
Received: 1 September 2020; Revised: 16 November 2020; Accepted: 11 December 2020

© The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

487

Toxicology Research, 2021, 10, 487–494

doi: 10.1093/toxres/tfaa109
Advance Access Publication Date: 7 May 2021
Review

R E V I E W

Extracellular signal-regulated kinase signaling
pathway and silicosis
Yujia Xie,1,2,† Jixuan Ma,1,2,† Meng Yang,1,2 Lieyang Fan1,2

and Weihong Chen 1,2,∗
1Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430030, China and 2Key Laboratory of Environment
and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of
Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of
Science and Technology, Wuhan 430030, China
∗Correspondence address. Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University
of Science and Technology, Wuhan 430030, China. Tel: +862783691677; E-mail: wchen@mails.tjmu.edu.cn
†These authors attributed equally to the article.

Abstract

Silicosis is a scarring lung disease caused by inhaling fine particles of crystalline silica in the workplace of many industries.
Due to the lack of effective treatment and management, the continued high incidence of silicosis remains a major public
health concern worldwide, especially in the developing countries. Till now, related molecular mechanisms underlying
silicosis are still not completely understood. Multiple pathways have been reported to be participated in the pathological
process of silicosis, and more complex signaling pathways are receiving attention. The activated extracellular
signal-regulated kinase (ERK) signaling pathway has been recognized to control some functions in the cell. Recent studies
have identified that the ERK signaling pathway contributes to the formation and development of silicosis through regulating
the processes of oxidative stress, inflammatory response, proliferation and activation of fibroblasts, epithelial–mesenchymal
transformation, autophagy, and apoptosis of cells. In this review article, we summarize the latest findings on the role of ERK
signaling pathway in silica-induced experimental models of silicosis, as well as clinical perspectives.
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Introduction
Crystalline silica, as an environmental pollutant, exists in various
natural phenomenon, such as sandstorms and volcanic erup-
tions. More importantly, as an occupational hazard, crystalline
silica was also generated in the process of quarrying, mining,
tunneling, construction, pottery making, and sandblasting. It has
been well recognized that long-term inhalation of crystalline
silica dust may cause silicosis, which is one of the most seri-
ous occupational diseases worldwide [1–3]. Although prevention

efforts have been implemented for many decades, the preva-
lence rate of silicosis is still increasing in the recent decades,
and the burden of disease caused by silicosis remained high
worldwide, especially in developing countries including China
[4–6]. In addition, outbreaks of silicosis occurred in developed
countries such as the USA, Australia, and Spain [1, 7–9]. The large
scale of silica exposed workers maybe one of the reasons for high
incidence of silicosis. Published reports have indicated that there
are approximately 11.5 million workers and 23 million workers
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Figure 1: ERK signaling pathway and silicosis. ERK signaling pathway is involved in diverse cellular events. Growth factor and cytokines bind to RTK on the cell

membrane, causing the combination of growth factor receptor bound protein 2 (Grb-2) and SOS to activate Ras. Active GTP-bound Ras triggers a cascade of Raf–MEK–ERK

phosphorylation. ERK translocates into the nucleus to regulate the expression of genes. ERK signaling pathway participates in the formation and development of silicosis,

including silica-elicited ROS activating the pathway and inducing the release of cytokines such as TNF-α, IL-6, and IL-8; differentiation of fibroblasts to myofibroblasts

and accumulation of ECM; EMT process; and cell autophagy and apoptosis.

exposed to crystalline silica in India and China, respectively [10,
11]. Apart from this reason, the complex and unclear pathogen-
esis of silicosis also makes it difficult to prevent and manage
silicosis.

