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In a seasonal world, organisms are continuously adjusting physiological
processes relative to local environmental conditions. Owing to their limited
heat and fat storage capacities, small animals, such as songbirds, must
rapidly modulate their metabolism in response to weather extremes and
changing seasons to ensure survival. As a consequence of previous technical
limitations, most of our existing knowledge about how animals respond to
changing environmental conditions comes from laboratory studies or field
studies over short temporal scales. Here, we expanded beyond previous
studies by outfitting 71 free-ranging Eurasian blackbirds (Turdus merula)
with novel heart rate and body temperature loggers coupled with radio
transmitters, and followed individuals in the wild from autumn to spring.
Across seasons, blackbirds thermoconformed at night, i.e. their body
temperature decreased with decreasing ambient temperature, but not so
during daytime. By contrast, during all seasons blackbirds increased
their heart rate when ambient temperatures became colder. However, the
temperature setpoint at which heart rate was increased differed between
seasons and between day and night. In our study, blackbirds showed
an overall seasonal reduction in mean heart rate of 108 beats min−1 (21%)
as well as a 1.2°C decrease in nighttime body temperature. Episodes of
hypometabolism during cold periods likely allow the birds to save energy
and, thus, help offset the increased energetic costs during the winter when
also confronted with lower resource availability. Our data highlight that,
similar to larger non-hibernating mammals and birds, small passerine
birds such as Eurasian blackbirds not only adjust their heart rate and
body temperature on daily timescales, but also exhibit pronounced seasonal
changes in both that are modulated by local environmental conditions such
as temperature.

This article is part of the theme issue ‘Measuring physiology in free-
living animals (Part I)’.
1. Introduction
Animals in nearly all ecosystems experience dramatic seasonal changes
throughout their annual cycle and, accordingly, use a diversity of behavioural
and physiological strategies to increase their chances of survival across the
range of environmental conditions they face throughout the year. Winters at
poleward latitudes provide a pronounced contrast to summers and are charac-
terized by low ambient temperatures coupled with a dramatic reduction in food
availability. Increased energetic costs of thermoregulation coupled with less
available total energy make winter a particularly challenging time for endother-
mic animals, whose body temperatures are typically maintained over a narrow
range even in the face of harsh environmental temperatures [1]. Owing to the
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increased difference between ambient (Ta) and body temp-
erature (Tb) in winter, endothermic animals require more
energy to maintain their high core species-specific Tb in
winter than at other times of the year [2,3].

Owing to the energetic costs of endothermy, some mam-
mals and birds also display heterothermy [4], wherein their
Tb varies in response to environmental conditions, such as
daily rhythms or seasonal cycles [2,5,6]. These energetic
costs are exaggerated in small animals owing to the increased
surface area/volume ratio, which facilitates greater heat loss
to the environment and gives lower heat storage capacity
[7]. Increased energy requirements during winter can trans-
late to the reduction of immune system activity [8,9],
impaired locomotor ability [10] and life-threatening changes
of basic organismal functions (i.e. enzymatic activity), all of
which can reduce survival [11,12].

When confrontedwith the energetic costs during thewinter
at poleward temperate and arctic zones, animals employ a
variety of strategies to meet the challenges of harsh conditions
(low ambient temperature and food shortage). One option is to
avoid challenging conditions altogether by migrating to milder
wintering areas to reduce the costs of thermoregulation [13] and
facilitate access to greater food availability [14], but often at
the cost of increased inter- and intraspecific competition [15].
Alternatively, individuals, populations or species may remain
resident year-round and adapt to changing conditions [16,17].
While species or entire populations may use these distinct
strategies, an additional intermediate strategy exists, as
shown in some populations of Eurasian blackbirds (Turdus
merula), wherein only a proportion of the individuals in a popu-
lation leave the breeding area during thewinter [18,19]. Current
knowledge suggests that the proportion of residents versus
migrants within so-called partial migratory populations
depends upon the severity of winter climates [20] and the
likelihood of finding sufficient food. In addition, within popu-
lations where some individuals remain resident in harsher
conditions, there should be increased selection for physiologi-
cal and/or behavioural adjustments that allow resident
individuals to minimize or offset the energetic costs of coping
with harsh conditions during winter.

