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Abstract

We demonstrate quantitatively how values of electron densities in GaAs extracted from Raman 

spectra of two samples depend on models used to describe electric susceptibility and band 

structure. We, therefore, developed a theory that is valid for any temperature, doping level, and 

energy ratio proportional to q2=(ω + iγ) (where q is the magnitude of wave vector, ω is Raman 

frequency, and γ is plasmon damping). We use a full Mermin–Lindhard description of Raman line 

shape and compare n-type GaAs spectra obtained from epilayers with our simulated spectra. Our 

method is unique in two ways: (1) we do a sensitivity analysis by employing four different 

descriptions of the GaAs band structure to give electron densities as functions of Fermi energies 

and (2) one of the four band structure descriptions includes bandgap narrowing that treats self-

consistently the many-body effects of exchange and correlation in distorted-electron densities of 

states and solves the charge neutrality equation for a two-band model of GaAs at 300 K. We apply 

these results to obtain electron densities from line shapes of Raman spectra and thereby 

demonstrate quantitatively how the values of electron densities extracted from Raman spectra of n-

type GaAs depend of various models for susceptibility and band structure.

I. INTRODUCTION

The semiconductor and chemical industries require equipment that more accurately, non-

destructively, and cost-effectively measures carrier densities.1–3 The carrier density 

characterization relates to device performance and to process control and is critical for 

determining whether compound semiconductor materials meet specifications and are worthy 

of further processing. Such measurements enable manufacturers to produce next-generation 

devices with improved figures of merit such as switching speeds, low power, and other 

operating efficiencies to reduce the cost per unit area and the cost per function, and to 
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increase yield and productivity. The carrier concentration is a key figure of merit associated 

with a go–no–go decision for determining whether a wafer meets specifications and should 

undergo further processing. Non-destructive, optical measurements of carrier densities are 

crucial in the characterization of nanoscale semiconductors.4–10

As devices shrink in size to nanometers, performing experimental measurements becomes 

more costly and time-consuming. This trend means that computer simulations will be more 

essential for advances in future nanotechnologies.

Raman spectroscopy is an attractive non-destructive method for material acceptance tests 

and process validation. Our proposed Raman technique11 will allow process engineers in the 

semiconductor industry to

1. Go from what they can measure to what they need to know for process control, 

even though they cannot measure directly what they need to know.

2. Extract transport properties from Raman spectra of compound semiconductors. 

Raman spectroscopy requires minimal sample preparation and is particularly 

useful as a non-destructive technique.

The interpretation of Raman spectra to determine the electron density in n-type 

semiconductors is an interdisciplinary effort involving Raman experiments, theory, and 

computer-based simulations. Because most of the necessary input data for GaAs exist and 

the physics of the phonon–plasmon coupled modes in this system is well understood,12,13 

we implement numerically here the theory11 for the calculation of Raman spectra and 

investigate how the Raman spectra vary as functions of the Fermi energy, plasmon damping, 

and temperature in zinc blende, n-type GaAs for donor densities between 1016 cm−3 and 

1019 cm−3. We demonstrate quantitatively as illustrative examples how the values of electron 

densities in GaAs extracted from the Raman spectra of two samples depend on the models 

used to describe the electric susceptibility and band structure. Our goal is not to compare 

quantitatively the electron densities extracted from interpreting Raman spectra with those 

values extracted from interpreting Hall effect measurements. The numerical implementation 

of the algorithm, previously published in Ref. 11, enables the practical extraction of electron 

densities non-destructively from Raman spectra of very thin layers, e.g., epilayers, of 

compound semiconductors. The algorithm combines numerical results from validated, 

robust theoretical models that are based upon detailed quantum mechanical calculations and 

Raman spectra to give a method for determining electron densities in n-type compound 

semiconductors.

The algorithm has two independent input parameters, namely, the Raman excitation energy 

or frequency and the temperature and consists of the following four steps:

1. Simulation of Raman Spectra. Calculate the shapes of peaks in Raman spectra 

due to the coupling between longitudinal optic phonons and plasmons from the 

real and imaginary parts of the electric susceptibility as a function of the Fermi 

energy.

