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Abstract 
Non-coding RNAs (ncRNAs) are important players in the cellular 
regulation of organisms from different kingdoms. One of the key 
steps in ncRNAs research is the ability to distinguish coding/non-
coding sequences. We applied seven machine learning algorithms 
(Naive Bayes, Support Vector Machine, K-Nearest Neighbors, Random 
Forest, Extreme Gradient Boosting, Neural Networks and Deep 
Learning) through model organisms from different evolutionary 
branches to create a stand-alone and web server tool (RNAmining) to 
distinguish coding and non-coding sequences. Firstly, we used 
coding/non-coding sequences downloaded from Ensembl (April 14th, 
2020). Then, coding/non-coding sequences were balanced, had their 
trinucleotides count analysed (64 features) and we performed a 
normalization by the sequence length, resulting in total of 180 
models. The machine learning algorithms validations were performed 
using 10-fold cross-validation and we selected the algorithm with the 
best results (eXtreme Gradient Boosting) to implement at RNAmining. 
Best F1-scores ranged from 97.56% to 99.57% depending on the 
organism. Moreover, we produced a benchmarking with other tools 
already in literature (CPAT, CPC2, RNAcon and TransDecoder) and our 
results outperformed them. Both stand-alone and web server versions 
of RNAmining are freely available at 
https://rnamining.integrativebioinformatics.me/.
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           Amendments from Version 1
Here, we present the revised update manuscript. In brief, the 
minor changes as below;

We updated the abstract

We updated the Introduction section with reviewer’s suggestion: 
1- We included the citations for BASiNET and CoDaN; 2- We 
added the sentence “Next, RNAmining was evaluated in another 
9 phylogenetically related and unrelated organisms that were 
not used in our training, demonstrating the efficiency of the tool 
even when applied in species phylogenetically distant from those 
used in training.”

We restructured the second paragraph of “Machine learning 
classifier algorithms selection” section and the first paragraph 
of “Training and testing datasets, model building and quality 
measuring for coding potential evaluation” section.

We added a new key point in conclusion “RNAmining was 
evaluated using other phylogenetically related and unrelated 
organisms that were not used in our training, demonstrating 
the efficiency of the tool even when applied in species 
phylogenetically distant from those used in training.”

We updated Figure 2 and the source code of RNAmining 
(including the classification probabilities in the output) as 
suggested by the reviewers.

Any further responses from the reviewers can be found at 
the end of the article

REVISED

Introduction
Non-coding RNAs (ncRNAs) are key functional players on dif-
ferent biological processes in organisms from all domains of 
life1,2. Its investigation is already routine in almost every tran-
scriptome or genome project. Dysregulations in these molecules 
may lead to different types of human disease, including  
cancers3, neurological disorders4 and cardiovascular infirmities5.

The genome of eukaryotic6 organisms is, in general, majority 
composed of non-coding transcripts, with complex organisms  
estimated to transcribe more than 75% of their genomes7.  
Besides strong evidence associating these ncRNAs to key func-
tions in the cell, most of them are not yet associated with a  
functional mechanism. In a transcriptome project there exists 
an important step in the computational identification of  
ncRNAs, which is the evaluation of their potential to be trans-
lated into proteins using different bioinformatics approaches8,9. 
To computationally evaluate the coding potential of a set of  
transcripts, available tools or algorithms normally analyse 
specific characteristics available in primary sequences (e.g.  
nucleotides counts, the existence of a trustful open reading  
frame).

For instance, RNAcon implements a Support Vector Machine 
(SVM)-based model for the discrimination between coding 
and non-coding sequences10. Coding Potential Assessment Tool  
(CPAT)11 assesses the coding potential through an alignment-
free method, which uses a logistic regression model built based  
on different characteristics of the sequence open reading 
frame (ORF), which includes length, coverage and nucleotides  

compositional bias. TransDecoder identifies candidate coding  
transcripts based on other distinctive features from predicted 
ORFs (e.g. a minimum length ORF, a log-likelihood score, 
encapsulated ORF)12. CPC213 trained a SVM model using Fickett  
TESTCODE score, ORF length, ORF integrity and isoelec-
tric point as features. The LIBSVM14 package was employed 
by training a SVM model using the standard radial basis func-
tion kernel (RBF kernel) with the training dataset containing  
17,984 high-confident human protein-coding transcripts and  
10,452 non-coding transcripts11. CoDaN uses Generalized Hidden 
Marvov to generate probabilistic models based on the GC  
content of nucleotide sequences in order to estimate the coding 
regions and both 5’ and 3’ untranslated regions of transcripts15.  
BASiNET performs feature selection to transform nucleotide 
sequences as complex networks, then it generates topologi-
cal measures to build a feature vector used to classify the  
sequences16.

Here, we applied and benchmarked seven different machine 
learning algorithms (Random Forest, eXtreme Gradient  
Boosting (XGBoost), Naive Bayes, K-Nearest Neighbors (K-NN), 
 SVM, Artificial Neural Network (ANN) and Deep Learn-
ing (DL)) through 15 organisms from different evolutionary  
branches, in order to evaluate their performance in distinguish-
ing coding and non-coding RNA sequences. Next, we devel-
oped a stand-alone and web server tool, called RNAmining  
(http://rnamining.integrativebioinformatics.me/), by selecting 
and implementing the algorithm with the best performance in 
all organisms (XGBoost). Next, RNAmining was evaluated in  
another 9 phylogenetically related and unrelated organisms 
that were not used in our training, demonstrating the efficiency 
of the tool even when applied in species phylogenetically dis-
tant from those used in training. In total, it was evaluated  
through 24 organisms from the eukaryotic tree of life and its 
results outperformed publicly available tools commonly used for  
that purpose.