Several physiological and behavioural mechanisms assist
resident animals in enduring the energetic challenges of a
harsh environment. Individuals can behaviourally increase
thermogenic output in winter compared with summer by
increasing their energy intake and shivering thermogenesis
[21]. An alternative physiological strategy is to reduce the
demands of thermogenesis rather than increasing energy
intake by reducing the difference between body and ambient
temperature, or torpor. Some species use daily torpor or
hibernation as a strategy for downregulating metabolic rate
and Tb, thereby reducing their energy use when faced with
food shortage and/or low ambient temperatures [3,22,23].
However, these types of energy-saving mechanisms have
been historically viewed as rare in animals owing to their
impacts on immunocompetence, enzymatic activity and
increased predation risk [24,25].

However, there is increasing evidence that large mammal
and bird species employ physiological mechanisms that are
similar to those used by hibernating endotherms or daily het-
erotherms [26–28]. Large birds, such as the greylag goose
(Anser anser), decrease their overall metabolism in winter by
around 22% [26]. This seasonal hypometabolism is thought
to be achieved by reducing endogenous heat production
and tolerating lower Tb [22]. In addition, similar seasonal
hypometabolism has been observed in large mammals such
as llamas [6], moose [29] and ibex [27].

Some smaller bird species have also been shown to reduce
their basal metabolic rate, accompanied by reversible
hypothermia in response to a food shortage or low ambient
temperature [30–32]. Moreover, one species, the common
poorwill (Phalaenoptilus nuttalii), even uses a form of hiber-
nation in which it lowers its Tb down to 2.8°C in order to
reduce the costs for thermoregulation [33]. When the
common poorwill enters hibernation, it reduces its heart
rate proportional to body temperature, which in turn
depends on ambient temperature [34].

However, previous studies suggest that metabolism in
smaller bird species like passerines is often higher in winter
owing to increased thermoregulatory costs and intensified
activity during shorter days in winter [35]. For example,
black-capped chickadees (Poecile atricapillus), dark-eyed
juncos (Junco hyemalis) and American tree sparrows (Spizella
arborea) all upregulate their basal and summit metabolic
rates in winter [35,36]. Furthermore, it has been suggested
that seasonal changes in standard metabolic rate are body
size-dependent and that small birds are likely to increase
their metabolic rate in winter, whereas larger birds (greater
than 200 g) decrease their standard metabolic rate during
winter [37]. However, the evidence for the generalizability
of this pattern remains equivocal [35].

In order to better understand the mechanisms underlying
energetic requirements, it is essential to monitor the physio-
logical responses of free-living individuals relative to the
environmental conditions to which they are exposed [38]. Pre-
vious studies on small birds established that heart rate can be
used as an adequate estimate of energy expenditure in the
wild [39–42]. Instantaneous heart rate is also linked to stress
under natural conditions in small birds [43,44]. While previous
studies had to rely upon radio telemetry to continuously trans-
mit the heart rate data to a nearby receiver, recent technological
advances in the miniaturization of data loggers have now
made it possible to address these questions in free-living bird
species as small as 12 g [45–47]. Throughout many studies in
different habitats, on different species and in different seasons,
it was also confirmed that one of the most reliable proxies for
studying energy requirements is indeed heart rate: under
most circumstances, heart rate is positively correlated with
metabolic rate in most endothermic species [48]. Additionally,
long-term heart rate measurements provide a tractable alterna-
tive to heavy-water isotopic methods, because unlike this
averaging approach, heart rate data can be logged over
extended time intervals and while other variables are simul-
taneously monitored [49]. Heart rate ( fH) and Tb loggers have
been used to study daily energy expenditure of early life
stages [50], energetic demands of flight feather moult [51], sea-
sonal adjustments of body temperature [52] and effects of flight
performance on body temperature [53].