Silicosis is a diffuse pulmonary interstitial disease character-
ized by a fibrotic response in lung parenchyma [12, 13]. In addi-
tion, silicosis is a progressive condition, meaning it gets worse
overtime, even if subjects were out of exposure to silica dust
[13]. Normally, symptoms of silicosis may start out as an intense
cough, shortness of breath, or weakness, and followed by present
chest pain, weight loss, difficulty breathing. Different theories
have been put forward to explain how silicosis is triggered, but
all of those cannot comprehensively summarize it. The generally
accepted process including that (1) respirable crystalline silica
particles are inhaled through respiratory tract and deposit in
the small bronchi and alveolar areas. Then, silica particles could
be engulfed by alveolar macrophages and damage cells by their
direct cytotoxicity, as well as make more immune cells gather
and uptake them; (2) uncleared silica particles could induce the
release of reactive oxygen species (ROS) and cause the activa-
tion of inflammasomes. (3) Macrophages are damaged and then
release silica particles and cytokines, causing persistent inflam-
mation and stimulating the proliferation and differentiation of
fibroblasts. (4) The above 1–3 can be circulated, leading to the
formation and deposition of extracellular matrix (ECM). Besides,
silica-induced macrophages recruitment and their transforma-
tion into epithelioid histiocytes lead to a delayed hypersensitivity
reaction, resulting in the silicotic granuloma [13–16].

Mitogen-activated protein kinases (MAPK) pathways are
evolutionarily conserved signaling pathways that participate

in many cellular processes. Extracellular signal-related kinases
(ERK), Jun amino-terminal kinases, and p38 proteins are three
main subfamilies of MAPKs [17]. Of these, ERK signaling
pathway has been thoroughly studied, which is involved in
diverse cellular events, including cell growth, proliferation,
differentiation, migration, survival, and apoptosis [18–20]. The
core members of the ERK signaling pathway include Ras (a
small GTPase), Raf (MAPK kinase kinase), MEK (MAPK kinase),
and ERK (MAPK) [17, 21]. Classically, growth factor, cytokines,
and other extracellular substances bind to specific receptors
on the cell membrane, causing the combination of growth
factor receptor bound protein-2 (Grb-2) and son of sevenless
(SOS) to switch the inactive GDP-bound Ras to active GTP-
bound Ras. Activated Ras triggers a cascade of Raf–MEK–ERK
phosphorylation. Ras recruits Raf (serine/threonine kinase) from
the cytoplasm to the cell membrane and phosphorylates it, and
activated Raf phosphorylates MEK (MEK1 and MEK2), which in
turn phosphorylates ERK (ERK1 and ERK2) [20]. Activated ERK1/2
can not only regulate the target substrates in the cytoplasm,
but also translocate into the nucleus and phosphorylate various
transcription factors to regulate the expression of genes (Fig. 1).
In addition, the activation of ERK substrates will result in
the formation of feedback loops, which can control the ERK
signaling pathway in a positive or negative way according to the
substrates [22].

In the respiratory system, ERK signaling pathway is asso-
ciated with lung development and the process of lung injury
and repair [19, 23]. Multiple extracellular stimuli including envi-
ronmental pollutants, cytokines, and oxidants, can activate ERK
signaling pathway, leading to pulmonary inflammatory response
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and fibrosis [24–26]. Accumulating studies have indicated that
ERK signaling pathway participates in the formation and devel-
opment of silicosis [27–29], including (1) the crystalline silica-
induced oxidative stress activating the pathway; (2) the release
of large amounts of inflammatory cytokines; (3) the epithe-
lial–mesenchymal transformation (EMT) and the proliferation
and activation of fibroblasts induced by silica particles; and (4)
autophagy and apoptosis process of cells (Fig. 1). In this review,
we will focus on the current in vivo and in vitro studies to reveal
the role of ERK signaling pathway in the formation and develop-
ment of silicosis (Table 1).

ERK Signaling Pathway in the Oxidative Stress
Induced by Silica Particles
Oxidative stress, which is induced by imbalance between ROS
production and ROS scavenging, is supposed to be initial part
of the process of silicosis. ROS is a mediator that can help cells
respond to external stimuli under physiological conditions, but
silica-derived overproduction of ROS will result in pulmonary
damage through causing the cell death and the release of
inflammatory cytokines [30–33]. ERK signaling pathway has been
reported to be activated by increasing ROS production and is
considered as an important part in silicosis [34, 35].

