Skip to main content
Virologica Sinica logoLink to Virologica Sinica
. 2015 Dec 18;30(6):417–424. doi: 10.1007/s12250-015-3658-4

Genome sequencing and analysis of a granulovirus isolated from the Asiatic rice leafroller, Cnaphalocrocis medinalis

Shan Zhang 1, Zheng Zhu 2, Shifeng Sun 3, Qijin Chen 1, Fei Deng 2,, Kai Yang 1,
PMCID: PMC8200897  PMID: 26712716

Abstract

The complete genome of Cnaphalocrocis medinalis granulovirus (CnmeGV) from a serious migratory rice pest, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae), was sequenced using the Roche 454 Genome Sequencer FLX system (GS FLX) with shotgun strategy and assembled by Roche GS De Novo assembler software. Its circular double-stranded genome is 111,246 bp in size with a high A+T content of 64.8% and codes for 118 putative open reading frames (ORFs). It contains 37 conserved baculovirus core ORFs, 13 unique ORFs, 26 ORFs that were found in all Lepidoptera baculoviruses and 42 common ORFs. The analysis of nucleotide sequence repeats revealed that the CnmeGV genome differs from the rest of sequenced GVs by a 23 kb and a 17kb gene block inversions, and does not contain any typical homologous region (hr) except for a region of non-hr-like sequence. Chitinase and cathepsin genes, which are reported to have major roles in the liquefaction of the hosts, were not found in the CnmeGV genome, which explains why CnmeGV infected insects do not show the phenotype of typical liquefaction. Phylogenetic analysis, based on the 37 core baculovirus genes, indicates that CnmeGV is closely related to Adoxophyes orana granulovirus. The genome analysis would contribute to the functional research of CnmeGV, and would benefit to the utilization of CnmeGV as pest control reagent for rice production.graphic file with name 12250_2015_3658_Figa_HTML.jpg

Electronic Supplementary Material

Supplementary material is available for this article at 10.1007/s12250-015-3658-4 and is accessible for authorized users.

Keywords: baculovirus, granulovirus, Cnaphalocrocis medinalis granulovirus (CnmeGV), genome sequencing

Electronic supplementary material

12250_2015_3658_MOESM1_ESM.pdf (265.5KB, pdf)

Supplementary material, approximately 265 KB.

Footnotes

ORCID: 0000-0002-9207-8061

ORCID: 0000-0002-5385-083x

Contributor Information

Fei Deng, Phone: +86-27-87198465, FAX: +86-27-87198465, Email: df@wh.iov.cn.

Kai Yang, Phone: +86-20-84112298, FAX: +86-20-84037472, Email: yangkai@mail.sysu.edu.cn.

