
MOLECULAR MEDICINE REPORTS  24:  560,  2021

Abstract. Lung cancer is one of the most lethal diseases 
and therefore poses a significant threat to human health. 
The Warburg effect, which is the observation that cancer 
cells predominately produce energy through glycolysis, even 
under aerobic conditions, is a hallmark of cancer. 6‑phospho‑
fructo‑2‑kinase/fructose‑2,6‑biphosphatase 2 (PFKFB) is an 
important regulator of glycolysis. Shikonin is a Traditional 
Chinese herbal medicine, which has been reported to exert 
antitumor effects. The present study aimed to investigate the 
anticancer activity of shikonin in lung cancer. Cell Counting 
Kit‑8 (CCK‑8) and colony formation assays were used to 
analyze proliferation in A549 and H446 cells. Wound healing 
and Transwell assays were used to measure migration and 
invasion in A549 and H446 cells. Cell apoptosis was analyzed 
using flow cytometry. Lactate levels, glucose uptake and 
cellular ATP levels were measured using their corresponding 
commercial kits. Western blotting was performed to analyze 
the protein expression levels of key enzymes involved in 
aerobic glucose metabolism. Reverse transcription‑quantita‑
tive PCR was used to analyze the mRNA expression levels 
of PFKFB2. The results of the present study revealed that 
PFKFB2 expression levels were significantly upregulated in 
NSCLC tissues. Shikonin treatment decreased the prolifera‑
tion, migration, invasion, glucose uptake, lactate levels, ATP 
levels and PFKFB2 expression levels and increased apoptosis 
in lung cancer cells in a dose‑dependent manner. The over‑
expression of PFKFB2 increased the proliferation, migration, 
glucose uptake, lactate levels and ATP levels in lung cancer 
cells, while the knockdown of PFKFB2 expression exerted 
the opposite effects. Moreover, there were no significant 

differences in lung cancer cell migration, apoptosis, glucose 
uptake, lactate levels and ATP levels between cells with 
knocked down PFKFB2 expression or treated with shikonin 
and the knockdown of PFKFB2 in cells treated with shikonin. 
In conclusion, the results of the present study revealed that 
shikonin inhibited the Warburg effect and exerted antitumor 
activity in lung cancer cells, which was associated with the 
downregulation of PFKFB2 expression.

Introduction

Lung cancer is one of the most common causes of cancer‑related 
mortality, accounting for 18.4%  of cancer‑related deaths 
worldwide (1). In total, ~85% of lung cancer cases are diag‑
nosed as non‑small cell lung cancer (NSCLC) and ~15% of 
lung cancer cases are diagnosed as small cell lung cancer (2). 
At present, the most common treatment methods for lung 
cancer include surgical resection, chemotherapy, radiotherapy, 
immunotherapy and targeted drugs  (3). Although targeted 
therapies, such as EGFR inhibitors, and immunotherapy drugs, 
such as anti‑programmed cell death protein 1/programmed 
death‑ligand 1, have significantly improved the treatment of 
lung cancer, only a small number of patients are eligible to be 
treated with targeted therapies, thus the global 5‑year survival 
rate of lung cancer remains at ~20% (4‑8). Therefore, iden‑
tifying specific and sensitive prognostic markers, therapeutic 
targets and devising novel therapeutic drugs to improve the 
survival time and quality of life of patients with lung cancer 
remains a priority.

