Skip to main content
. 2021 Jun 8;10:323. Originally published 2021 Apr 26. [Version 2] doi: 10.12688/f1000research.52350.2

Table 2. Benchmarking machine learning methods for coding potential prediction based on trinucleotides count.

F1-score for each one of the 15 species in which the algorithms were tested. Other metrics (sensitivity, specificity, precision, accuracy and the confusion matrix) used for the comparison of the algorithm’s performance were made available at the Extended data: Supplementary File S2 19 .

Species ANN CNN K-NN NAIVE
BAYES
RANDOM
FOREST
SVM XGBoost
Anolis carolinensis 98.47 98.31 93.55 95.50 98.30 98.03 98.79
Chrysemys picta bellii 96.54 96.02 93.54 93.13 96.89 96.04 98.00
Crocodylus porosus 96.74 96.48 93.67 93.93 97.26 96.35 98.15
Danio rerio 97.54 97.77 95.44 94.55 97.56 97.27 97.98
Eptatretus burgeri 94.88 95.69 92.24 94.57 97.35 95.82 97.56
Gallus gallus 98.47 98.27 96.87 95.11 98.91 98.06 99.24
Homo sapiens 98.01 97.66 96.63 86.00 98.30 96.83 98.50
Latimeria chalumnae 99.05 98.72 91.61 98.23 99.56 99.24 99.57
Monodelphis domestica 98.39 98.09 97.11 95.31 98.67 98.01 98.84
Mus musculus 96.67 96.96 95.95 91.56 97.66 96.10 97.73
Notechis scutatus 95.90 94.10 87.77 89,81 94.94 95.73 96.51
Ornithorhynchus anatinus 97.23 96.59 93.59 91.45 96.99 96.38 97.61
Petromyzon marinus 98.40 98.26 88.10 95.99 98.79 97.49 99.42
Sphenodon punctatus 97.83 96.97 78.41 96.70 96.46 95.29 99.20
Xenopus tropicalis 98.28 98.81 85.53 97.14 98.88 97.20 99.13