Methods
Machine learning classifier algorithms selection
In the classification process there is a division related to the 
learning paradigm, with classification algorithms divided into:  
(i) Symbolic, which seeks to learn by constructing symbolic rep-
resentations of a concept through the analysis of examples and 
counterexamples (e.g. Decision Trees and Rule-based System);  
(ii) Statistical, which looks for statistical methods and use 
models to find a good approximation of the induced concept  
(e.g. Bayesian learning); (iii) Based on Examples (lazy sys-
tems), which aims to classify examples never seen using similar 
known examples, assuming that the new example will belong to  
the same class as the similar example (e.g. K-Nearest Neigh-
bor); (iv) Based on Optimization, which consists of maximizing  
(or minimizing) an objective function or finding an opti-
mal hyperplane that best divides two classes (e.g. SVM and  
Neural Networks); (v) Connectionist Representation, which 
represents simplified mathematical constructions inspired 
by the biological model of the nervous system (e.g. Neural  
Networks). In this benchmarking, we decided to evaluate 
the performance of selected algorithms from each paradigm  
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type in the coding potential prediction of RNA sequences: Ran-
dom Forest, XGBoost, Naive Bayes, K-NN, SVM and Neural  
Networks (ANN and Convolutional Neural Networks (CNN)).

All the machine learning methods were executed using  
scikit-learn (Version 0.21.3)17, except for Neural Network and 
DL models which were implemented using Keras API with Ten-
sorflow as backend (Version 2.3.0) and XGBoost algorithm 
which was executed using XGBoost Library (version 1.2.0)18  
in Python Language (Version 3.8). XGBoost, K-NN and 
Naive Bayes models were trained with the default values. The  
Random Forest and SVM parameters were obtained through 
grid search method. The Random Forest and SVM parameters 
were obtained through grid search method, the best results using  
Random Forest resulted in a model generated with the 
default parameters, with the exception of the number of trees 
used (150 estimators) and the criterion parameter setted to  
‘entropy’ for information gain. For SVM, the resulting model was 
trained with the Radial Basis Function (RBF) kernel, with the 
Regularization parameter (C) and Kernel coefficient (Gamma) 
defined in 1000 and 0.8, respectively. ANN and DL were per-
formed with different architectures according to grid search 
and empirical tests. The first ANN experiment was composed of 
three hidden layers consisting of 32-16-8 neurons, respectively;  
the second ANN experiment was performed with 64-32-16-8 
neurons; and the third experiment was executed with 32-32-16-
8 neurons. Next, we produced four experiments with DL using  
2 CNN layers, followed by 2 fully connected (dense) lay-
ers: the first experiment had 512(CNN)-512(CNN) filters and  
28(Dense)-1(Dense) neurons; the second was created with 
64(CNN)-64(CNN) filters and 128(Dense)-1(Dense) neurons; the 
third was performed with 32(CNN)-32(CNN)-128(Dense)-1(Dense)  
neurons; and the last was built with 128(CNN)-128(CNN)-
128(Dense)-1(Dense) neurons. These layers received as input 
the total number of attributes (i.e. combination of trinucle-
otides counts, described in the next topics). The hyperparameters  
used to execute the DL and ANN approaches are made available  
in Extended data: Supplementary File S119.

Datasets selection and filtering criteria
We compared the algorithms performances using different 
sets of coding and non-coding RNA sequences from Ensembl  
(April 14th 2020)20 database, covering 15 organisms of distinct 
representative Chordata clades (Figure 1A): Anolis carolinen-
sis (Sauria, Squamata), Chrysemys picta bellii (Sauria, Testu-
dines), Crocodylus porosus (Archosauria, Pseudosuchia), Danio 
rerio (Actinopterygii, Teleostei), Eptatretus burgeri (Agnatha,  
Myxinidae), Gallus gallus (Archosauria, Theropoda), Homo 
sapiens (Placentalia), Latimeria chalumnae (Sarcopterygii,  
Coelacanth), Monodelphis domestica (Marsupialia), Mus muscu-
lus (Placentalia), Notechis scutatus (Sauria, Squamata), Ornitho-
rhynchus anatinus (Monotremata), Petromyzon marinus (Agnatha,  
Petromyzontiformes), Sphenodon punctatus (Sauria, Rhyn-
chocephalia), Xenopus tropicalis (Amphibia). All non-coding 
RNA sequences for each organism were downloaded from 
Ensembl transcripts. In order to obtain a balanced set of sequences  
(i.e. equal number of coding and non-coding), the group of 
coding RNAs were randomly selected in order to obtain the  

same number of ncRNAs for each species. Moreover, before 
generating the models, the sequences were normalized  
through their length (i.e. each trinucleotide count was divided 
by the total size of the given sequence). All sequences in 
FASTA format with their respective Ensembl identifiers can be  
retrieved at RNAmining website (https://rnamining.integrativebio-
informatics.me/download).