2. Determination of Fermi energy. Model Raman spectra for different Fermi 

energies. From among the many calculated Raman spectra, determine the Fermi 
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energy for which the calculated Raman spectra agree best with the measured 

Raman spectra.

3. Computation of carrier density as a function of the Fermi energy. Solve the 

charge neutrality equation self-consistently with one of the four band structure 

models to calculate the carrier density as a function of the Fermi energy at a 

given temperature.

4. Determination of electron density. Obtain the carrier density from the Fermi 

energy identified in step 2 and the result in step 3.

The theory assumes that a sufficient number of atoms exists to define an appropriate wave 

vector space in two- or three-dimensions for the material of interest and for performing the 

foregoing steps 1 and 3. The present algorithm uses for illustrative purposes a three-

dimensional wave vector space appropriate for the zinc blende lattice to describe the band 

structure models and perturbed–distorted densities of states due to many-body effects in n-

type GaAs.

Unlike many models for step 3 that are based on using variations in parameters to fit 

experimental data, the Bandgap Narrowing (BGN) model, one of the four band structure 

models presented below in Sec. III, is based on quantum mechanical calculations with no 

fitting parameters to account for dopant ion effects and many-body physics effects. The 

calculations for the BGN model include the effects of high carrier concentrations and dopant 

densities on the distorted–perturbed densities of states used to calculate the Fermi energy as 

a function of temperature, bandgap narrowing due to dopant ion carrier interactions, and the 

many-body quantum effects due to both carrier exchange and correlation interactions. The 

algorithm given here for the BGN model is unique because all other reported treatments for 

the electric susceptibility do not treat these many-body effects self-consistently. Several of 

the reported treatments for the electric susceptibility in compound semiconductors consider 

approximate forms that result from expansions in either q or the ratio q2/(ω + iγ), where q is 

the magnitude of the wave vector, ω is the Raman frequency, and γ is the plasmon damping. 

For instance, the treatment for the electric susceptibility of GaInAsSb reported in Ref. 14 

considers the hydrodynamic and the Lindhard–Mermin (LM) models, and the authors note 

that the latter leads to a simplified Drude-like model, with a wave-vector-dependent plasma 

frequency, when expansions in small q are considered. We will adopt the Lindhard–Mermin 

model in our calculations.

We describe in Sec. II the experimental measurements for the Raman spectra. We present in 

Sec. III the theoretical models used to calculate Raman line shapes. Finally, we show 

quantitatively in Sec. IV a proof-of-concept for extracting electron densities from Raman 

line shapes.

II. EXPERIMENTAL MEASUREMENTS

We measured Raman spectra on three samples of n-type GaAs. Samples A and B were 2 μm 

thick epilayers doped with silicon and grown by metal organic chemical vapor deposition. 

Sample C was a bulk single crystal. Samples A and B had electron concentrations of nHall−A 

= 1:4 × 1018 cm−3 and nHall−B = 5:8 × 1018 cm−3, respectively, as determined from the Hall 
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effect measurements performed by the supplier. Sample C was doped as-grown with a 

reported electron concentration between 5.2 and 8:4 × 106 cm−3 and was used as a reference 

sample for the purposes of this investigation. Uncertainity in the electron densities were not 

reported by the manufacturer.

We performed Raman spectroscopic measurements at room temperature in a backscattering 

geometry described by z(x, y)z, where x, y, z, and z denote the [100], [010], [001], and [001]
directions, respectively, and using 514.5 nm excitation radiation. We used a single-grating 

imaging spectrograph equipped with a back-illuminated charge coupled device camera 

system to collect the scattered radiation. The instrumental bandpass (FWHM) was 

approximately 4:7 cm−1. We corrected the Raman scattering intensities for the wavelength-

dependent response of the optical system using a white-light source of known relative 

irradiance. Figures 1(a)–1(c) contain, respectively, the measured Raman spectra for samples 

A, B, and C that we obtained in a dark laboratory with no ambient lighting.