In this study, we investigated seasonal variation in meta-
bolic requirements and adjustments of resident Eurasian
blackbirds, a medium-sized bird species (mean body
mass = 85 g), from autumn to the following spring using
implantable data loggers. The loggers stored measures of fH
and Tb every 30 min combined with classical radio telemetry
to track focal individuals in their natural environment across
three seasons (autumn, winter and spring). First, we pre-
dicted that decreasing Ta would cause an increase of fH,
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indicating increased energetic demands for keeping Tb at
homeostasis. Second, we tested the extent to which blackbirds
show a seasonal decrease of fH and Tb during winter similar to
the reduction of winter energy expenditure observed in large
non-hibernating mammal and bird species. Third, because
the proportion of migratory blackbirds in this population is
female-biased [19], we examined whether there were differ-
ences in fH and/or Tb suggesting that differences in metabolic
costs of overwintering were sex based.
/journal/rstb
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2. Material and methods
(a) Study population
We studied resident Eurasian blackbirds (Turdus merula) from a
partially migratory population in southwest Germany that live
in a mixed forest habitat (47.7801° N, 9.0203° E) [19]. In this
population, 75% of the birds are resident during the winter
season while 25% migrate to areas in the southwest [19]. Adult
birds were caught with mist nets from June to September from
2016 to 2018 and had a mean weight of 86.6 g (males: 85.1 g,
females: 87.9 g). We brought birds to the laboratory at the Max
Planck Institute of Animal Behavior, Radolfzell after capture.

(b) Implantation/explantation of data logger
We used Star-Oddi DST micro-HRT/temperature data loggers
(version 17, Star-Oddi Ltd, Gardabear, Iceland; dimensions:
8.3 × 25.4 mm, weight: 3.3 g) to record heart rate ( fH) and body
temperature (Tb). The loggers were programmed to store instan-
taneous fH and Tb measures every 30 min from 1 September until
5 June. The fH values were derived from an electrocardiogram
(ECG) measurement using a sampling frequency of 778 Hz
recorded over 0.77 s (600 samples). At each recording, a calcu-
lated averaged value of fH was saved to the internal memory
together with an associated quality index. For further details
on how the quality index was derived see [54]. To evaluate the
accuracy and reliability of the automatically calculated fH and
quality index, a raw ECG signal was stored every 60 h, which
we manually analysed. In our analyses, we only included
measurements that had a verified and trusted quality index
based on the manual recalculation of all 3867 full ECG traces.
The accuracy of the calibrated Tb measurements was ± 0.2°C.
For implantation and explantation, birds were anaesthetized
with isoflurane (1 ml ml−1) at 5% and (1.5 l min−1 oxygen
flow). Ringer solution (20 ml kg−1) was injected subcutaneously
to provide fluid maintenance, and butorphanol (1.5 mg kg−1)
was injected intramuscularly to provide analgesia. Anaesthesia
was maintained with isoflurane set at 1.5–2.5% (1.5–2 l min−1

oxygen flow). After disinfecting the skin with ethanol (70%),
an abdominal incision of about 10 mm was made in a craniocau-
dal direction starting 10 mm caudal of the sternum apex through
the skin and muscle layer. Then, loggers pre-sterilized with
ethylene oxide at 38°C (conducted by Osypka AG, Rheinfelden,
Germany) were implanted into the abdominal cavity. After-
wards, muscle and skin tissue were stitched separately with an
absorbent suture (Monosyn 5/0, B. Braun AG, Melsungen,
Germany). After birds awoke and fully recovered from anaesthe-
sia, they were banded with an aluminium ring, radio-tagged and
released at the capturing site. In the subsequent spring, birds
were located via radio telemetry, recaptured and anaesthetized,
and loggers were removed following the reverse procedure to
implantation before the birds were released back into the wild.

(c) Radio telemetry
In order to track our implanted individuals in the wild, we used
radio transmitters (approx. 1.6 g, produced by Sparrow Systems,
Fisher, IL, USA), which were attached to birds with a leg-loop
harness. The radio transmitters transmitted a signal every 3 s,
which was recorded using six automated receiving units (ARU,
Sparrow Systems, Fisher, IL, USA). The additional weight of
4.9 g (radio transmitter plus logger) resulted in an average
5.4% weight increase for the blackbirds in our experiment with
a mean body mass of 86.6 g. Recapture rates (70.3%) and survival
rates of located birds (84%) were not significantly different for
birds with implanted loggers compared with radio-tagged
birds from the previous 7 years in this population [55]. To
verify that our study blackbirds remained resident at the breed-
ing site, we assessed each individual’s location based upon ARU
data. When individuals were not visible on the ARU, we deter-
mined their position using manual tracking via handheld
antennas and ensured that they were alive. Hence, we ensured
that we included only resident blackbirds in the analysis that
stayed within a 2.5 km radius at all times (for further details
see [56]).