Cho et al. [36] found that silica (diameter: 1–5 μm; 1 mg/well)
caused elevation of ROS in Rat2 fibroblasts and activated the
phosphorylation of ERK1/2. Catalase reduced the phosphoryla-
tion levels of ERK1/2 protein by suppressing ROS generation.
Similarly, Ghio et al. [37] observed the effects of silica (median
diameter: 1.6–1.7 μm; 100 μg/ml) on human bronchial epithe-
lial (HBE) cells, and found that increased production of H2O2

(a kind of ROS) in HBE cells triggered ERK signaling pathway,
which in turn caused the secretion of inflammatory cytokines.
Nakashima et al. [38] detected that the phosphorylation of ERK
was induced and the expression of Hemeoxygenase-1 (HO-1), an
inducible antioxidant protein, was increased in the lung tissue of
BALB/c mice with silica-induced (median diameter: 1.6–1.7 μm;
2.5 mg) lung injury, as well as in the mouse macrophage cell line
RAW264.7 and HBE cells 16HBE treated with silica (median diam-
eter: 1.6–1.7 μm; 0.1–0.5 mg/ml). Moreover, hydroxyl radical scav-
enger (tetramethylthiourea) could suppress the phosphorylation
of ERK and induction of HO-1. However, the phosphorylation
ERK was decreased in the lungs of silicosis mice pretreated with
hemin (an inducer of HO-1), but increased after pretreated with
zinc protoporphyrin (an inhibitor of HO-1). This study clarified
that silica-induced ROS production triggered ERK signaling path-
way to active the antioxidant system, while antioxidant inhibited
the ERK pathway through negative feedback regulation. These
above studies suggest that continuous production of oxidants
will activate the ERK signaling pathway, and lead to the subse-
quent adverse effect.

ERK Signaling Pathway in the Inflammatory
Response Induced by Silica Particles
Pulmonary inflammation is one of the most important features
of silicosis. Silica stimulate tremendous induction of inflam-
matory cytokines such as tumor necrosis factor-α (TNF-α),
interleukin-1β (IL-1β), and interleukin-6 (IL-6), which contribute
to the subsequent processes of lung injury via diverse signal
transduction pathways including ERK signaling pathway [39–42].
Besides, inhibition of ERK signaling pathway suppress the release

of inflammatory cytokines to alleviate inflammatory response
[43, 44].

Øvrevik et al. [45, 46] found that crystalline silica (median
diameter: 1.6–1.7 μm; 30 μg/cm2) exposure stimulated primary
rat type-II epithelial cells to release macrophage inflammatory
protein-2 (MIP-2) and induced phosphorylation of ERK1/2.
Although blocking ERK signaling pathway by PD98059 (the
MEK1/2 inhibitor) inhibited the release of the MIP-2. Similarly,
secretion of Interleukin-8 (IL-8) in human lung epithelial A549
cells treated with silica (median diameter: 1.6–1.7 μm; 40 μg/cm2)
was dependent on activation of ERK signaling pathway. In
addition, Tomaru and Matsuoka [47] showed that both mRNA and
protein level of cyclooxygenase-2 (COX-2), an essential mediator
of airway inflammation, were increased in A549 cells exposed
to crystalline silica (median diameter: 1.6–1.7 μm; 60 μg/cm2),
accompanied by an elevated level of ERK1/2 phosphorylation.
While U0126, an inhibitor of MEK1/2, suppressed the expression
of COX-2 via blocking the ERK signaling pathway. The other study
by Li et al. [29] showed silica (diameter: 0.1–10 μm; 100 μg/ml)
stimulated the secretion of TNF-α through activating ERK
signaling pathway in RAW264.7 cells, and PD98059 significantly
reduced the expression of TNF-α. All of these results suggest that
ERK signaling pathway is involved in the inflammatory response
caused by silica.