The Warburg effect is defined by the altered metabolism of 
glucose, whereby tumor cells produce large amounts of lactate, 
even in the presence of oxygen and fully functioning mito‑
chondria (9). The intrinsic mechanism of the Warburg effect 
is complex, and is associated with the activation of numerous 
oncogenes, inactivation of numerous tumor suppressor genes, 
the abnormal expression of glycosylase and changes in the 
tumor microenvironment, amongst other factors  (10‑12). 
However, the specific mechanism requires further investiga‑
tion. It is well established that the cell death program (apoptosis) 
exerts an anticancer effect (13). The Warburg effect is closely 
associated with the occurrence and development of cancer, as 
it provides a growth advantage to tumor cells, helping them to 
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escape apoptosis and create a suitable environment for tumor 
metastasis to occur (14‑16). The inhibition of the Warburg 
effect promotes cell apoptosis and inhibits tumor proliferation 
and metastasis (17). Several key metabolic enzymes [pyruvate 
kinase M2 (PKM2), pyruvate dehydrogenase kinase 1 (PDK1) 
and hexokinase 2] have been found to play an important role 
in the Warburg effect (18‑20). The changes in key enzymes 
can lead to an enhanced glycolytic ability, promote glucose 
uptake into tumor cells and increase the accumulation of 
lactic acid, thus further supporting tumor growth and develop‑
ment (21). 6‑Phosphofructo‑2‑kinase/fructose‑2,6‑biphosphatase 
(PFKFB2) is an enzyme that regulates the synthesis and 
degradation of fructose‑2,6‑bisphosphate (Fru‑2, 6‑P2), 
which is widely expressed in a variety of cancer cells, such as 
ovarian, breast and pancreatic cancer cells (22,23). By regu‑
lating the expression of Fru‑2, 6‑P2 (a signaling metabolite 
that participates in glycolysis), the PFKFB family has been 
found to regulate intracellular glycolysis in cancer by acting as 
an oncogene (24,25).

Shikonin is a naphthalene quinone compound extracted 
from Lithospermum  erythrorhizon (an herbaceous plant), 
which has demonstrated anti‑inflammatory, antiviral, anti‑
tumor and wound healing potential, amongst other biological 
activities  (26). The present study aimed to investigate the 
effects of shikonin on cell proliferation, migration, inva‑
sion, apoptosis and aerobic glycolysis in lung cancer cells, 
and further determined the potential underlying molecular 
mechanisms of shikonin. The current findings may provide a 
foundation for the clinical use of shikonin in the treatment of 
lung cancer.

Materials and methods

Patient studies. A total of 20 NSCLC and adjacent normal 
tissues were obtained from patients (10 women and 10 men; 
age range, 50‑79 years) who underwent surgical resection at 
The Affiliated Hospital of Qingdao University (Qingdao, 
China) between January 2019 and December 2019. Patients 
who had received chemotherapy or radiotherapy prior to 
surgery were excluded from the study. Patients who were 
diagnosed by positron emission tomography/CT scan and 
were eligible for radical surgery were included in the study. 
All samples were stored at ‑80˚C until required for RNA 
extraction. The study protocols were approved by the Ethics 
Committee of The Affiliated Hospital of Qingdao University, 
and written informed consent was obtained from all patients 
prior to participation.

Cell lines and culture. The Beas‑2B lung epithelial cell line 
and lung cancer cell lines, A549 and H446, were obtained 
from The Cell Bank of Type Culture Collection of The 
Chinese Academy of Sciences. All cells were cultured at 37˚C 
(5% CO2) in DMEM (Gibco; Thermo Fisher Scientific, Inc.) 
supplemented with 10% FBS (Gibco; Thermo Fisher Scientific, 
Inc.) and 1% penicillin/streptomycin (Gibco; Thermo Fisher 
Scientific, Inc.).

Cell transfection. Small interfering RNA (siRNA)‑negative 
control (NC) (sense, 5'‑UUC​UCC​GAA​CGU​GUC​ACG​
UTT‑3' and antisense, 5'‑ACG​UGA​CAC​GUU​CGG​AGA​

ATT‑3'), siRNA‑PFKFB2 (sense, 5'‑AUU​GUC​AUG​CCG​AAA​
GAA​GUC‑3' and antisense, 5'‑CUU​CUU​UCG​GCA​UGA​
CAA​UGA‑3'), pcDNA3.1‑PFKFB2 and pcDNA3.1‑NC (all 
Shanghai GenePharma Co., Ltd.) were used to knockdown 
or overexpress PFKFB2, respectively. Cells were transfected 
with siRNA (30 nM) or overexpression vectors (1 µg) using 
Lipofectamine® 2000 reagent (Invitrogen; Thermo Fisher 
Scientific, Inc.) for 48 h at 37˚C. Cells were harvested 48 h 
post‑transfection for use in subsequent experiments.