References

  1. Chai HN, Du YZ, Qiu BL, Zhai BP. Detection and phylogenetic analysis of Wolbachia in the Asiatic rice leafroller, Cnaphalocrocis medinalis, in Chinese populations. J Insect Sci. 2011;11:123. doi: 10.1673/031.011.12301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Choi J, Guarino LA. The baculovirus transactivator IE1 binds to viral enhancer elements in the absence of insect cell factors. J Virol. 1995;69:4548–4551. doi: 10.1128/jvi.69.7.4548-4551.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Conant GC, Wolfe KH. GenomeVx: simple web-based creation of editable circular chromosome maps. Bioinformatics. 2008;24:861–862. doi: 10.1093/bioinformatics/btm598. [DOI] [PubMed] [Google Scholar]
  4. Federici BA. Baculovirus Pathogenesis. In: Miller LK, editor. In: The Baculoviruses. 1997. pp. 33–59. [Google Scholar]
  5. Ferrelli ML, Berretta MF, Belaich MN, Ghiringhelli PD, Sciocco CA. The baculoviral genome, viral genomes-molecular structure, diversity, gene expression mechanisms and host-virus interactions. 2012. [Google Scholar]
  6. Ferrelli ML, Salvador R, Biedma ME, Berretta MF, Haase S, Sciocco-Cap A, Ghiringhelli PD, Romanowski V. Genome of Epinotia aporema granulovirus (EpapGV), a polyorganotropic fast killing betabaculovirus with a novel thymidylate kinase gene. BMC Genomics. 2012;13:548. doi: 10.1186/1471-2164-13-548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Guarino LA, Gonzalez MA, Summers MD. Complete Sequence and Enhancer Function of the Homologous DNA Regions of Autographa californica Nuclear Polyhedrosis Virus. J Virol. 1986;60:224–229. doi: 10.1128/jvi.60.1.224-229.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hawtin RE, Zarkowska T, Arnold K, Thomas CJ, Gooday GW, King LA, Kuzio JA, Possee RD. Liquefaction of Autographa californica nucleopolyhedrovirus-infected insects is dependent on the integrity of virus-encoded chitinase and cathepsin genes. Virology. 1997;238:243–253. doi: 10.1006/viro.1997.8816. [DOI] [PubMed] [Google Scholar]
  9. Herniou EA, Olszewski JA, Cory JS, O'Reilly DR. The genome sequence and evolution of baculoviruses. Annu Rev Entomol. 2003;48:211–234. doi: 10.1146/annurev.ento.48.091801.112756. [DOI] [PubMed] [Google Scholar]
  10. Hilton S, Winstanley D. The origins of replication of granuloviruses. Arch Virol. 2008;153:1527–1535. doi: 10.1007/s00705-008-0148-0. [DOI] [PubMed] [Google Scholar]
  11. Hu ZH, Arif BM, Jin F, Martens JW, Chen XW, Sun JS, Zuidema D, Goldbach RW, Vlak JM. Distinct gene arrangement in the Buzura suppressaria single-nucleocapsid nucleopolyhedrovirus genome. J Gen Virol. 1998;79:2841–2851. doi: 10.1099/0022-1317-79-11-2841. [DOI] [PubMed] [Google Scholar]
  12. Jehle JA, Blissard GW, Bonning BC, Cory JS, Herniou EA, Rohrmann GF, Theilmann DA, Thiem SM, Vlak JM. On the classification and nomenclature of baculoviruses: a proposal for revision. Arch Virol. 2006;151:1257–1266. doi: 10.1007/s00705-006-0763-6. [DOI] [PubMed] [Google Scholar]
  13. Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci. 1992;8:275–282. doi: 10.1093/bioinformatics/8.3.275. [DOI] [PubMed] [Google Scholar]
  14. Kool M, Voeten JT, Goldbach RW, Tramper J, Vlak JM. Identification of seven putative origins of Autographa californica multiple nucleocapsid nuclear polyhedrosis virus DNA replication. J Gen Virol. 1993;74:2661–2668. doi: 10.1099/0022-1317-74-12-2661. [DOI] [PubMed] [Google Scholar]
  15. Lange M, Jehle JA. The genome of the Cryptophlebia leucotreta granulovirus. Virology. 2003;317:220–236. doi: 10.1016/S0042-6822(03)00515-4. [DOI] [PubMed] [Google Scholar]
  16. Liu D, Li Y, Zhao J, Deng F, Duan X, Kou C, Wu T, Li Y, Wang Y, Ma J, Yang J, Hu Z, Zhang F, Zhang Y, Sun S. Fine epitope mapping of the central immunodominant region of nucleoprotein from Crimean-Congo hemorrhagic fever virus (CCHFV). PLoS One. 2014;9:e108419. doi: 10.1371/journal.pone.0108419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lu A, Krell PJ, Vlak JM, Rohrmann GF. Baculovirus DNA replication. In: Miller LK, editor. In: The Baculoviruses. New York: Plenum press; 1997. pp. 171–192. [Google Scholar]
  18. Lu A, Miller LK. Regulation of baculovirus late and very late gene expression. In: Miller LK, editor. In: The Baculoviruses. New York: Plenum press; 1997. pp. 193–216. [Google Scholar]
  19. Luque T, Finch R, Crook N, O'Reilly DR, Winstanley D. The complete sequence of the Cydia pomonella granulovirus genome. J Gen Virol. 2001;82:2531–2547. doi: 10.1099/0022-1317-82-10-2531. [DOI] [PubMed] [Google Scholar]