ERK Signaling Pathway in the Fibrosis Induced
by Silica Particles
Myofibroblasts, which have a high capacity to produce ECM, are
usually transformed from activated fibroblasts stimulated by
external stimuli, but studies have proposed that EMT process
contributes to the accumulation of myofibroblasts as well
[48]. EMT helps to increase the number of fibroblasts and
myofibroblasts, and the excessive proliferation and activation
of fibroblasts and myofibroblasts lead to the production and
accumulation of ECM, resulting in the formation of lung
fibrosis [49–51].

EMT is the transformation of polarized epithelial cells into
migrating mesenchymal cells, characterized by loss of epithelial
markers E-cadherin and gain of mesenchymal markers like N-
cadherin and α-smooth muscle actin. After epithelial cells dam-
age, the cell–cell connection is destroyed and the integrity of
epithelium is impaired. Meanwhile, the epithelial cells transform
into fibroblasts and myofibroblasts to produce ECM [48, 50, 52].
Accumulating studies have confirmed that silica-induced EMT
of airway and alveolar epithelia cells is a vital process of silicosis
formation, and ERK signaling pathway is necessary for EMT [53–
55]. Li et al. [50] found that silica (median diameter: 2.5 μm;
50 μg/cm2) exposure induced EMT in 16HBE cells, accompanied
by continuous activation of NLRP3 inflammasome and elevated
level of ERK1/2 phosphorylation. While inhibition of NLRP3 par-
tially reversed the phosphorylation of ERK1/2 and decreased
phosphorylation of its downstream transcription factor NF-κb,
which in turn alleviate silica-induced EMT. It has been proved
in A549 cells that blockage of ERK signaling pathway suppressed
the silica-induced expression of plasminogen activator inhibitor-
1 to inhibit EMT process, thus alleviating the fibrotic responses
[56–58]. The study conducted by Baek et al. [59] also showed that
A549 cells had a high level of ERK1/2 phosphorylation treated
with transforming growth factor-β1 (TGF-β1), which could pro-
moted EMT. Besides, they demonstrated that apolipoprotein A1
(ApoA1), an anti-fibrotic protein, could inhibit the process of EMT
by blocking the ERK signaling pathway in silica-induced lung
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Table 1: The role of ERK signaling pathway in silicosis

Effect on silicosis Experimental model Key findings Reference

Activated by oxidative stress Male BALB/c mice with silica instillation HO-1, an inducible antioxidant, negatively
regulates phosphorylation of ERK in
silicosis mice.

[38]

RAW 264.7 (mouse macrophages) were
exposed to silica

ROS blocking by the radical scavenger
leads to the suppression of ERK activation
induced by silica.

[38]

16HBE cells (human bronchial epithelial
cells) were exposed to silica

Silica-derived ROS induces HO-1 via
ERK1/2 activation.

[38]

Rat2 fibroblasts were exposed to silica Silica-induced ROS serves as a signal
transduction element in activating ERK
signaling pathway.

[36]

Promote inflammatory response HBE cells (human bronchial epithelial
cells) were exposed to silica

Silica exposure activates ERK and
increases the expression of inflammatory
cytokines (IL-6 and IL-8)

[37]

T2 (primary rat type-II epithelial cells)
were exposed to silica

Silica induces MIP-2 release via activating
ERK signaling pathway

[46]

A549 (human lung epithelial cells) were
exposed to silica

Silica induces the release of IL-8 and COX-2
via activating ERK signaling pathway.

[45–47]

Promote EMT process Male C57BL/6 mice were treated with silica
intratracheally

In a silica-induced lung fibrosis mouse
model, ApoA1 overexpression inhibits the
phosphorylation of ERK and reduces the
process of EMT.