Reverse transcription‑quantitative PCR (RT‑qPCR). 
Transfected or untransfected A549 and H446  cells were 
treated with or without 50 µM shikonin (Shanghai Yuanye 
Biotechnology Co., Ltd.) for 24 h at 37˚C. Total RNA was 
extracted from clinical specimens or cells using TRIzol® 
reagent (Invitrogen; Thermo Fisher Scientific, Inc.), according 
to the manufacturer's protocol. Total RNA was reverse 
transcribed into cDNA using a PrimeScript RT kit (Takara 
Biotechnology Co., Ltd.), according to the manufacturer's 
protocol. qPCR was subsequently performed on an ABI 7500 
Real‑Time PCR system (Applied Biosystems; Thermo Fisher 
Scientific, Inc.) using a SYBR® Premix Ex Taq™ kit (Takara 
Biotechnology Co., Ltd.). The following thermocycling condi‑
tions were used for the qPCR: Initial denaturation at 95˚C for 
3 min; followed by 40 cycles at 95˚C for 5 sec and 60˚C for 
30 sec. The following primers pairs (Sangon Biotech Co., Ltd.) 
were used for the qPCR: PFKFB2 forward, 5'‑GCT​GCT​TGG​
TGG​GAG​TGA​TAA‑3' and reverse, 5'‑TGA​GAA​GCC​AAG​
TGT​CAG​GG‑3'; and β‑actin forward, 5'‑GAG​GAC​CCT​GGA​
TGT​GAC​AG‑3' and reverse, 5'‑AAG​ACC​TGT​ACG​CCA​ACA​
CA‑3'. Relative mRNA expression levels were quantified using 
the 2‑ΔΔCq method (27) and normalized to β‑actin.

Western blotting. A549 and H446 cells were treated with 
shikonin [0 (control), 10, 20 or 50 µM] for 24 h at 37˚C, then 
total protein was extracted from cells using RIPA lysis buffer 
(Santa Cruz Biotechnology, Inc.) supplemented with protease 
and phosphatase inhibitor mixture. Total protein was quanti‑
fied using a BCA assay and 50 µg protein/lane was separated 
via 10%  SDS‑PAGE. The separated proteins were subse‑
quently transferred onto PVDF membranes (EMD Millipore) 
and blocked with 5% skim milk for 2 h at room temperature. 
The membranes were then incubated with the following 
primary antibodies at 4˚C overnight: Anti‑PFKFB2 
(1:1,000; cat.  no.  ab234865; Abcam), anti‑PDK1 (1:2,000; 
cat. no. ab202468; Abcam), anti‑glucose transporter 1 (GLUT1; 
1:200; cat. no. ab150299; Abcam), anti‑phosphoglycerate kinase 
2 (PGK2; 1:1,000; cat. no. ab183031; Abcam), anti‑lactate 
dehydrogenase A (LDHA; 1:1,000; cat. no. ab101562; Abcam), 
anti‑PKM2 (1:1,000; cat. no. ab137852; Abcam), anti‑GLUT3 
(1:8,000; cat. no. ab41525; Abcam), anti‑pyruvate dehydroge‑
nase (PDH; 1:1,000; cat. no. 3205; Cell Signaling Technology, 
Inc.), phosphorylated (p)‑PDH (1:1,000; cat. no. 31866; Cell 
Signaling Technology, Inc.) and anti‑GAPDH (1:2,500; 
cat. no. ab9485; Abcam). Following the primary antibody 
incubation, the membranes were incubated with an anti‑rabbit 
HRP‑conjugated secondary antibody (1:5,000; cat. no. sc‑2357; 
Santa Cruz Biotechnology, Inc.) for 1 h at room temperature. 
Protein bands were visualized using an enhanced chemilumi‑
nescence kit (EMD Millipore).
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Cell proliferation assay. Following transfection, A549 and 
H446 cells were plated into 96‑well plates at a density of 
2x103 cells/well and cultured in DMEM supplemented with 
10% FBS. For certain experiments, cells were also treated 
with shikonin [0, 10, 20 or 50 µM] for 24, 48, 72 or 96 h at 
37˚C. At each time point, Cell Counting Kit‑8 (CCK‑8) reagent 
(Dojindo Molecular Technologies, Inc.) was added to each 
well and incubated for 2 h at 37˚C. The optical density (OD) 
value was measured at a wavelength of 450 nm using a micro‑
plate reader (Thermo Fisher Scientific). The experiment was 
repeated in triplicate.