Training and testing datasets, model building and 
quality measuring for coding potential evaluation
The cross-validation approach was applied in the grid search 
method, using the training dataset to validate the hyperpa-
rameters and obtain the best set of parameters to be used. In  
addition, this partition method validates the hyperparameter’s 
results through different validation sets. Therefore, it proves 
that our model is working and generalizing the problem. Thus, 
sequences were randomly divided into training and testing data-
sets, using 80% of the data for training and 20% for testing. 
The connectionist methods (e.g. Artificial Neural Networks and 
Convolutional Neural Networks) demand a validation dataset  
to adjust the model, because of the weights optimization stage 
and its hyperparameters. Thus, for experiments with ANN  
and CNN, 20% were used for validation, 60% for training (defined 
as 80% for the other algorithms) and 20% for testing. The test-
ing dataset was the same used in all machine learning algo-
rithms. The number of sequences used for each organism for  
the training and test sets can be observed in Table 1. Next, we 
generated 180 models (i.e. one per algorithm for each organism, 
whereas three experiments for ANN models and four experiments  
for CNN models), which were further evaluated in this work.

After selection of the best model, it was applied and evalu-
ated in other nine organisms (Figure 1A), different from the one 
used in the training process, including five related Chordata and  
other four phylogenetically distant species. Among the chor-
dates, the models were tested in Carassius auratus (Actinoptery-
gii, Teleostei), Gorilla gorilla gorilla (Placentalia), Pseudonaja  
textilis (Sauria, Squamata), Rattus norvegicus (Placentalia) and 
Terrapene carolina triunguis (Sauria, Testudines). Within non-
chordates species, we evaluated the model in Arabidopsis thal-
iana (Plantae, Eudicots), Caenorhabditis elegans (Nematoda),  
Drosophila melanogaster (Insecta, Diptera) and Saccharomyces 
cerevisiae (Fungi, Ascomycota). Finally, it was evaluated using  
artificial sequences containing the same nucleotides composition 
of the ncRNAs for each species of the testing dataset (Table 1).  
Ten sets of random sequences containing the same number of 
ncRNAs per species were generated using MEME suite Ver-
sion 5.1.1 with default parameters21. All sequences in FASTA  
format with their respective Ensemble identifiers can be retrieved  
at RNAmining website (https://rnamining.integrativebioinformat-
ics.me/download).

Comparisons with publicly available tools
The performance of all algorithms in the coding potential evalu-
ation was compared with publicly available tools commonly 
employed for this purpose (RNAcon10, CPAT11, TransDecoder12  
and CPC213), using default parameters. It is worth noting that 
CPAT only made available models for H. sapiens with a coding  
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probability (CP) cutoff of 0.364 (i.e. CP >=0.364 indicates  
coding sequence); M. musculus with a CP cutoff of 0.44;  
D. melanogaster with a CP cutoff of 0.39; and D. rerio with a CP 
cutoff of 0.38. Therefore, for the other organisms we built new  
models using our training sets and we used the statistical 

method provided by the authors to calculate the cutoffs prob-
ability for coding prediction: A. carolinensis (0.4); C. picta bellii  
(0.57); C. porosus (0.38); E. burgeri (0.35); G. gallus (0.42);  
L. chalumnae (0.365); M. domestica (0.51); N. scutatus (0.15); 
O. anatinus (0.28); P. marinus (0.34); S. punctatus (0.18);  

Figure 1. A. Taxonomic tree according to the used organisms for the models building (black color) and validation (red color). B. Pipeline 
used to perform the benchmarking and create the tool. Firstly, we download the coding and non-coding sequences from Ensembl; Next, 
we performed the trinucleotides counts and sequence normalization. After this, we created a machine learning benchmarking within 
the 7 algorithms and selected the one with the best performance to be implemented in the RNAmining tool (XGBoost algorithm), which 
was again evaluated using sequences from 9 other different species and sets of artificially generated ones. Finally, we performed a novel 
benchmarking with RNAmining against the public available tools for coding potential prediction.
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X. tropicalis (0.25). The whole workflow of RNAmining  
development can be visualized in Figure 1B.

RNAmining tool implementation and availability
The XGBoost method was implemented using XGBoost  
Library (version 1.2.0) in Python Language (Version 3.8) and 
the models for each species were saved using pickle Python’s 
library. The web server interface was developed using HTML 
and CSS. The connection within the front and back-end was  
implemented through JavaScript. The control of files and the 
connection with Python’s scripts was performed through PHP 
language. RNAmining user friendly tool and its stand-alone  

version can be accessed at https://rnamining.integrativebio-
informatics.me/. Instructions on how to use it and a whole  
documentation are made available. Its source code with a  
Docker platform can be freely obtained at https://gitlab.com/inte-
grativebioinformatics/RNAmining.

Results
Using machine learning algorithms to improve the 
coding potential prediction of RNA sequences
It is known that the algorithm performance in predictive analy-
sis is influenced by particularities available in the genomes  
sequences of the organisms used in the training set22, and it 

Table 1. Set of sequences used in the training and testing datasets. List of 
organisms and the total number of sequences used for testing and training both 
coding and non-coding RNAs. The numbers are separated into training/testing 
values. All sequences can be retrieved at RNAmining website (https://rnamining.
integrativebioinformatics.me/download).