  20. O'Reilly DR. Auxiliary genes of baculoviruses. In: Miller LK, editor. In: The Baculoviruses. New York: Plenum press; 1997. pp. 276–300. [Google Scholar]
  21. O'Reilly DR, Miller LK, Luckow VA. Baculovirus Expression Vector: A Laboratory Manual. New York: W. H. Freeman & Company; 1992. p. 368. [Google Scholar]
  22. Pang Y, Lai Y, Liu J. A new granulovirus from naturally infected Asiatic rice leafroller, Cnaphalocrocis medinalis (Guenee). Microbiology China. 1981;02:103–104. [Google Scholar]
  23. Rodems SM, Friesen PD. Transcriptional enhancer activity of hr5 requires dual-palindrome half sites that mediate binding of a dimeric form of the baculovirus transregulator IE1. J Virol. 1995;69:5368–5375. doi: 10.1128/jvi.69.9.5368-5375.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rohrmann GF. In: Baculovirus Molecular Biology, Third Edition. 2013. [PubMed] [Google Scholar]
  25. Sanderson MJ, Wojciechowski MF. Improved bootstrap confidence limits in large-scale phylogenies, with an example from Neo-Astragalus (Leguminosae). Syst Biol. 2000;49:671–685. doi: 10.1080/106351500750049761. [DOI] [PubMed] [Google Scholar]
  26. Slack JM, Kuzio J, Faulkner P. Characterization of v-cath, a cathepsin L-like proteinase expressed by the baculovirus Autographa californica multiple nuclear polyhedrosis virus. J Gen Virol. 1995;76:1091–1098. doi: 10.1099/0022-1317-76-5-1091. [DOI] [PubMed] [Google Scholar]
  27. Solovyev VV, Salamov AA. INFOGENE: a database of known gene structures and predicted genes and proteins in sequences of genome sequencing projects. Nucleic Acids Res. 1999;27:248–250. doi: 10.1093/nar/27.1.248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Taha A, Nour-El-Din A, Croizier L, Ferber ML, Croizier G. Comparative analysis of the granulin regions of the Phthorimaea operculella and Spodoptera littoralis granuloviruses. Virus Genes. 2000;21:147–155. doi: 10.1023/A:1008179228236. [DOI] [PubMed] [Google Scholar]
  29. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–2739. doi: 10.1093/molbev/msr121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Winstanley D, Crook NE. Replication of Cydia pomonella granulosis virus in cell cultures. J Gen Virol. 1993;74:1599–1609. doi: 10.1099/0022-1317-74-8-1599. [DOI] [PubMed] [Google Scholar]
  31. Wormleaton S, Kuzio J, Winstanley D. The complete sequence of the Adoxophyes orana granulovirus genome. Virology. 2003;311:350–365. doi: 10.1016/S0042-6822(03)00149-1. [DOI] [PubMed] [Google Scholar]
  32. Wu W, Passarelli AL. Autographa californica multiple nucleopolyhedrovirus Ac92 (ORF92, P33) is required for budded virus production and multiply enveloped occlusion-derived virus formation. J Virol. 2010;84:12351–12361. doi: 10.1128/JVI.01598-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wu Y, Carstens EB. Initiation of baculovirus DNA replication: early promoter regions can function as infection-dependent replicating sequences in a plasmid-based replication assay. J Virol. 1996;70:6967–6972. doi: 10.1128/jvi.70.10.6967-6972.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yin F, Zhu Z, Liu X, Hou D, Wang J, Zhang L, Wang M, Kou Z, Wang H, Deng F, Hu Z. The Complete Genome of a New Betabaculovirus from Clostera anastomosis. PLoS One. 2015;10:e0132792. doi: 10.1371/journal.pone.0132792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zemskov EA, Kang W, Maeda S. Evidence for nucleic acid binding ability and nucleosome association of Bombyx mori nucleopolyhedrovirus BRO proteins. J Virol. 2000;74:6784–6789. doi: 10.1128/JVI.74.15.6784-6789.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zhang S, Jia XW, Sun SF, Pang Y, Chen QJ, Yang K. Phylogenetic analysis and epidemiologic investigation of a Cnaphalocrocis medinalis granulovirus strain. Journal of Environmental Entomology. 2014;36:756–762. [Google Scholar]
  37. Zhang X, Liang Z, Yin X, Wang J, Shao X. Complete genome sequence of Agrotis segetum granulovirus Shanghai strain. Arch Virol. 2014;159:1869–1872. doi: 10.1007/s00705-014-2001-y. [DOI] [PubMed] [Google Scholar]
  38. Zhou JB, Li XQ, De-Eknamkul W, Suraporn S, Xu JP. Identification of a new Bombyx mori nucleopolyhedrovirus and analysis of its bro gene family. Virus Genes. 2012;44:539–547. doi: 10.1007/s11262-012-0721-1. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

12250_2015_3658_MOESM1_ESM.pdf (265.5KB, pdf)

Supplementary material, approximately 265 KB.


Articles from Virologica Sinica are provided here courtesy of Wuhan Institute of Virology, Chinese Academy of Sciences

RESOURCES