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By describing where animals go, biologging technologies (i.e. animal attached
logging of biological variables with small electronic devices) have been used
to document the remarkable athletic feats of wild animals since the 1940s.
The rapid development and miniaturization of physiologging (i.e. logging of
physiological variables such as heart rate, blood oxygen content, lactate,
breathing frequency and tidal volume on devices attached to animals) technol-
ogies in recent times (e.g. devices that weigh less than 2 g mass that can
measure electrical biopotentials for days to weeks) has provided astonishing
insights into the physiology of free-living animals to document how and why
wild animals undertake these extreme feats. Now, physiologging, which was
traditionally hindered by technological limitations, device size, ethics and
logistics, is poised to benefit enormously from the on-going developments
in biomedical and sports wearables technologies. Such technologies are
already improving animal welfare and yield in agriculture and aquaculture,
but may also reveal future pathways for therapeutic interventions in human
health by shedding light on the physiological mechanisms with which
free-living animals undertake some of the most extreme and impressive
performances on earth.

This article is part of the theme issue ‘Measuring physiology in free-living
animals (Part I)’.
1. Introduction
The field of ‘biologging’ (i.e. animal attached logging of biological variables with
small electronic devices) has revealed how species of wild animals undertake
remarkable feats of athleticism that set the benchmark for vertebrate performance.
In the aerial environment, this includes non-stop endurance migratory flights
of over 11 000 km by bar-tailed godwits (Limosa lapponica [1]), extreme long-
distance migrations of more than 100 000 km by Arctic terns (Sterna paradisaea
[2]), high-altitude flights of over 6000 m altitude by bar-headed geese (Anser
indicus [3–6]) and non-stop flights for more than 10 months of the year by
common swifts (Apus apus [7]). Similar remarkable feats have been recorded in
the aquatic realm, including dives beyond 500 m deep by emperor penguins
(Aptenodytes forsteri [8]), dives beyond 2 km deep by elephant seals (Mirounga
sp.) resulting in near total venous blood oxygen depletion [9–11] and dives to
nearly 3 km deep [12] for over 3 h [13] by Cuvier’s beaked whales (Ziphius cavir-
ostris). These astonishing feats highlight the fact that not only is it important to
conservewildlife for aesthetic and ethical reasons [14], but also because these ath-
letic species may help to highlight medical pathways and approaches for some of
the greatest health challenges for humans, including hypoxia (e.g. strokes and
heart attacks), diabetes and obesity. The inspiration for this theme issue came
from animal biologists attending conferences of Extreme and Expedition
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Medics, where researchers were engaged in medical studies in
similar ecosystems (e.g. high altitude, [15,16]). While a few
recent studies havemade use of medical technologies designed
for humans to study the diving capacity of humans and seals
[17,18], medical studies generally have access to, and use, a
wider and more sophisticated range of technology than what
is available in the animal tracking sphere. Thus, this may be
a critical time to bring together animal biology and medical
technology, so that future research can draw inspiration
across disciplines.

While biologging has largely focused on describing where
animals go, the field of ‘physiologging’ (i.e. animal attached
logging of physiological variables such as heart rate, blood
oxygen content, lactate, breathing frequency and tidal
volume) can provide crucial insights into how andwhy animals
make the journeys they do. Many of the most important
research questions in ecology (e.g. how does the environment
drive movement? what sensory information do animals use
to navigate? how will wildlife cope with anthropogenic-
driven climate change?) critically need these how andwhy ques-
tions to be answered. However, physiologging technologies
have evolvedmuchmore slowly than biologging technologies,
with cutting edge developments generally coming from indi-
vidual laboratory groups or research projects. From the 1960s
onwards, a revolution in microelectronics, sports wearable
technologies, nano-sensor devices and portable medical diag-
nostics for humans has provided a fertile opportunity for a
step change in the study of physiology in free-living animals,
which does not seem to have been exploited. For example, in
1962, Leyland C. Clark (the inventor of the oxygen electrode)
invented the ‘enzyme electrode’, which used electrochemical
detection of an immobilized enzyme by a metal electrode to
measure the concentrations of various substances [19]. These
‘biosensors’ are now extremely small, can cost as little as 2
cents a test, and can be mass produced in millions of
units via screen-printing [20,21]. In a total biosensor market
worth more than $13 billion, approximately 85% of the
market is now focused on the measurement of blood glucose
for diabetes [22]. Yet, these technologies appear to have been
almost entirely untapped by the animal biologging field. We
therefore propose that a ‘second age of biologging’ has arrived,
which will operate on the boundaries between the disciplines
of animal biology, medicine, sports and engineering, and will
enable researchers to answer important questions in eco-
physiology. This theme issue was driven by the recognition
that animal biology requires a step change in the available tech-
nology to answer big research questions, and that the fields of
animal biology and sports medical wearables and technology
should now be integrated. The theme issue is divided into
three sections.
2. Part 1: the past
In the mid-twentieth century, scientists contrived to monitor
movements of marine megafauna under natural conditions.
For example, Archie Carr used styrofoam floats and helium-
filled balloons to track the movement of green turtles in the
open sea [23], Per Scholander deployed capillary tubes on a
fin whale to measure their maximum dive depth [24], and
Arthur DeVries attached a Tsurumi Seiki depth recorder on
female Weddell seals to show that these animals could dive
down to at least 350 m [25] (figure 1). Following on from the
research by Arthur DeVries, Gerald Kooyman then designed
and built a time-depth recorder for deployment on Weddell
seals to demonstrate that these animals can dive even deeper,
as individuals reached depths beyond 600 m and for longer
than 40 min [37]. In fact, this particular study may have been
the genesis of the field of measuring physiology in free-living
animals [38]. In 2003, the first international symposium on
such research was held in Tokyo, and a new term ‘Bio-logging’
was proposed by the organizing committee. Biologging has
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now come to be defined as the ‘investigation of phenomena in
or around free-living organisms that are beyond the boundary
of our visibility or experience’ [39]. Since then, a biologging
symposium has been held every two to three years in several
locations around the world. The field of biologging tradition-
ally focused on technologies that allowed researchers to
follow the movements of animals via satellite, which resulted
in the successful tracking of a diverse range of terrestrial and
marine animals [40,41]. However, the field of physiologging
did not keep pace, possibly owing to the invasive and logisti-
cally demanding nature of physiological research [42] and
the size of traditional logging devices that precluded smaller
animals from being studied.
Phil.Trans.R.Soc.B
376:20200210
3. Part II: the present state-of-the-art
Owing to the recent and rapid development of physiologging
technologies, it is currently possible to monitor fine-scale phys-
iological changes in free-living animals not only with custom-
made biologging devices [43], but also with state-of-the-art
miniaturized commercial technologies developed for use in
humans [44] or for farmed terrestrial and aquatic animals (e.g.
dairy cattle [45,46] and fishes [47,48]). For example, the portable
and commercially available near infraRed spectroscopy data
logging devices introduced in 2006 were originally designed
for measuring muscle oximetry in sports athletes [49], but
have now also been used to show anticipatory adjustments of
blood flow prior to diving in seals [18,50,51]. A wide range of
variables can be measured with current physiologging technol-
ogies, which includes heart rate [52–56], brain activity [57,58],
tissue oxygenation [50,51], respiratory rhythms [59,60] and
body temperature [61,62]. When measured simultaneously
with other parameters (e.g. time, depth, altitude, etc.), these
variables can provide substantial insights into how wild
animals undertake their remarkable feats of athleticism.