Species Total Coding ncRNAs

Models Generation (training / testing):

Anolis carolinensis 12,542 / 3,136 6,243 / 1,596 6,299 / 1,540

Chrysemys picta bellii 11,260 / 2,816 5,626 / 1,412 5,634 / 1,404

Crocodylus porosus 7,388 / 1,848 3,700 / 918 3,688 / 930

Danio rerio 12,984 / 3,246 6,527 / 1,588 6,457 / 1,658

Eptatretus burgeri 1,742 / 436 867 / 222 875 / 214

Gallus gallus 16,851 / 4,213 8,426 / 2,106 8,425 / 2107

Homo sapiens 92,844 / 23,212 46,575 / 11,453 46,269 / 11,759

Latimeria chalumnae 4,668 / 1,168 2,344 / 574 2,324 / 594

Monodelphis domestica 34,336 / 8,584 17,113 / 4,347 17,223 / 4,237

Mus musculus 35,272 / 8,818 17,668 / 4,377 17,604 / 4,441

Notechis scutatus 2,705 / 677 1,351 / 340 1,354 / 337

Ornithorhynchus anatinus 12,604 / 3,152 6,280 / 1,598 6,324 / 1,554

Petromyzon marinus 4,243 / 1,061 2,107 / 545 2,136 / 516

Sphenodon punctatus 1,456 / 364 723 / 187 733 / 177

Xenopus tropicalis 2,224 / 556 1,120 /270 1,104 / 286

RNAmining Evaluation:

Arabidopsis thaliana 11,308 5,654 5,654

Caenorhabditis elegans 50,558 25,279 25,279

Carassius auratus 15,004 7,502 7,502

Drosophila melanogaster 31,808 15,904 15,904

Gorilla gorilla gorilla 15,978 7,989 7,989

Pseudonaja textilis 1,486 743 743

Rattus norvegicus 18,662 9,331 9,331

Saccharomyces cerevisiae 848 424 424

Terrapene carolina triunguis 2,054 1,027 1,027
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should be taken into account when developing novel tools for  
nucleotides coding prediction. Thus, it is necessary to test sev-
eral methods to observe which ones can have a good predic-
tion for specific species from evolutionary branches. Similar to  
Panwar et al.10, we used the trinucleotides count to distinguish 
coding and non-coding sequences. We evaluated the perform-
ance of seven machine learning algorithms using representative  
organisms from different branches of the Chordata clade.  
For that, we used a training and testing set composed by sequences 
from the same species. The algorithm with best performance 
within all evaluated organisms, according to F1-scores metric, 
was XGBoost, as one can see in the following: A. carolinensis  
(98.79); C. picta bellii (98.00); C. porosus (98.15); D. rerio 
(97.98); E. burgeri (97.56); G. gallus (99.24); H. sapiens (98.50); 
L. chalumnae (99.57); M. domestica (98.84); M. musculus  
(97.73); N. scutatus (96.51); O. anatinus (97.61); P. marinus 
(99.42); S. punctatus (99.20); X. tropicalis (99.13) (Table 2). As 
observed, XGBoost algorithm presented F-score values above 
97.00, with the worst performance obtained for Eptatretus bur-
geri with a F-score of 97.56. The best performance was obtained  
for Petromyzon marinus with 99.42. All detailed perform-
ances with sensitivity, specificity, precision, accuracy, F1-score 
and the confusion matrix from each algorithm is listed in  
Supplementary File S219. Based on these results, XGBoost  
was selected to be implemented in a novel web server and 
stand-alone tool for RNA coding potential prediction called  
RNAmining.

Using RNAmining in evolutionary related and unrelated 
organisms
To demonstrate the generalization of the model built in our 
tool, we evaluated its performance using the following nine  
Chordata and non-Chordata organisms that were not used in 
our training step: A. thaliana; C. elegans; C. auratus; D. mela-
nogaster; G. gorilla gorilla; P. textilis; R. norvegicus; S. cerevisiae;  
Terrapene carolina triunguis. In the training set described in 
the previous topic, we used sequences from representative spe-
cies from amphibians, birds, mammals, fishes and reptiles.  
In this new experiment we executed tests using other chordates, 
but covering other evolutionary groups such as plants, fungi, 
insects and nematodes. The F1-score obtained values vary-
ing from 86.25 to 98.10. The worst performance was when we  
used the training set from L. chalumnae (Sarcopterygii,  
Coelacanth) to predict the coding potential of known coding genes 
and ncRNAs from D. melanogaster (Insecta, Diptera). However,  
the best performance was obtained when we applied the train-
ing set from C. picta bellii (Sauria, Testudines) in coding  
and ncRNA sequences from Terrapene carolina triunguis (Sauria, 
Testudines). The F1-score for each organism, together 
with the respective training set evaluated, can be found in  
Table 3, meanwhile the confusion matrix and the other metrics  
can be visualized in Extended data: Supplementary File S319.

Even without using any plant in the original training set, we 
applied the different models to predict the coding potential of  

Table 2. Benchmarking machine learning methods for coding potential prediction based 
on trinucleotides count. F1-score for each one of the 15 species in which the algorithms were 
tested. Other metrics (sensitivity, specificity, precision, accuracy and the confusion matrix) used for the 
comparison of the algorithm’s performance were made available at the Extended data: Supplementary 
File S219.