III. THEORY

A. Step 1—Raman spectra

In the relaxation time approximation, the full longitudinal dielectric response function ε(q, 

ω) at an angular frequency ω and scattering wave vector q is

ε(q, ω) = 1 + 4πχVE + 4πχL(ω) + 4πχe(q, ω), (1)

where the dielectric susceptibility χVE is the contribution from valence electrons, χL (ω) is 

the contribution from the polar lattice phonons, and χe(q, ω) is the contribution from the 

conduction electrons. We define the high frequency dielectric constant by ε∞ = 1 + 4πχVE
such that for a binary semiconductor, Eq. (1) becomes

ε(q, ω) = ε∞ + 4πχL(ω) + 4πχe(q, ω) . (2)

The contribution of the polar lattice phonons is15

4πχL(ω) = ε∞
ωLO

2 − ωTO
2

ωTO
2 − ω2 , (3)

where we neglect the phonon damping and ωLO and ωTO are the longitudinal (LO) and 

transverse (TO) phonon angular frequencies.

Utilizing the relaxation time approximation, the Lindhard expression16 gives the electronic 

contribution to the zero order17 dielectric response function 4πχe0(q, ω) that describes light 

scattering by the conduction electrons in doped semiconductors,
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4πχe0(q, ω + iγ) = e2

π2q2

× ∫ f(E(k)) ℏ2q2

2mcmo
+ ℏ2q ⋅ k

mcmo
− ℏ(ω + iγ)

−1

+ ℏ2q2

2mcmo
− ℏ2q ⋅ k

mcmo
+ ℏ(ω + iγ)

−1
d3k,

(4)

where f (E) = (1 + exp{β(E − EF)})−1 is the Fermi–Dirac distribution function, E(k) is the 

energy dispersion of the conduction band, EF is the Fermi energy, β = (kBT)−1 and T is the 

absolute temperature. To account for the losses associated with electron-phonon and 

electron–dopant interactions, we introduce the collision relaxation time τ and the 

corresponding angular collision frequency γ = τ−1. Mermim18 demonstrated that within the 

relaxation time approximation, the electron–dopant and electron–phonon interactions relax 

the electron density matrix to a local equilibrium density matrix18–20 and derived the 

following expression for the electronic susceptibility χe(q, ω) that incorporates γ:

χe(q, ω) = (ω + iγ)χe0(q, 0)χe0(q, ω + iγ)
ωχe0(q, 0) + iγχe0(q, ω + iγ)

. (5)

Equation (5) constitutes the Lindhard–Mermin (LM) model for the electronic susceptibility.

Next, we obtain a simplified form for the LM model in Eq. (5). First, note that the integrand 

in Eq. (4) is independent of the azimuthal angle ϕ. We, therefore, integrate with respect to 

this degree of freedom and introduce a new variable μ = cos θ in terms of the polar angle θ 
such that the integral element transforms as ∫0

πsinθdθ∫0
2πdϕ 2π∫−1

1 dμ, and q · k = qkμ. 

Also, we introduce the following dimensionless normalized quantities: Q = qaB, K = kaB, 

K(E) = 2momCaB
2 /ℏ2 E, and Ω2 = ℏ(ω + iγ)mC /R∞, where 

R∞ = e2/2aB = ℏ2/ 2moaB
2 = 13.6eV is the Rydberg energy. As a result, Eq. (4) takes the 

form

4πχe0(q, ω + iγ) = 4mc
πQ2∫0

∞
dKK2∫

−1

1
dμf R∞K2/mC

× 1
Q2 + 2QKμ − Ω2 + 1

Q2 − 2QKμ + Ω2 .
(6)

The longitudinal optical (LO) phonons and plasmons interact in GaAs, a polar 

semiconductor, to form LO phonon–plasmon hybrid modes. The line shape function LA(q, 

ω) of the Raman spectrum that contains longitudinal optical (LO) phonon–plasmon hybrid 

modes present in GaAs is15
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LA(q, ω) = 1
1 − e−βℏω

ω0
2 − ω2

ωTO
2 − ω2

2
Im − 1

ε(q, ω) , (7)

where ω0 = ωTO 1 + CFH is a parameter with angular frequency units, and CFH is the 

dimensionless Faust–Henry coefficient that accounts for the longitudinal/transverse optical 

phonon scattering ratio. Equation (7) includes the deformation potential and the electro-optic 

mechanisms.