[59]

A549 (human lung epithelial cells) were
exposed to silica

The expression of PAI-1, which contributes
to the EMT process, is induced by silica
through a ERK/AP-1-dependent
mechanism.

[56].

16HBE cells (human bronchial epithelial
cells) were exposed to silica

NLRP3 inflammasomes modulate
silica-induced EMT through the ERK/NF-κB
pathway.

[50]

Promote proliferation and
transformation of cells

Male C57BL/6 mice were intratracheally
exposed to silica

The activation of AP-1 stimulated by silica
is mediated by ERK signaling pathway.

[71]

RAW 264.7 (mouse macrophages) were
exposed to silica

Silica-induced TNF-α and TGF-β1
expression and nuclear factor Egr-1
activation are dependent on ERK signaling
pathway.

[29, 62]

A549 (human lung epithelial cells) were
exposed to silica

Silica-induced activation of Egr-1 is mainly
mediated by ERK signaling pathway

[77]

HELF (human embryonic lung fibroblasts)
were exposed to silica

Silica exposure causes cell cycle
alternation through activating the
ERK/AP-1/cyclin D1-CDK4 pathway.

[66, 72]

Mouse lung fibroblasts from male C57BL/6
mice treated with 50 mg/kg silica.

LncRNAPCAT29 inhibits the proliferation of
pulmonary fibroblasts and expression of
fibronectin and collagen type I via blocking
ERK signaling pathway.

[64]

Against proliferation HELF (human embryonic lung fibroblasts)
were exposed to silica

The expression of cyclin D1 and CDK4
decrease after silica treatment through
activating ERK signaling pathway.

[70, 73]

Promote apoptosis BEAS-2B (human bronchial epithelial cells)
were exposed to silica

Silica induced apoptosis of cells via
activating ERK signaling pathway.

[78]

Against apoptosis RAW 264.7 (mouse macrophages) were
exposed to silica

ERK phosphorylation can protect against
apoptosis of cells induced by silica.

[79]

Against autography Male C57BL/6 mice were administrated
with suspension of silica particles

Silica activates the ERK signaling pathway,
leading to the inhibition of autophagy
activity.

[63]

AP-1: Activator protein-1; ApoA1: Apolipoprotein A1; CDK4: Cyclin-dependent kinase 4; COX-2: Cyclooxygenase-2; Egr-1: Early growth response protein-1; EMT:
Epithelial–mesenchymal transformation; ERK: Extracellular signal-regulated kinase; HO-1: Hemeoxygenase-1; IL-6: Interleukin-6; IL-8: Interleukin-8; LncRNAPCAT29:
LncRNA, prostate cancer-associated transcript 29; MIP-2: Macrophage inflammatory protein-2; PAI-1: Plasminogen Activator Inhibitor-1; ROS: Reactive oxygen species;
TGF-β1: Transforming growth factor-β1; TNF-α: Tumor necrosis factor-α.

fibrosis mouse model (median diameter: 1–5 μm; 20 mg). All
these researches suggest that ERK signaling pathway is involved
in the silica-induced EMT process. However, it is hardly to draw

the conclusion because the lack of in vivo studies. Whether ERK
signaling pathway participates in EMT process in silicosis needs
further investigation.
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Fibroblasts are the key effector cells for tissue regeneration
and repair under physiological conditions, but will result in
chronic fibrosis of organs in a pathological state [49, 60]. It
has been reported that ERK signaling pathway is involved in
the proliferation and activation of fibroblasts induced by silica
particles [61, 62]. Inhibition of activated fibroblasts via blocking
the ERK signaling pathway can largely reduce the expression
of fibronectin and collagen type I, which in turn alleviated the
severity of silica-induced lung lesions and retarded the formation
of pulmonary fibrosis [63]. Li et al. [29] found that the secretion
of TGF-β1, which can promote activation and transformation of
fibroblasts, increased in RAW264.7 cells exposed to silica (diame-
ter: 0.1–10 μm; 100 μg/ml) via ERK signaling pathway. Liu et al. [64]
demonstrated that lncRNA, prostate cancer-associated transcript
29 exerted important functions in pulmonary fibrosis induced
by silica (50 mg/kg) via activation of ERK signaling pathway and
may inhibit the expression of fibronectin and collagen type I by
targeting the ERK signaling pathway in mouse lung fibroblasts.