Species ANN CNN K-NN NAIVE 
BAYES

RANDOM 
FOREST

SVM XGBoost

Anolis carolinensis 98.47 98.31 93.55 95.50 98.30 98.03 98.79

Chrysemys picta bellii 96.54 96.02 93.54 93.13 96.89 96.04 98.00

Crocodylus porosus 96.74 96.48 93.67 93.93 97.26 96.35 98.15

Danio rerio 97.54 97.77 95.44 94.55 97.56 97.27 97.98

Eptatretus burgeri 94.88 95.69 92.24 94.57 97.35 95.82 97.56

Gallus gallus 98.47 98.27 96.87 95.11 98.91 98.06 99.24

Homo sapiens 98.01 97.66 96.63 86.00 98.30 96.83 98.50

Latimeria chalumnae 99.05 98.72 91.61 98.23 99.56 99.24 99.57

Monodelphis domestica 98.39 98.09 97.11 95.31 98.67 98.01 98.84

Mus musculus 96.67 96.96 95.95 91.56 97.66 96.10 97.73

Notechis scutatus 95.90 94.10 87.77 89,81 94.94 95.73 96.51

Ornithorhynchus anatinus 97.23 96.59 93.59 91.45 96.99 96.38 97.61

Petromyzon marinus 98.40 98.26 88.10 95.99 98.79 97.49 99.42

Sphenodon punctatus 97.83 96.97 78.41 96.70 96.46 95.29 99.20

Xenopus tropicalis 98.28 98.81 85.53 97.14 98.88 97.20 99.13
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known coding and ncRNA sequences from A. thaliana (Plantae, 
Eudicots). The lowest F1-score that RNAmining obtained 
was 93.31 using a fish model (Petromyzon marinus, Agnatha,  
Petromyzontiformes). The best F1-score was obtained with 
a marsupial model (M. domestica, Marsupialia) that reached 
97.40. Thus, this experiment demonstrated the efficiency of the 
method and the models created even when applied in organisms  
phylogenetically distant from those used in training.

Finally, in order to show that the results obtained were not 
by chance, we created 10 datasets of artificial sequences  
containing the same number, length and nucleotides composi-
tion of the coding and ncRNA sequences from the 15 species  
used in our testing shown in Table 1. The F1-score mean, mini-
mum and maximum values of the 10 datasets from each organ-
ism can be visualized in Table 5. The confusion matrix and all  
the other metrics (accuracy, specificity, sensitivity and preci-
sion) can be found in Extended data: Supplementary File S419.  
As we can visualize, the F1 measurement mean remained 
below 38.00 for all artificial sequences created for the tested  
organisms, with the exception of P. marinus (F1-score equals 
to 64.13), which still had a F1-score below to the values 
obtained with the other organisms tested for the coding potential  
prediction (Table 4).

Comparing RNAmining performance with publicly 
available tools
Next, we compared RNAmining performance with other four 
tools commonly used for nucleotides coding potential prediction:  
CPAT, CPC2, RNAcon and TransDecoder. We used as input 
all coding and ncRNA sequences from the testing dataset used 
in the 15 species listed in Table 1. According to the F1-score  
metric, RNAmining outperformed all the tools in all organisms 
with the exception of CPAT for L. chalumnae, in which both  
tools presented an equal F1-score of 99.57. The compara-
tive performance of all tools can be observed in Table 5. The 
detailed results regarding their accuracy, sensitivity, specificity,  
precision, F1-score and the confusion matrix can be found in 
Supplementary File S219. Finally, we used the t-student test 
to compare the results from RNAmining and the other tools,  
revealing that our software presented significantly better results 
in performing coding potential predictions based on known 
coding genes and ncRNAs. The p-values obtained in these 
comparisons were: 0.0026 (vs CPAT); 1.57e-05 (vs CPC2);  
2.69e-05 (vs RNAcon); and 2.89e-05 (vs TransDecoder).

RNAmining stand-alone and web server tool
RNAmining tool was made available in both stand-alone and 
web server versions. The tools only require the nucleotide  

Table 4. Evaluation of RNAmining performance according 
to different sets of artificial sequences from each trained 
model. F1-score metrics for 10 datasets of artificial sequences 
randomly generated for each species. The mean, minimum and 
maximum values are displayed separated by organism. Other 
metrics (sensitivity, specificity, precision, accuracy and the confusion 
matrix) used for the comparisons were made available at the 
Extended data: Supplementary File S419.

Species MEAN MINIMUM MAXIMUM

Anolis carolinensis 1.66 0.86 2.44

Chrysemys picta bellii 1.08 0.70 1.40

Crocodylus porosus 0.95 0.43 1.72

Danio rerio 1.25 0.12 2.21

Eptatretus burgeri 2.31 0.90 3.51

Gallus gallus 2.48 1.88 2.89

Homo sapiens 11.15 10.53 11.52

Latimeria chalumnae 24.86 21.95 27.03

Monodelphis domestica 1.34 1.00 1.18

Mus musculus 6.64 5.74 7.58

Notechis scutatus 1.80 0.58 3.99

Ornithorhynchus anatinus 3.62 2.67 5.04

Petromyzon marinus 64.13 62.99 65.76

Sphenodon punctatus 37.43 31.72 41.84

Xenopus tropicalis 23.26 17.65 28.21
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sequences of the RNAs in which the user intends to perform 
the coding potential prediction in FASTA format, together with 
the species name in a standardized format related to the model 
to be used. Besides our tool presented good results even when  
using phylogenetically distant organisms, we recommend to 
always use the most closely related species to the one the user 
wants to perform the predictions. Furthermore, RNAmining  
documentation presents all the guidelines on how to generate a 
model for a particular set of sequences and organisms of inter-
est. The web interface of RNAmining tool was developed to 
allow users to quickly perform the coding potential prediction  
without the need of installing any specific program and using 
only a generic internet browser. The only requirement for 
running the tool is a FASTA file containing the nucleotide  
sequences and the organism model that the user wants to use, 
which can be selected in a drop-down menu containing all  
15 organisms used in the training step (Figure 2A). There is 
no limit of the number of sequences, but the web server sup-
ports files up to 20Mb. For files bigger than that, we recom-
mend using the stand-alone RNAmining tool. RNAmining will  
automatically classify the FASTA sequences used as input 
and identify which of them are coding or non-coding RNAs. 
Finally, as a result it offers a table with the sequences’ IDs, its  
classification as coding or non-coding and the classifica-
tion probabilities, which can also be downloaded in tabular  

format, together with two separate FASTA files containing both the  
coding and non-coding sequences separately (Figure 2B).