Here, we use the command NIntegrate from Mathematica21 to numerically evaluate the 

double integral in Eq. (6) at room temperature and obtain the exact result. The function 

LA(q, ω) in Raman spectra then becomes

LA(q, ω) = 1
1 − e−βℏω

×
ω0

2 − ω2

ωTO
2 − ω2

2 εi(q, ω)
εr(q, ω)2 + εi(q, ω)2 ,

(8)

where

εr(q, ω) = Re[ε(q, ω)]

= ε∞ + ε∞
ωLO

2 − ωTO
2

ωTO
2 − ω2 + 4πRe χe(q, ω + iγ) (9)

and

εi(q, ω) = Im[ε(q, ω)] = 4πIm χe(q, ω + iγ) . (10)

We note that approximate analytical forms, similar to the Drude model, can be derived as 

expansions in terms of the ratio R = (aB
2 R∞/ℏmC)(q2/(ω + iγ)) of Eqs. (4) and (5). See the 

supplementary material section for further details.

B. Step 3—Charge neutrality: Relate electron density to Fermi energy

The interpretations of Raman measurements on compound semiconductors such as GaAs 

require physical models and associated input parameters that describe how carrier densities 

vary with dopant concentrations and Fermi energies. We introduce two main classes of 

models that relate carrier concentrations to the Fermi energy for a given temperature and 

donor dopant density: Bandgap narrowing (BGN) models and Parabolic densities of states 

(PDOS) models.

Because the Fermi energy EF and the damping γ are the variables for calculating the Raman 

spectra, we have to select from among those band structure models in the charge neutrality 

equation appropriate to the system of interest, those models that are amenable to numerical 

solutions. The charge neutrality equation connects the electron density and its Fermi energy. 

Reference 11 contains, for illustrative purposes, self-consistent solutions for the charge 
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neutrality equation utilizing an iterative procedure with carrier densities of states (DOS) for 

the conduction subbands and the valence subbands at high symmetry points in the wave-

vector space. We present here the charge neutrality solutions for the BGN and the PDOS 

models of n-type GaAs for donor densities between 1016 cm−3 and 1019 cm−3 at 300 K.

1. BGN model—The bandgap narrowing (BGN) model is a two-band model with one 

equivalent conduction band and one equivalent valence band at the Γ point in the Brillouin 

space. The BGN model is related to the earlier work (Ref. 22) on n-type GaAs and 

incorporates modifications to the densities of states due to high concentrations of dopants, 

bandgap narrowing, and many-body effects associated with carrier–carrier interactions 

(carrier–carrier exchange and correlation). This model has the following characteristics:

1. Fermi–Dirac statistics for the electron distribution at any temperature,

2. Many-body quantum effects such as carrier–carrier and carrier–dopant–ion 

interactions, bandgap narrowing, and distorted–perturbed DOS for the carriers,

3. Iterative and self-consistent solutions of the coupled charge neutrality equation 

and Klauder’s fifth level of approximation for the renormalized self-energy 

propagator from which we obtain the distorted–perturbed DOS, and

4. Statistical analyses to obtain analytic expressions from large simulated data for 

carrier densities as a functions of the Fermi energy.

Tables S2 and S3 in the supplementary material contain the input parameters for the BGN 

calculations in Ref. 22 and for the BGN model given here.

In the thermal equilibrium, the corresponding electron n and hole h concentrations in units 

of cm−3 are

n = ∫
−∞

∞
f(E)ρC(E)dE, (11)

n = ∫
−∞

∞
[1 − f(E)]ρV (E)dE, (12)

where ρC(E) and ρV(E) are the corresponding electron DOS for the equivalent conduction 

band and the hole DOS for the equivalent valence band. The BGN model invokes the charge 

neutrality condition NI = n − h and implements the Thomas–Fermi expression for the screen 

radius rs to compute in a self-consistent form the Fermi energy EF and rs for given values of 

the ionized dopant concentration NI at any temperature. The results reported here are for the 

n-type material (NI positive), when that each dopant is ionized. We do not report the results 

for the screening radius rs here because they are not needed to extract carrier concentrations 

from Raman scattering measurements.