Wound healing assay. A549 and H446 cells were digested using 
0.25% trypsin solution (Gibco; Thermo Fisher Scientific, Inc.) 
and cultured in a 6‑well plate at a density of 5x105 cells/well 
overnight at 37˚C. Upon cells reaching 90% confluence, a 
single vertical scratch was made in the cell monolayer with 
a 10‑µl micropipette tip. The cells were washed with PBS 
thrice to remove the detached cells. Subsequently, A549 and 
H446 cells were cultured in serum‑free DMEM with/without 
shikonin (0, 10, 20 or 50 µM) at 37˚C or transfected A549 cells 
were cultured in serum‑free DMEM with 50 µM shikonin at 
37˚C with 5% CO2 in an incubator. At 0 h and following 24 h of 
incubation, the wound area was visualized and photographed 
using a light microscope (magnification, x100) and the migra‑
tion was analyzed using ImageJ software (version  1.8.0; 
National Institutes of Health).

Colony formation assay. After transfection for 48 h, A549 
and H446 cells were plated into 6‑well plates at a density of 
0.5‑1x103 cells/well; three wells were plated for each experi‑
mental condition. The cells were cultured in complete medium 
supplemented with 30% FBS in an incubator with 37˚C for 
14 days; the medium was changed every 3 days. During the 
incubation, the cell state and colony size were observed under 
a light microscope (magnification, x100). After culture, cells 
were washed with PBS, fixed with 4% paraformaldehyde for 
20 min at room temperature and stained with 0.2% crystal 
violet for 5 min at room temperature. The cells were then 
washed with water, dried, photographed and counted using 
ImageJ software; >50 cells counted as a colony.

Transwell assay. Transwell assay was used to analyze cell 
invasion and migration. Transwell chambers (Corning, Inc.) 
were precoated with (invasion) or without (migration) Matrigel 
(Becton, Dickinson and Company) at 37˚C for 30  min. 
Following cell digestion using 0.25% trypsin solution, the 
culture medium was discarded by centrifugation (300 x g 
for 5 min at 37˚C) and the cell pellet was washed with PBS 
1‑2 times. A549 cells were treated with shikonin (0, 10, 20 
or 50 µM) for 24 h at 37˚C. Next, cells were incubated in 
serum‑free DMEM at a density of 5x105 cells/ml for 24 h 
at 37˚C, then 100 µl cell suspension was added to the upper 
chamber of the Transwell plate. A total of 600 µl medium 
supplemented with 20% FBS was plated into the lower cham‑
bers. Following incubation for 24 h at 37˚C, the cells were 
fixed with 4% paraformaldehyde for 10 min at room tempera‑
ture and stained with 0.1% crystal violet for 10 min at room 
temperature. Finally, the cell numbers were counted under a 
light microscope (magnification, x200) using ImageJ software.

Flow cytometric analysis of apoptosis. Cell apoptosis was 
analyzed using an Annexin V‑FITC/propidium iodide (PI) 
staining kit (Invitrogen; Thermo Fisher Scientific, Inc.). Briefly, 
A549 cells were treated with shikonin (0, 10, 20 or 50 µM) 
for 24 h at 37˚C or transfected A549 cells were treated with 
50 µM shikonin for 24 h at 37˚C and collected by centrifuga‑
tion (300 x g for 5 min at 37˚C). Cells (1x105 cells/well) were 
then washed with cold (4˚C) PBS twice and resuspended in 
1X binding buffer (200 µl). Cells were subsequently incubated 
with 5 µl Annexin V‑FITC/PI at room temperature in the dark 
for 15 min. Apoptotic cells (early and late apoptotic cells) 
were visualized using a flow cytometer (Accuri™ C6 Plus; 
BD Biosciences).