Discussion
The coding potential prediction of nucleotides is a key step 
in the definition of the repertoire of non-coding RNAs in a 
genome or transcriptome project, especially when dealing with  
non-model organisms. Sometimes, predictive tools for the com-
putational characterization of RNA molecules in analyses  
like the prediction of specific RNA families22 or the estima-
tion of a network of RNA-RNA23 or protein-RNA interactions24,  
have their performance affected according to the training organ-
ism, increasing the number of false positives when applied in  
evolutionarily distant species. In this work, we evaluated 
the performances of seven different supervised machine  
learning algorithms, using eukaryotic species from a variety 
of evolutionary clades, revealing their potential to be used in 
the development of novel and improved computational tool for  
the coding potential prediction of RNA sequences. Artificial 
intelligence has been widely used in computational biology25,26,  
but its application to characterize ncRNAs has been limited.

In this benchmarking, we opted to analyze the trinucleotides  
count as the main feature to be evaluated for the coding poten-
tial prediction, followed by a normalization considering the  

Table 5. Benchmarking results from RNAmining and the other tools already 
described in the literature according to organisms from different evolutionary 
branches. F1-score metric for CPAT, CPC2, RNAcon, TransDecorder and RNAmining, 
based on the predictions using models provided by each tool or generated according to 
their instructions. The bold numbers are the best values regarding F1-score metric. The 
results for other metrics were made available at the Extended data: Supplementary File 
S219.

Species CPAT CPC2 RNAcon TransDecoder RNAmining

Anolis carolinensis 94.55 86.87 83.03 88.26 98.79

Chrysemys picta bellii 92.56 89.01 82.36 84.80 98.00

Crocodylus porosus 94.07 92.48 84.32 87.63 98.15

Danio rerio 94.64 87.17 80.97 87.74 97.98

Eptatretus burgeri 95.59 78.82 75.84 76.26 97.56

Gallus gallus 96.95 90.69 75.81 83.50 99.24

Homo sapiens 95.20 75.85 71.73 76.02 98.50

Latimeria chalumnae 99.57 91.60 97.45 98.86 99.57

Monodelphis domestica 96.24 91.44 80.90 85.22 98.84

Mus musculus 95.48 81.40 76.78 80.80 97.73

Notechis scutatus 85.19 86.29 84.83 83.44 96.51

Ornithorhynchus anatinus 87.47 72.04 84.73 84.63 97.61

Petromyzon marinus 96.59 75.14 95.11 96.68 99.42

Sphenodon punctatus 97.61 91.91 97.86 95.24 99.20

Xenopus tropicalis 99.07 97.92 98.70 97.77 99.13

Page 10 of 20

F1000Research 2021, 10:323 Last updated: 11 JUN 2021



Figure 2. RNAmining web server overview. A. Job launcher screen (Run tab). The user only needs to upload the nucleotide sequences in 
FASTA format and select the model to be used based on the evolutionary close related species. B. Results web page screen. General report 
containing the list of coding and non-coding sequences in a dynamic table, in which the user can search for a particular sequence or filter 
only those coding or non-coding RNAs by using a free text form that will filter the results in the table dynamically. The user can download 
the complete table in tabular format and two FASTA files containing the set of coding and non-coding RNAs separately.
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sequences length (i.e. each trinucleotides count was divided 
by the total size of the given sequence). Panwar et al.10 used  
nucleotides counting successfully for this purpose. They con-
sidered 40,905 non-coding RNAs from Rfam release 10.0  
database and 62,473 coding RNA sequences from Human  
RefSeq database, divided into 50% of training and 50% of test  
(i.e. the training and test sets were composed of 20,453 non-
coding and 31,237 coding sequences). They used the counts of  
mono-, di-, tri-, tetra- and penta-nucleotides and a combina-
tion of all counts using the SVM method, and showed that using  
trinucleotides count is enough to predict the coding poten-
tial of ncRNAs with better accuracies. Our comparisons of the  
machine learning algorithms revealed XGBoost as the algo-
rithm with better performance, presenting efficiency in predict-
ing the coding potential of RNA sequences even when using  
the models of distantly related organisms. This latter shows the 
usefulness of this approach for performing coding predictions  
in non-model organisms.

We implemented XGBoost in RNAmining, a stand-alone and 
web server tool flexible to be used in genome or transcriptome  
projects focused in both model and non-model eukaryotic 
organisms. Our tool outperformed similar approaches, such as  
CPAT11, CPC213, RNAcon10 and TransDecoder12. Both ver-
sions of the software are easy to use, with the web version pro-
viding a simple report and FASTA format files that can be used  
in downstream analysis. It provides 15 models generated from 
eukaryotic from different evolutionary clades. Other mod-
els can be generated by the user using the stand-alone version,  
which can be used with simple command line operations. These 
features facilitate its usage for experienced users and, espe-
cially, for those without any programming experience, which can  
easily perform large-scale predictions of the coding poten-
tial of nucleotide sequences in both genome or transcriptome  
initiatives.