The BGN model for extracting electron densities from Raman spectra is unique in two 

respects. First, we include the many-body effects from Ref. 22. That is, the BGN model used 

here includes self-consistently the many-body effects of carrier–dopant–ion interactions on 
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the conduction and valence bands and their densities of states and the effects of carrier–

carrier interactions (majority-carrier exchange and minority-carrier correlation). Second, the 

BGN as well as the PDOS models are valid at room temperature. Reference 23 included the 

bandgap narrowing effect due only to the electron–electron exchange interaction for k·p 

calculations of n-type InP.

We compare our methods with the methods reported in Ref. 24 for GaSb and in Ref. 23 for 

InP. Reference 24 for GaSb treats conduction band minimum as a nonparabolic band with 

spherical constant energy surfaces and an isotropic effective mass, while the L conduction 

band minimum is treated as a parabolic band with four equivalent ellipsoidal constant energy 

surfaces and an anisotropic effective mass; but it does not include any bandgap narrowing 

because it assumes that Γ and L are independent of the doping level.

Reference 23 for InP includes the nonparabolicity of the conduction band from a 14 × 14 k·p 

model that accounts for interactions among the Γ7 split-off valence band, the Γ8 valence 

band, and the Γ6, Γ7, and Γ8 conducting bands, as well as the bandgap narrowing due to the 

carrier–carrier exchange interactions given by Ref. 25.

2. PDOS models—All three PDOS models (PDOS2, PDOS2NPG, and PDOS4) 

incorporate an equivalent valence band with heavy hole mass mhh and light hole mass mlh 

for the two degenerate subbands at the top of the valence band. mhh and mlh are combined 

into an effective mass

mvΓ = mℎℎ
3/2 + mlℎ

3/2 2/3, (13)

for the valence top most subband, which then becomes the equivalent valence band with a 

hole energy dispersion EvΓ(k) ≈ − EG − ℏ2k2/ 2mvΓmo .

These PDOS models use parabolic densities of states for all equivalent bands and subbands. 

In contrast with the BGN model introduced above, the PDOS models do not include 

modifications to the DOS due to many-body effects and high concentrations of dopants and 

carriers. This is, in part, due to the computational cost associated with treating a four-band 

model in the context of the Klauder self-energy method.

PDOS2 model.: The PDOS2 model uses one equivalent conduction band and one equivalent 

valence band at the Γ symmetry point in the Brillouin space. The electron energy dispersion 

for the equivalent conduction band is EcΓ(k) ≈ EcΓ0 + ℏ2k2/ 2mCmo .

PDOS2NPG model.: The PDOS2NPG model is a two-band model with one equivalent 

conduction band and one equivalent valence band at the Γ point in the Brillouin space. This 

model does not include bandgap narrowing, but it includes the nonparabolicity for the 

electron energy dispersion in the equivalent conduction band at Γ. Following Ref. 26, we can 

add non-quadratic terms |k|l to the electron energy dispersion EcΓ(k) for the conduction Γ 
subband in GaAs if k is small, that is,
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EcΓ(k) ≈ EcΓ0 + ℏ2k2

2mCmo
+ ζ /EG

ℏ2k2

2mCmo

2
, (14)

where ζ is the non-parabolicity factor. In this work, we implement the Kane three level k · p 
model,27 which does not consider the conduction subbands at L and X, and include quartic 

terms in E(k) (i.e., we set l = 4).

PDOS4 model.: The PDOS4 model incorporates three conduction subbands at the 

respective Γ, L, and X symmetry points in the Brillouin space and one equivalent valence 

band at the Γ symmetry point. For the PDOS4, we modify here the PDOS model for GaSb in 

Ref. 28 so that it is valid for GaAs. It uses the parabolic electron energy dispersion EcΓ(k) 

for the conduction Γ subband in GaAs when k is small, namely, 

ECΓ(k) ≈ EcΓ0 + ℏ2k2/ 2mCmo .