Silica exposure can cause disorder of cell proliferation by
altering cell cycle, in which the transformation from G1 to S
phase is the checkpoint [65, 66]. Activator protein-1 (AP-1) con-
trols gene expression and affect cell proliferation, involving in
the initiation and development of silicosis [67–69]. Activated ERK
signaling pathway induced by silica contributes to the alter-
ation of cell cycle through activating AP-1, thereby promoting
cell proliferation [66, 70]. Vallyathan et al. [71] found that in
the lungs of silica-treated (mean diameter: 3.7 μm; 5 mg) mice,
the activation of AP-1 was mediated by ERK signaling path-
way. Shen et al. [72] revealed that silica (diameter: <5 μm; 50–
400 μg/ml) triggered ERK signaling pathway in human embry-
onic lung fibroblasts (HELF), accompanied by activation of HELF
transformation. Compared with HELF, the expression of cyclin
D1 and cyclin-dependent kinase 4 (CDK4), enzymes that regulate
the cell transition from G1 to S phase, were increased in silica-
induced transformed HELF cells (S-HELF) that with silica (diam-
eter: <5 μm; 160 μg/cm2) treatment for 72 h. While inhibition of
ERK1/2 phosphorylation and AP-1 both reduced the expression
of cyclin D1 and CDK4 in S-HELF. This study provided evidence
for involvement of ERK/AP-1 signaling pathway in silica-induced
high levels of cyclin D1 and CDK4. Similarly, Jia et al. [65, 66]
found that cyclin D1 and CDK4 were highly expressed in HELF
cells after silica (diameter: <5 μm; 200 μg/ml) exposure, which
could explain the significantly increasing proportion of S phase
cells and the decreasing proportion of G1 phase cells. Further-
more, they observed that overexpression of dominant-negative
mutants of ERK inhibited AP-1 activation and attenuated the
G1 phase cell reduction. These studies demonstrated that sil-
ica exposure could cause cell cycle alteration through the ERK
signaling pathway, leading to fibroblasts abnormal proliferation.
However, studies indicated that the phosphorylation levels of
ERK were increased, while the expression levels of cyclin D1
and CDK4 were decreased in HELF cells after treated with silica
(diameter: <5 μm; 400 μg/ml) for 2 h. And blocking ERK signaling
pathway prevented the change [73]. Similarly, Wang et al. [70]
found that phosphorylation of ERK increased significantly but
the expression level of CDK4 was reduced in HELF exposed to
silica (diameter: <5 μm; 200 μg/cm2). The reason for the incon-
sistencies of the above studies may be that short-time silica
exposure may cause cells to stay in G1 phase for DNA damage
repair by inhibiting cell cycle, but long-time exposure may lead
to abnormal cell proliferation. More researches need to be per-
formed to clarify the precise mechanism.

In addition to fibroblasts, the proliferation and activation
of other cells are also associated with silicosis. Early growth

response protein-1 (Egr-1), a transcription factor, plays a central
role in silica-induced fibrogenic response by regulating cell pro-
liferation and synthesis of ECM [74–76]. Zeng et al. [62] observed
that exposure to silica (100 μg/ml) upregulated the level of ERK
1/2 phosphorylation in RAW264.7 rapidly, accompanied by over-
expression of Egr-1 mRNA and protein. And nuclear expression
and transcription of Egr-1 could be largely suppressed via using
U0126. In this study, similar results were detected in the lungs of
Wistar rats with silica (50 mg) treatment. Chu et al. [77] also found
similar results in A549 cells after silica (100 μg/ml) administra-
tion. These researches suggest that Egr-1 plays a key role in silica-
induced cell proliferation depended on ERK signaling pathway.