Measurement of lactic acid production, glucose uptake and 
cellular ATP levels. A549 and H446 cells (1x104 cells/well) 
were seeded into 6‑well plates and cultured in DMEM. A549 
and H446 cells were treated with shikonin (0, 10, 20 or 50 µM) 
for 24 h at 37˚C or transfected A549 cells were treated with 
50 µM shikonin for 24 h at 37˚C, then cell culture medium was 
subsequently collected and centrifuged at 8,000 x g for 5 min 
at room temperature. The supernatant was used to measure 
lactate or glucose concentrations, or cellular ATP levels. 
Extracellular lactate levels were measured using a lactate 
analysis kit (cat. no. E4341; BioVision, Inc.) according to the 
manufacturer's protocol. Cell lysates were used to measure 
glucose levels using a glucose assay kit (cat.  no.  K686; 
BioVision, Inc.) according to the manufacturer's protocol. ATP 
levels were measured using the CellTiter‑Glo® luminescent 
cell activity assay kit (cat. no. G7572; Promega Corporation) 
according to the manufacturer's protocol. The relative value of 
lactate, glucose uptake and ATP levels were normalized to the 
control group (set to 1).

Statistical analysis. Statistical analysis was performed using 
SPSS 21.0 software (IBM Corp.) and data are expressed as 
the mean ± SEM of at least three independent experiments. 
Statistical differences between groups were determined using 
a one‑way ANOVA followed by a Tukey's post hoc test. A 
paired Student's t‑test was used to analyze the mRNA expres‑
sion levels of PFKFB2 between NSCLC and adjacent normal 
tissues. P<0.05 was considered to indicate a statistically 
significant difference.

Results

Shikonin inhibits the proliferation, invasion and migration of 
A549 cells. To investigate the antitumor effects of shikonin, 
the inhibitory effect of shikonin was determined using cellular 
functional experiments. The results of the cell proliferation 
experiment revealed that shikonin (10, 20 or 50 µM) could 
inhibit the proliferation of A549 cells in a dose‑dependent 
manner compared with the control group (all P<0.05; Fig. 1A). 
The results from the wound healing assay demonstrated that 
10, 20 or 50 µM shikonin could significantly inhibit the migra‑
tion of A549 cells compared with the control group (all P<0.05; 
Fig. 1B). The results of the Transwell assays showed that 10, 20 
or 50 µM shikonin could significantly inhibit the migration and 
invasion of A549 cells in a dose‑dependent manner compared 
with the control group (all P<0.05; Fig. 1C). Analysis of cell 
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apoptosis revealed that 10, 20 or 50 µM shikonin increased the 
apoptosis of A549 cells compared with the control group (all 
P<0.05; Fig. 1D).

Shikonin inhibits the Warburg effect in a dose‑dependent 
manner and regulates glucose metabolism in A549 and 
H446 cells. To further determine the underlying mechanism 
of the effect of shikonin on lung cancer cells, the effect of 
shikonin on the Warburg effect and glucose metabolism 
was investigated in A549 and H446 cells. The results found 
that 10, 20 or 50  µM shikonin could dose‑dependently 
reduce glucose uptake, lactate and ATP levels in A549 cells 
compared with the control group (all P<0.05; Fig. 2A‑C). 
Similar results were obtained for H446 cells (all P<0.05; 
Fig. 2D‑F). These data indicated that shikonin may inhibit 
the Warburg effect and regulate glucose metabolism in lung 
cancer cells.