In total, we implanted 118 loggers from 2016 to 2018, and we
were able to recapture 83 birds from 2017 to 2019. From those, we
had to exclude 12 loggers owing to insufficient data quality. Out
of the remaining 71 individuals, 53 (24 females, 29 males) stayed
at the breeding site the whole winter and were classified as
winter residents.

(d) Data analysis
Based on the departure dates of migrating blackbirds within the
population documented in previous reports [19,55], we divided
the study period into four seasons. We defined the season from
September 1 to October 10 as the autumn, i.e. pre-migration
period. In this period, there is no breeding activity and feather
moult is in its final stage [57]. We defined the time between
October 11 and November 20, the period between the first
and last migratory departure, as the migration season, during
which migrating blackbirds departed [58]. This season was fol-
lowed by the winter, from November 21 to February 17. Finally,
we defined the period from February 18, when the earliest
migrant during this study returned, to April 11 as spring,
which was the period when loggers were explanted. We
chose 11 April as the end of spring because by this date we
had a sample size of eight individuals for each sex during
each year.

Resident blackbirds are mainly active during the day. Brief
activity phases can occur during the night, but are typically a
short-term response to disturbances and usually do not rep-
resent migration activity [56]. In order to distinguish between
basal energetic demands during the resting phase at night
and energetic demands including movement behaviour, such
as flight during the daytime, we assigned each 30 min measure
of fH and Tb either to day or night phases. Based on previous
activity studies on the same population, the night was defined
as being when the solar angle was lower than 6° under the hor-
izon and day was defined as being when the solar angle was
higher than or equal to 6° above the horizon [56].

The meteorological data for this study were obtained from an
automated weather station in Konstanz, Germany near our study
site (straight line distance: 16 km) and are publicly available
through the Climate Data Centre of the German Weather Service
(https://opendata.dwd.de/).

(e) Statistical analysis
We manually calculated fH for all saved ECG traces, and based
upon these calculations and the quality index calculated by the
logger itself, we manually assessed the quality of data from
each logger and only included automatic measurements within
a 15% error tolerance in our analysis. Outliers either above or
below the manually calculated extreme values were also
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discarded. As environmental data only included hourly
measurements, we also calculated the mean values of fH and
Tb for each individual an hour before assigning the correspond-
ing Ta. To test for seasonal and daily differences in fH and Tb, we
used linear mixed models (R-package ‘lme4’ [59]) with individ-
uals, mean fH/Tb for each season and time as the response
variable and day phase in interaction with the season as predic-
tors. In order to test the influence of Ta on a blackbird’s Tb and fH,
we extended the model and used sex, tarsus length (a proxy for
overall body size), Ta, day phase and season as predictors. We
centred tarsus length within males and females separately to cor-
rect for sex-based size differences since previous studies suggest
that males are typically larger than females, even though we did
not find a significant difference in body size between sexes in our
study (β = 0.36, s.e. = 0.24, z = 1.53, p = 0.13).

To account for temporal autocorrelation, we followed the
procedure by Parr et al. [53] and randomly discarded 30% of
the data from each individual. Additionally, the logger ID and
day of the year were included as random effects in order to
additionally correct for temporal autocorrelation and repeated
measurements. This prevented a given measurement from
being a significant predictor of the next measurement, as deter-
mined by inspection of autocorrelation plots.