Conclusions
•	� We used pattern recognition approaches to investi-

gate the coding potential prediction of RNAs, using  
64 features (all combinations of trinucleotides count).

•	� We performed a benchmarking from seven machine 
learning algorithms (Naive Bayes, SVM, K-NN, 
Random Forest, XGBoost, ANN and DL), through  
15 model organisms from different evolutionary 
branches and implemented the best one (XGBoost) in a  
novel tool (RNAmining).

•	� RNAmining is a user-friendly coding potential pre-
diction web tool that performs XGBoost algorithm to  
predict the coding potential of RNA sequences.

•	� RNAmining was evaluated using other phylogeneti-
cally related and unrelated organisms that were not  
used in our training, demonstrating the efficiency of 
the tool even when applied in species phylogenetically  
distant from those used in training.

•	� A comprehensive analysis using data from 15 organ-
isms revealed that RNAmining outperformed other 
tools available in literature (CPAT, CPC2, RNAcon and  
TransDecoder).

Data availability
Underlying data
Ensembl is an open access genome browser for vertebrate  
genomes in the Ensembl website (https://www.ensembl.org/ 
index.html).

RNAmining is a tool for coding potential prediction which is  
freely available at (https://rnamining.integrativebioinformatics.me/
download).

Extended data
Zenodo: RNAmining Software Supplementary Material,  
http://doi.org/10.5281/zenodo.469957119

This project contains the following extended data:
-	� Supplementary File S1: ANN and DL parameters

-	� Supplementary File S2: All metrics used for the com-
parison of the algorithm’s performance from the  
15 model organisms.

-	� Supplementary File S3: All metrics used for the XGBoost 
algorithm’s performance from the 9 evolutionary 
related and unrelated organisms in which the method  
was evaluated.

-	� Supplementary File S4: All metrics used for the 
XGBoost algorithm’s performance from the artificial  
sequences created for the tested organisms.

Data are available under the terms of the Creative Commons  
Attribution 4.0 International license (CC-BY 4.0).

Software availability
RNAmining is available from: https://rnamining.integrativebioin-
formatics.me/

Source code available from: https://gitlab.com/integrativebioinfor-
matics/RNAmining/-/tree/master/volumes/rnamining-front/assets/
scripts/ and https://github.com/thaisratis/RNAmining

Archived source code as at time of publication:  
https://doi.org/10.5281/zenodo.489191427 

License: MIT
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This paper presents RNAmining to predict the protein-coding potential of transcripts. The authors 
have compared many algorithms using cross-validation and selected XGBoost. The tool has the 
potential to be very useful. It is available online, and it is easy to use. 

In recent studies, some small ORF in annotated ncRNA has validated protein-coding 
potential 1. How does RNAmining behave when these annotated ncRNAs that contain such 
small ORF challenge it?  
 

1. 

It is important to cite RNAploc 2, BASINET 3, and CoDaN 4. 
 

2. 

I suggest plotting ROC curves when comparing classification methods. 
 

3. 

In the abstract, the authors have described the use of cross-validation to assess the 
accuracy of each classification method. However, in methodology, the author explained that 
80% is the training set and the other 20% is the validation set. And for CNN, and ANN this 
number is also different (60%/20%). It isn't clear. It will help create a figure showing the 
"workflow" of the Training/Validation/Testing part. 
 

4. 

The standard deviation of the cross-validation can be helpful to show the stability of each 
classification method. 

5. 
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Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Partly

Competing Interests: I am the author of CoDaN 
(https://academic.oup.com/bib/article/22/3/bbaa045/5847603)

Reviewer Expertise: Bioinformatics, Computational Biology, Machine Learning.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 02 Jun 2021
Thaís A. R. Ramos, Universidade Federal do Rio Grande do Norte, Natal, Brazil 

1- RNAmining was trained using coding genes and ncRNAs from the Ensembl database. It 
evaluates the patterns in the tri-nucleotide counts in any RNA sequence (which could be an 
ORF or not) and, according to this, it classifies into coding and non-coding sequences. The 
RNAmining training was not performed with the proposal of generating a specific model for 
ORFs or some specific type of sequence, it works independently of this. 
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2- Thank you for your suggestion. We included the citations for BASiNET and CoDaN in the 
Introduction section of the manuscript. We were not able to find the manuscript describing 
RNAploc and it was not included. 
 
3- We believe that it is possible to visualize the performance of the methods from the tables 
presented along the main text of the paper, as well as made available as supplementary 
material, since the measures used for the ROC curves construction are the same presented 
there. In addition, we consider that when we have too similar numbers it is easier to see the 
difference in a table. 
 