PFKFB2 expression is regulated by shikonin. To deter‑
mine the mechanism through which shikonin inhibits 
glycolysis and the migration, proliferation and invasion of 
tumor cells, the protein expression levels of key enzymes 
involved in aerobic glucose metabolism were analyzed in 
A549 and H446 cells treated with shikonin. As shown in 
Fig. 3A, western blotting analysis revealed that shikonin 
downregulated the protein expression levels of PFKFB2 in 
a dose‑dependent manner in A549 and H446 cells, while 
the expression levels of the other proteins (PDK1, GLUT1, 
PGK2, LDHA, PKM2, GLUT3, PDH and p‑PDH) were 
not altered by shikonin treatment. These findings indicated 
that PFKFB2 expression may be regulated by shikonin. In 
addition, RT‑qPCR analysis was performed to analyze the 
mRNA expression levels of PFKFB2 in A549 and H446 cells 
treated with 50 µM shikonin. The results revealed that treat‑
ment with shikonin significantly downregulated the mRNA 

Figure 1. Effect of shikonin on A549 cells. (A) A549 cells were treated with 0, 10, 20 or 50 µM shikonin for 24, 48, 72 or 96 h, and cell proliferation was 
measured using a Cell Counting Kit‑8 assay. *P<0.05. (B) A549 cells were treated with 0, 10, 20 or 50 µM shikonin for 24 h, and the cell migration ability was 
analyzed using a wound healing assay. Scale bar, 100‑µm. (C) A549 cells were treated with 0, 10, 20 or 50 µM shikonin for 24 h, and the cell invasion and 
migration abilities were measured using Transwell assays. Scale bar, 100‑µm. (D) A549 cells were treated with 0, 10, 20 or 50 µM shikonin for 24 h, and cell 
apoptosis was analyzed using flow cytometry. *P<0.05. OD, optical density; PI, propidium iodide.
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expression levels of PFKFB2 compared with the control 
group (both P<0.05; Fig. 3B).

Expression levels of PFKFB2 are upregulated in lung 
cancer tissues, and the overexpression of PFKFB2 promotes 
proliferation, migration and the Warburg effect in lung 
cancer cells. To investigate the role of PFKFB2, the expres‑
sion levels of PFKFB2 were first analyzed in 20 NSCLC 
and adjacent normal tissues. The results demonstrated that 
PFKFB2 expression levels were significantly upregulated in 
NSCLC tissues compared with the adjacent normal tissues 
(P<0.05; Fig. 4A). The expression levels of PFKFB2 were 
also significantly upregulated in lung cancer cells (A549 and 
H446) compared with Beas‑2B normal lung epithelial cells 
(both P<0.05; Fig. 4B). In addition, RT‑qPCR analysis found 

that PFKFB2 mRNA expression levels were significantly 
downregulated in A549 and H446  cells transfected with 
siRNA‑PFKFB2 compared with siRNA‑NC (both P<0.05) and 
significantly upregulated in A549 and H446 cells transfected 
with pcDNA3.1‑PFKFB2 compared with pcDNA3.1‑NC 
(both P<0.05) (Fig. 4C), which indicated that the cell trans‑
fections were successful. The results of the CCK‑8 and 
colony formation assays revealed that the overexpression of 
PFKFB2 significantly increased the proliferation of A549 
and H446  cells compared with the pcDNA3.1‑NC group, 
while the knockdown of PFKFB2 significantly inhibited the 
proliferation of A549 and H446  cells compared with the 
siRNA‑NC group (all P<0.05; Fig. 4D and E). The results of 
the wound healing assay demonstrated that the overexpression 
of PFKFB2 significantly promoted the migration of A549 and 

Figure 3. Shikonin downregulates PFKFB2 expression levels in A549 and H446 cells. (A) A549 and H446 cells were incubated with 0, 10, 20 or 50 µM 
shikonin for 24 h. Expression levels of PFKFB2, PDK1, GLUT1, PGK2, LDHA, PKM2, GLUT3, PDH and p‑PDH in A549 and H446 cells were analyzed 
using western blotting. (B) mRNA expression levels of PFKFB2 were analyzed using reverse transcription‑quantitative PCR in A549 and H446 cells treated 
with 50 µM shikonin. *P<0.05 vs. control. PFKFB2, 6‑phosphofructo‑2‑kinase/fructose‑2,6‑biphosphatase 2; PDK1, pyruvate dehydrogenase kinase 1; GLUT, 
glucose transporter; PGK2, phosphoglycerate kinase 2; LDHA, lactate dehydrogenase A; PKM2, pyruvate kinase M1/2; PDH, pyruvate dehydrogenase 
phosphatase catalytic subunit 1; p‑, phosphorylated.