ERK Signaling Pathway in Apoptosis and
Autophagy Induced by Silica
Apoptosis is a programmed cell death and it is responsible for
the lung cells injury and repair. Researches have indicated that
there is a causal relationship between activation of ERK signaling
pathway and cell apoptosis, and inhibition of the pathway can
abrogate cell apoptosis induced by silica, asbestos or oxidants
[34, 78]. Antognelli et al. [78] indicated that crystalline silica
(median diameter: 1.6–1.7 μm; 100 μg/cm2) induced apoptosis
of human bronchial BEAS-2B cell via activating ERK signaling
pathway and U0126 could abolish the effect of silica-induced
apoptosis through negatively modulating Glyoxalase I, a cellular
defense enzyme. However, Gambelli et al. [79] suggested ERK
phosphorylation could protect against apoptosis of the mouse
macrophage RAW 264.7 cells induced by silica (average diameter:
1.7 μm; 20 μg/cm2); while in the presence of PD98059 or dominant
negative ERK mutants, the silica-induced apoptosis in RAW 264.7
macrophage significantly increased through inhibition of NF-κb
activation. ERK signaling pathway has opposite effects on cell
apoptosis in response to different time of silica exposure via
diverse downstream factors.

Autophagy, a predominant cellular mechanism that regulates
cell growth, survival and senescence, often occurs in the state of
various cellular stresses such as starvation, hypoxia, and DNA
damage [80]. Autophagy delays the occurrence of silica-induced
lung inflammation and fibrosis through reducing the production
of ROS and inflammatory cytokines, as well as the apoptosis of
macrophages and alveolar epithelial cells [81, 82]. Deficiency of
autophagy in macrophages can lead to inflammation after silica
exposure [83]. Han et al. [63] found that the expression of the anti-
autophagy protein B-cell lymphoma 2 (Bcl-2) was upregulated
in silicosis mouse model (diameter: 0.5–10 μm; 50 mg/kg), while
activated autophagy inhibited silica-induced fibrogenesis. In the
follow-up study, they proved that TGF-β1 increased the expres-
sion of Bcl-2 by activating the ERK signaling pathway, leading to
the inhibition of autophagy activity, whereas U0126 decreased
the expression levels of Bcl-2. These results implied that ERK
signaling pathway affected the silica-induced lung fibrosis by
regulating the autophagy process of cells. Nevertheless, some
studies suggested that silica can induce macrophage autophagy
and the autophagy process activated by the ERK signaling path-
way led to cells death; while decreasing level of autophagy atten-
uated the inflammatory responses [84, 85]. The controversy of
these results may be linked to the different levels of autophagy.
In physiological state, autophagy can hinder the progress of
silicosis by leading to apoptosis resistance and reducing lung
inflammation. While overactive and persistent autophagy will
promote apoptosis of alveolar macrophages and proliferation
and migration of pulmonary fibroblasts, leading to lung injury
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and fibrogenesis of silicosis [86, 87]. The role and mechanism of
autophagy in silicosis are worth further exploration.

Conclusion
In summary, published studies have demonstrated that ERK
signaling pathway is related to silicosis. The production of ROS
elicited by silica can activate ERK signaling pathway, and the
activation of the pathway induces the release of inflammatory
factors, modulates autophagy and apoptosis of cells, promotes
EMT process and proliferation and activation of fibroblasts to
result in synthesis of ECM, leading to the formation of lung
fibrosis. Meanwhile, the interaction among different mediators
and the feedback regulation of ERK signaling pathway consti-
tute a relatively complex regulatory system. To date, studies
about the role of ERK signaling pathway in the progression of
silicosis are mainly focused on experimental models, especially
in vitro studies. In the future, relevant epidemiological studies
and researches about cellular and molecular changes are still
needed to be conducted to provide clues for the prevention and
treatment of silicosis.
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