Bonferroni’s post hoc tests were performed when sexes dif-
fered during different seasons and phases of the day; p-values
of multiple comparisons were adjusted via the Bonferroni
method. Finally, we evaluated standard model validation
graphs to ensure that our models met the homogeneity assump-
tions, non-collinearity of predictors and independence of
residuals and normality [60]. All statistical analyses were carried
out with the R statistical software v. 3.3.2.
hour of day

season: autumn migration period winter spring

Figure 1. Daily variation in ambient temperature, body temperature, and
heart rate during autumn (yellow, 1 Sep.–10 Oct.), migration period (red,
11 Oct.–20 Nov.), winter (blue, 21 Nov.–17 Feb.) and spring (green, 18
Feb.–11 Apr. 11). Plotted are hourly means across all three study years.
Error bars represent 95% confidence intervals of the means and reflect the
variation between days for the ambient temperature and between individuals
for body temperature and heart rate.
3. Results
(a) Daily and seasonal variation in Ta
Ambient temperature (Ta) followed a seasonal pattern: mean
temperature was highest in our autumn sampling period
(mean: 15°C ± s.e.: 0.1°C), lowest during the winter (2.2 ±
0.1°C), and intermediate during the migration period (8.4 ±
0.1°C) and spring (5.9 ± 0.1°C) (figures 1a, 2 and 3a). Mean
Ta was colder during the night than day (6.7 ± 0.1°C versus
9 ± 0.1°C, respectively). The mean difference between day
Ta and night Ta decreased seasonally, from 3.2 ± 0.2°C in
autumn, over 2 ± 0.2°C during migration period to winter
with 1 ± 0.1°C, and increased in spring again (2.8 ± 0.2°C)
(figure 1a).

(b) Daily and seasonal variation in Tb and fH
Heart rate ( fH) and Tb of both male and female blackbirds
varied substantially from autumn to spring (figures 1b,c, 2
and 3). Hourly means of fH ranged from 218 to 915 beats per
minute (bpm) over the entire day. Heart rate during the day
(mean: 464 bpm± s.e.: 4 bpm) was significantly higher than
during the night (408 ± 4 bpm) (β = 55.5, s.e. = 0.67, z = 83.09,
p < 0.01) (figure 1c). Body temperature showed lower variation
than fH (coefficients of variation:Tb 0.04, fH 0.21)with values ran-
ging from 36.3 to 44.6°C during day and from 37.1 to 43.7°C
during night. Body temperature during the day (42.7 ± 0.1°C)
was significantly higher than during the night (39.6 ± 0.1°C)
(β = 3.15, s.e. = 0.005, z= 581.367, p< 0.01) (figure 1b).

When comparing body temperature differences (Tb)
between the seasons without including the effects of Ta, we
found that seasonal differences were most pronounced at
night and that highest values occurred in autumn (40.23 ±
0.03°C), followed by spring (39.55 ± 0.03°C) (β =−0.68, s.e. =
0.03, z =−19.08, p < 0.01), and the migration period (39.51 ±
0.03°C) (β =−0.72, s.e. = 0.03, z =−23.47, p < 0.01), and were
lowest in winter (39.15 ± 0.03°C) (β =−1.08, s.e. = 0.03, z =−
35.30, p < 0.01). During the day, Tb exhibited the opposite pat-
tern with warmer daytime Tb during winter (42.88 ± 0.03°C)
and the migration period (42.93 ± 0.03°C) (β = 0.05, s.e. = 0.03,
z = 1.5, p = 0.8) compared with autumn (42.69 ± 0.03°C) (β =
0.19, s.e. = 0.03, z = 5.98, p < 0.01) and spring (42.40 ± 0.03°C)
(β = 0.49, s.e. = 0.03, z = 14.32, p< 0.01) (figure 1b). Heart rate
( fH) was also higher during the day and reached a seasonal
maximum during the day in the autumn (472 ± 3 bpm)
compared with fH during the migration period (444 ± 4 bpm)
(β = 27.56, s.e. = 1.94, z = 14.23, p < 0.01), winter (442 ± 4 bpm)
(β = 30.02, s.e. = 2.02, z= 14.84, p< 0.01) or spring (418 ± 4 bpm)
(β= 54.24, s.e. = 1.98, z= 27.39, p< 0.01) (figure 1c). At night, fH
was highest in the autumn (448 ± 4 bpm) and lowest during the
migration period (385 ± 3 bpm) (β=−42.54, s.e. = 1.94, z= 21.98,
p< 0.01) compared with the spring (388 ± 3 bpm) (β=−3.05,
s.e. = 2.19, z =−1.40, p < 0.01) and winter (392 ± 3 bpm)
(β =−7.24, s.e. = 1.85, z =−3.91, p < 0.01) (figure 1c).
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(c) Effect of Ta on Tb and fH
Heart rate was negatively related to Ta across all seasons
during both day and night (β =−6.89, s.e. = 0.18, t =−38.20,
p < 0.01): fH increased by 6.89 ± 0.1 bpm for every 1°C that
Ta decreased. Over the whole range of Ta that we measured
over 3 years (from −11.1 to 28.8°C), variation in Ta explained
up to 25.6% of the variation in fH. The effect size of Ta on fH
decreased significantly from the autumn to the migration
period (β =−1.65, s.e. = 0.26, z =−6.36, p < 0.01) and over
the winter (β =−2.54, s.e. = 0.25, z =−9.78, p < 0.01), but the
effect of Ta on fH was greater again in the spring (β =−2.13,
s.e. = 0.24, z =−8.91, p < 0.01) (figure 3b).