In addition to investigating the eco-physiology of wild ani-
mals, studies of animals in managed care provide rich
opportunities for developing physiologging technologies, vali-
dating sensors, developing automated analytical approaches,
and for comprehensively understanding the physiological
responses of farmed animals and their longer-term conse-
quences. For example, the global aquaculture industry is
valued at several hundred billion dollars and thus optimizing
the health andmass gain of fishes and shellfish is of paramount
importance. Consequently, tools to monitor aquatic animal
movement and physiology have been developed to maximize
yield [47,48]. Likewise, automated analysis of physiological
and movement data from dairy cows can help to identify
and treat lameness beforemilk production suffers [45]. Further-
more, measurements of physiological parameters in cetaceans
that are housed in aquaria and research facilities provide an
opportunity to validate algorithms and/or indices for use on
free-living animals [59]. Emerging technologies using implanted
biosensors with carbon nanotubes [36] or glue-on ‘marine skin’
devices [64] have not yet been able to make measurements
of biological phenomena, but have paved the way for future
research.
4. Part III: the future
At present, with few exceptions, the application of physiolog-
ging in wild animal research is generally restricted to a
handful of laboratories that have in-house engineers design-
ing custom-made devices for their studies [36,63,64]. By
introducing the field of biologging to medical biotechnology
and sports wearables, as well as technology used in managed
animals (agriculture and aquaculture), the hope is that the
field can be opened up to allow more researchers to ask the
sorts of questions that are required to tackle the most impor-
tant threats to wild animals (e.g. disease transmission, climate
change, [65]). Moreover, because devices developed for the
medical biotechnology, agricultural and sports industries
are underlined by enormous market opportunity, they are
generally better tested and thus have a lower failure rate
(e.g. from leaking or breaking, to hardware and software fail-
ures). This means that animal researchers employing these
technologies could get more accurate and reliable data over
longer periods of time, which would undoubtedly improve
wildlife management, threat mitigation and our understand-
ing of species resilience. This would represent a considerable
step forward for wild animal research [65,66]. At the same
time, automated analytical and software approaches will
increase the power of analyses while also transforming poten-
tially complex physiologging technologies into more user-
friendly systems [67]. This may also have the advantage of
helping to alleviate some of the problems that can be encoun-
tered when processing the long-term and/or high-resolution
datasets obtained with physiologging technologies (e.g. the
sampling of an electrocardiogram signal at 200 Hz for an
entire year would produce 6.3 billion data points) [68]. The
development of small and robust devices for measuring the
physiology of wild animals also represents an exciting engin-
eering challenge that could be used in the microelectronics
realm to drive device development and testing in a broader
sense. Finally, lessons learned from how animals cope with
extreme environments and undertake (at least what we per-
ceive to be) extreme athletic feats may yield lessons for the
treatment of human conditions [69,70]. For example, the
study of hypoxia in high-flying birds has been of interest to
medics studying ischemia and hypoxaemia in humans [71].
5. Concluding remarks
The study of free-living animals and wildlife continues to
provide a rich ground for scientific discovery and technical
development (e.g. the ICARUS global tracking initiative
[72]). Excitingly, biologging and its sub-discipline physiolog-
ging are poised to greatly benefit from the rapid
advancements in medical biotechnology and wearable bio-
sensors. With an ever-increasing access to technologies
capable of determining real-time physiological changes in
free-living animals, a ‘second age of biologging’ has well and
truly arrived for eco-physiologists. This age will undoubtedly
create new and exciting opportunities for measuring biologi-
cal phenomena in free-living animals. Such information will
not only provide important information about basic function
and physiology, but will be critical to predict how major
forces such as disease and climate change may impact the
performance, health and welfare of both individuals and
populations of free-living animals.
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