We adopt the following form29 for the temperature dependence of conduction subband 

minima relative to the top of the valence band at Γ:

Ei = Ei0 − AiT 2

T + Bi
, (15)

where i = Γ, L, or X. The coefficients Ei0, Ai, and Bi are listed in Table S4 in the 

supplementary material. Since there are eight equivalent permutations of the wave vector in 

the (111) direction, we find eight L subband ellipsoids with centers located near the 

boundary of the first Brillouin zone. The six equivalent permutations of the wave vector in 

the (100) direction imply that the system has six X subband ellipsoids with centers located 

close to the boundary of the first Brillouin zone. Since half of each ellipsoid is in the 

neighboring zone, the number of equivalent subbands NcL for the EcL is four, and the 

number of equivalent subbands NcX for the X subband is three.

The full DOS ρc(E) in the four-band PDOS4 model for the majority-carrier electrons in n-

type GaAs is, therefore,

ρc(E) = ρcΓ(E) + ρcL(E) + ρcX(E), (16)

where ρcΓ(E), ρcL(E), and ρcX(E) are the DOS for the conduction Γ, L, and X subbands with 

corresponding effective masses of mcΓ, mcL, and mcX. On the other hand, the DOS for the 

minority-carrier holes with an effective mass of mνΓ is

ρv(E) = ρvΓ(E) . (17)

The quantitative significances that the relative effects of electrons in the upper level sub-

conduction bands have on the Fermi energy vary with the particular n-type semiconductor. 

For example, the few electrons in L and X sub-conduction bands of n-type GaAs have a 

negligible effect on the Fermi energy. However, this is not the case for some other zinc 
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blende, semiconductors such as n-type GaSb and InP as discussed in many papers such as 

Refs. 23, 28, 30, 31 and 32.

Interpreting experiments for GaSb and InP requires at least a three-band model and under 

some conditions may require a four-band model (see Ref. 28), even though GaSb and InP 

are intrinsically direct semiconductors, electrons for n-type GaSb and InP in the vicinity of 

their Fermi surfaces will have some characteristics that are similar to those for electrons in 

indirect semiconductors.

IV. NUMERICAL IMPLEMENTATIONS

Step 1. Simulation of Raman spectra

We iterate the calculated Raman line shape function Eq. (8) with the Fermi energy EF and 

the plasmon damping γ as variation parameters to give the best self-consistent fit to the 

measured Raman line shape (peaks). Then, after selecting an appropriate band structure 

model from among various band structure models, such as those suggested in Sec. III B, we 

determine the carrier density from the Fermi energy. Numerical Raman line shapes that we 

obtain from Eq. (8) with parameters representative of n-type GaAs are presented in Fig. 2. 

The line shape reveals two peaks, corresponding to two coupled phonon–plasmon states with 

corresponding frequencies ω− and ω+, which differ from the frequency of the uncoupled 

(longitudinal) phonon ωLO such that ω− < ωLO < ω+. The frequencies for the coupled modes 

are sensitive to the Fermi energy and, therefore, to the carrier concentration. Figure 2(a) 

shows the line shape for three values in EF (EF = 0, 0:05, and 0:10 eV) and a significant 

change in the frequency for the second peak ω+. The peak for the ω+ mode shows a 

significant linewidth increase with γ [see Fig. 2(b)]. The dispersion curve in Fig. 2(c) 

confirms that these peaks correspond to coupled states. Figure 2(d) displays in a contour plot 

on how the frequency ω+ drifts for larger values with increasing Fermi energy EF.

We report experimental Raman measurements in Fig. 1 for three samples with different 

carrier concentrations. The intensity is normalized to the maximum of the ωLO in Fig. 1(c), 

and ω− peak in Figs. 1(a) and 1(b). For low carrier concentrations the Raman peaks display a 

single peak, corresponding to the free longitudinal phonon. For larger electron densities, the 

Raman line shape consists of three peaks that we identify with the two coupled phonon–

plasmon modes, and the uncoupled longitudinal phonon in the depletion region. The 

anticipated shift in the position of the second peak ω+ as a function of carrier densities is 

experimentally observed in Figs. 1(a) and 1(b).