Overall, body temperaturewas positively related to Ta (β =
0.01, s.e. = 0.001, t = 3.62, p < 0.01), and this relationship was
stronger during night (β = 0.06, s.e. = 0.003, t = 21.92, p < 0.01)
(figure 3c). Across all seasons, during day, we measured a
broader range of Ta from −11.1 to 28.8°C, which correlated
to changes in Tb of ± 0.22°C, whereas Ta during the night
(−10.5°C to 24.2°C) correlated with changes of ±2.24°C in Tb.
Over time, the effect size of Ta on Tb decreased from autumn
to winter (β = 0.01, s.e. = 0.001, z = 4.61, p < 0.01) and spring
(β = 0.01, s.e. = 0.001, z = 4. 61, p < 0.01) (figure 3c).
(d) Sex-specific effects in Tb and fH
Overall, the fH of males was significantly lower than that of
females, by 18 ± 8 bpm (β =−18.41, s.e. = 7.65, t = 2.41, p =
0.02). This sex-based difference was more pronounced
during the winter (β =−20.7, s.e. = 6.47, t =−3.21, p < 0.01)
and spring (β =−35.5, s.e. 6.47, t =−5.49, p < 0.01) and within
these coldest seasons at warmer Ta (winter: β =−1.36, s.e. =
0.19, t =−7.17, p < 0.01; spring: β =−0.36, s.e. = 0.23, t =−1.75,
p = 0.08) (figure 4a,b). Overall, male and female Tb did not
differ during either the day or night (β =−0.05, s.e. = 0.05,
z =−0.9, p = 0.37). In both sexes, larger individuals had signifi-
cantly lower fH than smaller conspecifics (β =−9.35, s.e. =
3.671, t =−2.55, p = 0.01) (figure 4c) but body size had no
effect on Tb (β =−0.01, s.e. = 0.02, t =−0.28, p = 0.78).
4. Discussion
In our study of free-living resident Eurasian blackbirds, we
documented daily and seasonal adjustments of body temp-
erature and heart rate indicating a lowered homeothermic
setpoint and associated estimated energy expenditure
through fine-scale measurements recorded with implanted
loggers. Across all seasons and throughout the entire day,
we found that heart rate ( fH) was negatively correlated with
ambient temperature (Ta). However, at night and during the
winter when temperatures were colder, fH and body tempera-
ture (Tb) both significantly decreased (figure 2b,c), such that
fH was instead positively correlated with Ta. These seasonal
and daily shifts in fH and the relationship between fH and
Ta accompanied with a lower body temperature setpoint
may help resident blackbirds compensate for the increased
energetic costs of thermoregulation. Especially during
winter, when food and therefore energy availability are
scarce, reduced Tb decreases the gradient between Tb and
Ta and therefore the total energy, approximated here as fH,
required to maintain a specific (lowered) Tb. Similar patterns
of reduced body temperature and overall energy expenditure
have been previously observed in both field studies [32,61]
and laboratory experiments [30] when temperatures and/or
food availability were reduced.