4- The cross-validation method was used in the grid search method using the training 
dataset to validate the hyperparameters, choosing the best set of parameters. In addition, 
this partition method validates the hyperparameter's results through different validation 
sets. Therefore, it proves that our model is working and generalizing the problem. Thus, 
when we had the best parameters we used the test dataset (20%) to generate the final 
models and to calculate the metrics. The connectionist methods (e.g. Artificial Neural 
Networks and Convolutional Neural Networks) demand a validation dataset to adjust the 
model, because of the weights optimization stage and its hyperparameters. Thus, for 
experiments with ANN and CNN, 20% was used for validation, 60% for training (defined as 
80% for the other algorithms) and 20% for testing, in all the cases. In addition, due to the 
complexity of these 2 algorithms, it is more common in literature to use the holdout 
(training/validation/test) partition method instead of cross-validation. Thereby, we modified 
the sentence in the abstract: "All the machine learning algorithms tests were performed 
using 10-folds cross-validation..." to "The machine learning algorithms validations were 
performed using 10-fold cross-validation...". In addition, in the section "Training and testing 
datasets, model building and quality measuring for coding potential evaluation" we 
changed the following sentence: "Sequences were randomly divided into training and 
testing datasets, using 80% of the data for training and 20% for testing. For ANN and CNN 
experiments, sequences were split into 60% of the data for training and 20% for validation. 
The testing dataset was the same used in the other machine learning algorithms." to the 
following text: "The cross-validation approach was applied in the grid search method, using 
the training dataset to validate the hyperparameters and obtain the best set of this to be 
used. In addition, this partition method validates the hyperparameter's results through 
different validation sets. Therefore, it proves that our model is working and generalizing the 
problem. Thus, sequences were randomly divided into training and testing datasets, using 
80% of the data for training and 20% for testing. The connectionist methods (e.g. Artificial 
Neural Networks and Convolutional Neural Networks) demand a validation dataset to adjust 
the model, because of the weights optimization stage and its hyperparameters. Thus, for 
experiments with ANN and CNN, 20% were used for validation, 60% for training (defined as 
80% for the other algorithms) and 20% for testing.The testing dataset was the same used in 
all machine learning algorithms." 
 
5- The results shown in this paper are not obtained using cross-validation. The cross-
validation method was used in the grid search method to validate the hyperparameters, 
choosing the best set of parameters. Thus, we can validate the hyperparameter's results 
through different validation sets. Therefore, it proves that our model is working and 
generalizing the problem. Thus, to generate the final models and to calculate the metrics, 
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we used the test dataset (20%) with the best parameters.  
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Are there two different datasets of model organisms? 
On the abstract "...15 organisms from different evolutionary branches..."  
On the main text "RNAmining was evaluated through 24 organisms from the eukaryotic 
tree of life and its results outperformed publicly available tools commonly used for that 
purpose." 
 

1. 

Why fine-tuning SVM was performed with a grid search strategy and not Random Forest 
too? Provide some reasoning. 
 

2. 

Why sequences were divided using different proportions? Provide some reasoning. 
"Sequences were randomly divided into training and testing datasets, using 80% of the 
data for training and 20% for testing. For ANN and CNN experiments, sequences were 
split into 60% of the data for training and 20% for validation." 
 

3. 

On the web tool, you should provide a column for prediction probability for coding and non-
coding variants. The new column will improve user analysis, such as filtering for those 
predictions with XGboost >= 0.9.

4. 

 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
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and any results generated using the tool?
Partly

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Bioinformatics. Machine Learning. Transcriptome Analysis. Population 
Genomics.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 02 Jun 2021
Thaís A. R. Ramos, Universidade Federal do Rio Grande do Norte, Natal, Brazil 

1- The connectionist methods (e.g. Artificial Neural Networks and Convolutional Neural 
Networks) demand a validation dataset to adjust the model, because of the weights 
optimization stage and its hyperparameters. Thus, for experiments with ANN and CNN, 20% 
were used for validation, 60% for training (defined as 80% for the other algorithms) and 
another 20% for testing, in all the cases. 
 
2- Yes, in fact we have the dataset 1 composed of 15 model organisms which were used to 
build the models, and the dataset 2 composed of other 9 phylogenetically related and 
unrelated organisms that were not used in our training, demonstrating the efficiency of the 
tool even when applied in species phylogenetically distant from those used in training. On 
the main text, we changed this sentence in the “Introduction” section to: "Next, RNAmining 
was evaluated in another 9 phylogenetically related and unrelated organisms that were not 
used in our training, demonstrating the efficiency of the tool even when applied in species 
phylogenetically distant from those used in training. In total, it was evaluated through 24 
organisms from the eukaryotic tree of life and its results outperformed publicly available 
tools commonly used for that purpose.” 
 
3- In fact all the methods were executed with the grid search method. We made a mistake in 
the writing. It was modified by replacing the sentences: "The Random Forest model was 
implemented using empirical tests and the best result was selected for training the model. 
We considered the default parameters with the exception of the number of trees used (150 
estimators) and the criterion parameter setted to 'entropy' for information gain. KNN and 
Naive Bayes models were trained with the default values. The SVM parameters were 
obtained through grid search method and the resulting model was trained with the Radial 
Basis Function (RBF) kernel, with the Regularization parameter (C) and Kernel coefficient 
(Gamma) defined in 1000 and 0.8, respectively. ANN and DL were performed with different 
architectures according to grid search and empirical tests" to the following: "XGBoost, K-NN 
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and Naive Bayes models were trained with the default values. The Random Forest and SVM 
parameters were obtained through grid search method, the best results using Random 
Forest resulted in a model generated with the default parameters, with the exception of the 
number of trees used (150 estimators) and the criterion parameter setted to 'entropy' for 
information gain. For SVM, the resulting model was trained with the Radial Basis Function 
(RBF) kernel, with the Regularization parameter (C) and Kernel coefficient (Gamma) defined 
in 1000 and 0.8, respectively. ANN and DL were performed with different architectures 
according to grid search and empirical tests." 
 
4- Thank you for your suggestion. We considered it and provided a new column in the 
output file (Classification probabilities) in both web server and stand-alone versions.  
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