Step 2. Determination of Fermi energy

We fit the measured line shapes in Figs. 1(a) and 1(b) to the form in Eq. (8) utilizing as 

variational parameters EF and γ. The results are presented in Fig. 3, where the intensity of 

the theoretical line shape has also been normalized. We notice that both the Fermi energy 

and the damping are different between samples, and while the theory does not account for 

the contribution of uncoupled phonon to the total line shape, one can remove this 

contribution from the spectra by subtracting the intensity for samples at low carrier densities 

[e.g., Fig. 1(c)]. However, we notice that this additional step is not required in the 
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interpretation and numerical fitting of the Raman signals. These completes step 2 of our 

algorithm.

Step 3. Computation of carrier density as a function of the Fermi energy

Obtaining the carrier density requires an analytic representation of the band structure for the 

GaAs. We refer readers to Ref. 11 for more complete, detailed discussions about the analytic 

fits to the theoretical results given by the four models labeled therein as BGN and PDOS 

models (PDOS2, PDOS2NPG, and PDOS4). In each case, the numerical prediction for the 

logarithm of the electron density nM (M = BGN, PDOS, PDOS2NPG, PDOS4) is fitted to a 

fourth order polynomial in the Fermi energy of the form

log10 nM = aM0 + aM1EF + aM2EF
2 + aM3EF

3 + aM4EF
4 , (18)

with coefficients aMi. Figure 4 presents the result of Eq. (18) for the four models analyzed 

here for Fermi energies ranging from −0.1 eV to 0:3 eV. We note that unlike GaSb, most of 

the electrons for GaAs are in the conduction subband at Γ, the conduction subband at L is 

only weakly populated at the highest Fermi energies, and the conduction subband at X is 

negligibly populated. This explains why there is very little difference between the PDOS2 

and PDOS4 models for GaAs.

Step 4. Determination of electron density

We can finally determine with the results in Fig. 4, the electron densities for the samples A 

nd B in Figs. 1(a) and 1(b) and corresponding Figs. 3(a) and 3(b). We interpolate in Fig. 4 

from the Fermi energies obtained in the numerical fitting in Fig. 4 the electron densities for 

each model. We report in Table I the electron densities nM in GaAs from the Fermi energy 

identified in the Raman line shapes. The logarithm of the electron densities for (a) BGN, (b) 

PDOS2, (c) PDOS4, and (d) PDOS2NPG models as a function of Fermi energy is calculated 

utilizing the fitting coefficients reported in Table S5 in the supplementary material. We 

conclude that the present approach provides reasonable predictions of the electron densities 

in GaAs. The theoretically predicted electron densities depend on the choice for the values 

of GaAs material properties and the density of states models used to compute the electron 

density from the Fermi energy. The predicted values among the four models (BGN, PDOS2, 

PDOS2NPG, and PDOS4) span a range of about 30% for both samples. We used whenever 

possible well-established values for GaAs materials properties given in the supplementary 

material section. The authors of Ref. 24 estimate that the statistical variation for nHall in 

GaSb is 10% based on measurement reproducibility for the decade of 1018 cm−3. 

Considering the similarities between GaAs and GaSb for some of their respective Hall effect 

parameters, we would expect that the statistical variation for the measurement 

reproducibility of nHall in GaAs to be also 10% for the decade of 1018 cm−3. However, 

considering the eight sources of error for Hall effect measurements listed by Thurber,33 we 

estimate that those eight sources of error contribute to a larger than 10% uncertainty in the 

nominal electron densities reported for samples A and B. As we state in the foregoing, our 

goal is to show quantitatively how the values of electron densities extracted from Raman 

spectra depend on both electric susceptibility models and band structure models. We 

consider the Raman spectra of sample A and B to be representative of GaAs spectra in the 
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decade of 1018 cm−3. Our goal is not to compare quantitatively Raman and Hall effect 

determinations of electron densities for samples A and B. Improved values are possible if 

other parameters, such as effective masses, are adjusted for samples with known electron 

densities. This method can also be extended to other semiconductors if adequate models for 

the band structure near symmetry points such as the Γ point are available.