Both fH and Tb were significantly higher at night in the
autumn than in winter or spring regardless of Ta (figures 1b,c,
2 and 3). While fH showed a general decrease from autumn to
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themigration period towinter both during the day and at night,
nighttime Tb only was only significantly lower in winter com-
pared with other periods (figures 2 and 3b). However, during
the winter and the migratory period, daytime Tb was higher
than daytime Tb during the autumn and spring. We suspect
that higher daytime Tb during the winter and the migration
period may be a consequence of more condensed and higher
intensity foraging activity when days are shorter. In addition,
the higher fat scores [16] and increased insulation [57] that
blackbirds have during these seasons may further reduce over-
all heat loss, increasing overall heat retention efficiency.
Alternatively, high Tb with simultaneously low fH may also be
the result of blackbirds using non-shivering thermogenesis
[62] rather than a consequence of direct activity-induced heat
production, as is typically associated with increased fH [63].

Blackbirds also lowered their Tb from day to night to a
greater extent during the winter compared with the autumn
(figure 1). As previous studies suggest a Q10 (i.e. metabolic
rate at temperature Tb + 10°C/metabolic rate at temperature
Tb) in the range of 4 to 4.5 for blackbirds [30], even small
reductions in Tb of 1–3°C can save blackbirds considerable
amounts of energy. This interactive effect of both time of
day and season on Tb may also help explain the observed
fH reduction of 21.3% during the winter and provide
additional energy savings during this harsh period as docu-
mented in studies of other animals. For example,
corresponding values from greylag geese (Anser anser) show
an fH reduction of 22% with an additional decrease of 1°C
in mean daily winter Tb [26]. Similarly, in northern cardinals
(Cardinalis cardinalis) daily energy savings of 10–16% were
predicted when Tb was reduced by 1.3°C [64].

The seasonal modulation of fH and Tb that we documen-
ted in resident blackbirds also suggests an energy-saving
mechanism similar to those described for non-hibernating
large mammal and bird species in previous laboratory and
field studies [28,65,66]. However, in contrast with the general
downregulation of both fH and Tb in winter found in other
species, blackbirds modulated fH and Tb during day and
night differently (figure 1). We suggest that resident black-
birds at night during winter may operate close to their
minimum energetic limits and may respond to additional
thermogenic challenges by using as little effort as possible
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in order to prioritize the most critical organismal functions.
Across seasons, fH was negatively correlated with Ta through-
out the day and Tb was positively correlated with Ta at night
(figure 3). In the autumn, fH was most strongly correlated
with Ta and was significantly higher than fH during other sea-
sons. While we cannot determine the exact mechanism
underlying this pattern from our current data alone, we
suggest that birds may adjust their metabolism during the
coldest seasons, especially winter, for more efficient thermo-
genesis and thermogenic endurance, which may allow them
to cope with lower overall Ta [67]. An alternative explanation
is that because energy, in the form of overall food resources, is
more readily available in the autumn compared with the
winter, blackbirds may be able to sustain higher fH and
increased energy use.

Like other recent studies [26], we show that Ta had a
strong effect on Tb, with nighttime body temperatures that
were nearly twice as variable as those during the day (figure 3,
coefficient of variation: day 0.013, night 0.021). In addition, we
found that daytime Tb was less strongly correlated with Ta
than Tb was with Ta during the night, likely because although
diurnal homeotherms attempt to maintain a constant Tb

during periods of activity, they often generate additional
heat via muscular activity, digestion and non-shivering ther-
mogenesis [68,69] (figure 3). Across all seasons, Tb was
lower and more variable at night, as was Ta. From autumn
to winter, nocturnal Tb decreased even further, starting with
a 3°C difference between diurnal and nocturnal temperatures
in the autumn and increasing to 4°C difference during the
winter. This, coupled with lowered fH, provides evidence
that blackbirds go into a deliberate, controlled hypometabolic
state at night, especially during the winter [70]. Controlled
hypometabolism, which animals can implement through
lowered hypothalamus setpoints, reduces the difference
between Ta and Tb and decreases the energy required to
achieve the desired Tb [64]. By decreasing the difference
between Ta and Tb, resident blackbirds may be able to save
considerable amounts of energy on thermoregulation, allow-
ing them to conserve available energetic resources and offset
the costs of remaining resident in the breeding area over
winter [71,72].

