of non-alcoholic fatty liver disease.

Metabolism 2020; 111: 154320.

7. Kononenko I. Machine learning for medical diagnosis: history, state of the

art and perspective. Artif Intell Med 2001; 23 (1): 89–109.

8. Beam AL, Kohane IS. Big data and machine learning in health care. JAMA

2018; 319 (13): 1317–8.

9. Lazarus JV, Colombo M, Cortez-Pinto H, et al. NAFLD - sounding the

alarm on a silent epidemic. Nat Rev Gastroenterol Hepatol 2020; 17 (7):

377–9.

10. Beretta L, Santaniello A. Nearest neighbor imputation algorithms: a criti-

cal evaluation. BMC Med Inform Decis Mak 2016; 16 (S3): 74.

11. Breiman L. Random forests. Mach Learn 2001; 45 (1): 5–32.

12. Chen T, Guestrin C. XGBoost: A scalable tree boosting system. In: KDD

’16: Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining 2016: 10.

13. Kotsiantis SB. Supervised machine learning: a review of classification tech-

niques. In: Proceedings of the 2007 conference on Emerging Artificial In-

telligence Applications in Computer Engineering: Real World AI Systems

with Applications in eHealth, HCI, Information Retrieval and Pervasive

Technologies 2007: 22.

14. Safavian SR, Landgrebe DA, Landgrebe D. United States. National Aero-

nautics and Space Administration. A Survey of Decision Tree Classifier

Methodology. West Lafayatte, IN; Washington DC, Springfield, VA:

School of Electrical Engineering, National Aeronautics and Space Admin-

istration; National Technical Information Service, Distributor; 1990.

15. Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP. Ran-

dom forest: a classification and regression tool for compound classification

and QSAR modeling. J Chem Inf Comput Sci 2003; 43 (6): 1947–58.

16. Cheng Y, Chou C, Hsiung Y. Application of machine learning methods to

predict non-alcohol fatty liver disease in Taiwanese high-tech industry

workers. In: International Conference on Data Mining 2017: 118–23.

17. Atabaki-Pasdar N, Ohlsson M, Vi~nuela A, et al. Predicting and elucidating

the etiology of fatty liver disease: a machine learning modeling and valida-

tion study in the IMI DIRECT cohorts. PLoS Med 2020; 17 (6):

e1003149.

18. Canbay A, K€alsch J, Neumann U, et al. Non-invasive assessment of

NAFLD as systemic disease-A machine learning perspective. PLoS One

2019; 14 (3): e0214436.

19. Fialoke S, Malarstig A, Miller MR, Dumitriu A. Application of machine

learning methods to predict Non-Alcoholic Steatohepatitis (NASH) in

Non-Alcoholic Fatty Liver (NAFL) patients. AMIA Annu Symp Proc

2018; 2018: 430–9.

20. Perakakis N, Polyzos SA, Yazdani A, et al. Non-invasive diagnosis of non-

alcoholic steatohepatitis and fibrosis with the use of omics and supervised

learning: a proof of concept study. Metabolism 2019; 101: 154005.

21. Neumann U, Genze N, Heider D. EFS: an ensemble feature selection

tool implemented as R-package and web-application. BioData Min 2017;

10: 21.

22. Danford CJ, Yao ZM, Jiang ZG. Non-alcoholic fatty liver disease: a nar-

rative review of genetics. J Biomed Res 2018; 32 (5): 389–400.

23. Schattenberg JM, Straub BK. On the value and limitations of liver histol-

ogy in assessing non-alcoholic steatohepatitis. J Hepatol 2020; 73 (6):

1592–3.

Journal of the American Medical Informatics Association, 2021, Vol. 28, No. 6 1241

https://repository.niddk.nih.gov/studies/nafld_adult/
https://repository.niddk.nih.gov/studies/nafld_adult/
https://www.optum.com/business.html