V. CONCLUSION

We introduced an algorithm for the extraction of carrier densities in compound 

semiconductors, which includes simulation of Raman spectra as a function of Fermi energy, 

and band structure calculations. We applied this methodology to different samples of n-type 

GaAs of known electron doping to provide a proof of concept. Our theoretical analysis for 

extracting electron densities from Raman spectra is unique in two ways: (1) one of the four 

physical models, the BGN physical model treats the many-body effects self-consistently and 

(2) all four physical models are valid at any temperature, e.g., room temperature. When high 

concentrations of carriers exist, this theory and its associated numerical procedures for 

determining carrier concentrations from Fermi energies are necessary for interpreting room 

temperature Raman spectra self-consistently.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. 
Experimental Raman line shapes measured on samples of GaAs with nominal values on the 

electron densities Ne. (a) Ne = 1:4 × 1018 cm−3. (b) Ne = 5:8 × 1018 cm−3. (c) Ne = 5.2 − 8:4 

× 106 cm−3 The line shape in (c), corresponding to a sample with low electron density, 

reveals a single peak for the longitudinal optical mode ωLO in GaAs. As the electron density 

increases, local plasmons develop, which couple to the LO mode. The resulting coupled 

states appear as two additional peaks in the Raman spectra ω− and ω+ in (a) and (b). We 

notice that the frequencies ω− and ω+, as well as their broadening, are sensitive to the dopant 
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concentration of the sample. The intensity is normalized to the maximum signal in ωLO for 

(c) and ω− in (a) and (b).
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FIG. 2. 
Raman scattering line shapes obtained from Eq. (8) for model systems. (a) Line shape as a 

function of the incident frequency ω for three different values of the Fermi energy EF at a fix 

damping rate of γ = 7 meV, EF = 0 eV (black, solid), EF = 0:05 eV (red, dashed), and EF = 

0:10 eV (blue, dotted). (b) line shape for different values in the damping energy γ at a fix 

value Fermi energy EF = 0:05 eV, γ = 3:5 meV (black, solid), γ = 7 meV (red, dashed), and 

γ = 10:5 meV (blue, dotted). (c) and (d) present, respectively, in the logarithmic and normal 

scale, contour plots for the Raman Spectra I, in atomic units, as a function of the Raman 

frequency ω and the Fermi energy EF. (c) Reveals the formation of hybrid plasmon–phonon 

states with characteristic frequencies ω− and ω+. Due to thermal broadening and the 

plasmon damping, the avoided crossing in the dispersion curve is shadowed. (d) shows how 

the frequency ω+ shifts with Fermi energy EF. Although the intensity of the ω+ branch 

increases with EF, in real Raman scattering measurements the intensity of this branch 

decreases as the electron density increases due to the increase of plasmon damping arising 

from ionized impurity scattering. Other parameters are CFH = −0:28, ωLO = 284.7 cm−1, 

ωTO = 267:8 cm−1, meff = 0:067mo, ε∞ = 10.9.
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FIG. 3. 
Numerical fit of the theoretical line shape in Eq. (8) to the experimentally measured Raman 

spectra reported in Fig. 1. The intensity is normalized to the maximum of the ω− peak. The 

Fermi energy EF and the damping γ are the fitting parameters. In (a) EF = 33 meV and γ = 

2.8 meV and (b) EF = 0.17 eV and γ = 14 meV. Other parameters are as in Fig. 1.
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FIG. 4. 
Determination of electron densities nM in GaAs from the Fermi energy identified in the 

Raman line shapes. The logarithm of the electron densities for (a) BGN, (b) PDOS2, (c) 

PDOS4, and (d) PDOS2NPG models as a function of Fermi energy are shown.
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TABLE I.

Comparison between theoretically predicted and nominal electron densities for the samples A and B on Figs. 

3(a) and 3(b).

Sample A B

Fit to ω+ peak (cm−1) 450 940

EF (eV) 0.033 0.17

γ (meV) 2.8 14

CFH −0.28 −0.28

nBGN (1018 cm−3) 0.53 4.4

nPDOS2 (1018 cm−3) 0.80 5.6

nPDOS2NPG (1018 cm−3) 0.86 5.5

nPDOS4 (1018 cm−3) 0.78 6.0

nHall (1018 cm−3) 1.4 5.8
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