While both fH and Tb varied with season and time of day,
we found greater variance in fH compared with Tb. This is
likely because instantaneous measurements of fH are more
dependent upon short-term metabolic demands related to
various behaviours and thus fH changes quickly and flexibly
in response to the demands of an individual [73]. A relatively
constant Tb, on the other hand, is crucial for all homeothermic
species in order to keep vital enzymatic processes at a nor-
mothermic operating temperature and thus is a prerequisite
for organismal function and survival [74]. When not held at
optimal levels, Tb alterations can impair major processes,
such as immune function [75], neurological function, diges-
tion [76] and mobility. However, maintaining a controlled
and elevated Tb compared with Ta (figure 2) can be energeti-
cally costly and thus consumes considerable resources that
may otherwise be allocated to other functions, such as
maintenance, growth or reproduction [23].

In addition to the seasonal and daily shifts in fH and Tb

that we documented, we also observed a difference in fH
between male and female blackbirds. Although this is not
the case in our present dataset, male Eurasian blackbirds
are typically larger than females. As larger animals cool
down less quickly, they typically have lower rates of heat
loss and thus require less energy to thermoregulate; one of
the reasons that males may be able to lower their fH to a
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greater degree compared with females could be to their larger
overall size [77]. However, we found that independent of
body size, male fH was 4.9% lower on average compared
with that of females (figure 4). Moreover, this difference
increased with warmer Ta in the winter and spring, which
suggests that male blackbirds may have an energetic advan-
tage over females when encountering milder temperatures
in the two coldest seasons, allowing them to save more
energy than females when they encounter more favourable
conditions during these typically colder periods. Within
each sex, we also found that larger individuals (based on
tarsus length) generally had a lower fH. Because of their
higher thermal inertia and smaller surface to volume ratio
[7], larger individuals might experience thermoregulatory
advantages due to a decreased cooling rate [78]. In addition,
differences in heart size among individuals of different sizes
may also influence cardiac performance [79].

Together, our observation that males exhibited a lower fH
than females at warmer Ta during the winter and spring as
well as our finding of lower fH in larger individuals may
help explain the female-biased propensity to migrate in our
partially migratory population [19] because females are
typically smaller than males. This concept, known as ‘body
size hypothesis’ [80], suggests that within species, smaller
individuals are more likely to migrate to milder climates
rather than remain resident on the breeding grounds as a
result of their reduced ability to tolerate cold temperatures
[81]. However, our finding of a sex-based difference indepen-
dent of size suggests that additional behavioural factors such
as flocking in male-biased groups during winter [82] may be
responsible for the observed differences in fH between males
and females. On the other hand, our finding of lower fH with
larger body sizes across sexes suggests that such differences
may be the result of size-based dominance [83].

Here, we documented physiological acclimation and
qualitative energy expenditure throughout the seasons in a
wild songbird. Using implantable data loggers in a cap-
ture–recapture approach, we overcame previous limitations,
such as the limited longevity and reliability of data collection
as well as the use of external electrodes. Using implanted log-
gers that minimally impaired birds allowed us to investigate
previous laboratory-based hypotheses in the field. To our
knowledge, this study is, we believe, the very first multi-
season study documenting body temperature as well
as heart rate as a proxy for energy expenditure in a small
free-living passerine. We found that resident blackbirds
adjust fH and Tb seasonally and daily, likely enhancing their
ability to cope with environmental challenges, such as low
Ta. Our findings of sex-based differences in winter fH indepen-
dent of body size may further illuminate why partial
migration in blackbirds is often female biased [19]. Future
studies should explore the adaptive physiological costs and
benefits of different overwintering strategies across sexes in
greater depth by examining additional measures of fitness,
such as survival and reproductive success. For example, past
studies have demonstrated that the milder environmental con-
ditions in southern overwintering areas increase the likelihood
of survival for migrants [55]. Moreover, because the ambient
temperature is only one parameter among a diversity of
environmental factors that determine endothermic animals’
daily energy budgets, future studies should explicitly evaluate
the roles of important factors such aswind, rain [84,85] or food
availability in the metabolic adjustments and migratory
decisions that animals make. Future studies should also inves-
tigate Tb and fH, as well as their relationship to environmental
conditions like Ta, in response to energetic challenges like
mating, breeding and moult that occur during the breeding
season and summer post-breeding season. Such studies will
connect the links between basic physiological processes and
the complete annual cycle, and thus provide a more compre-
hensive understanding of different movement strategies and
life histories.
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