Figure 2. Shikonin inhibits the Warburg effect and regulates the glycometabolism of A549 and H446 cells in a dose‑dependent manner. A549 and H446 cells 
were treated with 0, 10, 20 or 50 µM shikonin for 24 h. Shikonin inhibited (A) glucose uptake, (B) lactate levels and (C) ATP levels in A549 cells. Shikonin 
inhibited (D) glucose uptake, (E) lactate levels and (F) ATP levels in H446 cells. *P<0.05.
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Figure 4. PFKFB2 expression levels are upregulated in lung cancer, and the overexpression of PFKFB2 promotes proliferation, migration and the Warburg 
effect in A549 and H446 cells. (A) mRNA expression levels of PFKFB2 in NSCLC and adjacent normal tissues were analyzed using RT‑qPCR. (B) mRNA 
expression levels of PFKFB2 were analyzed in Beas‑2B, A549 and H446 cells using RT‑qPCR. (C) mRNA expression levels of PFKFB2 in A549 and H446 cells 
following transfections were analyzed using RT‑qPCR. (D) Proliferation of A549 and H446 cells was detected using a Cell Counting Kit‑8 assay. (E) Colony 
formation assay was used to measure the colony number in A549 and H446 cells. (F) Migratory ability of A549 and H446 cells was analyzed using a wound 
healing assay. Scale bar, 100‑µm. *P<0.05. PFKFB2, 6‑phosphofructo‑2‑kinase/fructose‑2,6‑biphosphatase 2; RT‑qPCR, reverse transcription‑quantitative 
PCR; NSCLC, non‑small cell lung cancer; siRNA, small interfering RNA; NC, negative control; OD, optical density.
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H446 cells compared with the pcDNA3.1‑NC group, while the 
knockdown of PFKFB2 significantly inhibited the migration 
of A549 and H446 cells compared with the siRNA‑NC group 
(all P<0.05; Fig. 4F).

Subsequently, whether PFKFB2 regulated the glycometa‑
bolic activity in A549 and H446 cells was investigated. The 
overexpression of PFKFB2 in A549 cells significantly increased 
glucose uptake, lactate and ATP levels compared with the control 
and pcDNA3.1‑NC groups (all P<0.05; Fig. 5A‑C). Similar 
results were obtained for H446 cells (all P<0.05; Fig. 5D‑F).

PFKFB2 participates in shikonin‑induced glycolysis, apop‑
tosis and migration in lung cancer cells. Whether PFKFB2 
participated in shikonin‑induced aerobic glycolysis, cell 
apoptosis and migration was subsequently investigated. As 
shown in Fig. 6A‑D, the knockdown of PFKFB2 or treatment 
of shikonin significantly inhibited glucose uptake, lactic acid 
production, ATP levels and migration in A549 cells compared 
with the control group (all P<0.05). Notably, there were no 
significant differences in glucose uptake, lactate levels, ATP 
production and migration between A549 cells with knocked 
down PFKFB2 or treated with shikonin and the knockdown of 
PFKFB2 in A549 cells treated with shikonin, suggesting that 
shikonin‑mediated glycolysis and migration may be regulated 
by PFKFB2 in lung cancer cells. In addition, the knockdown 
of PFKFB2 or treatment of shikonin significantly increased 
cell apoptosis compared with the control group (P<0.05), 
while the knockdown of PFKFB2 in shikonin‑treated cells did 
not significantly alter the apoptosis compared with treatment 
of shikonin or the knockdown of PFKFB2 (Fig. 6E).

Discussion

Lung cancer has become the most commonly diagnosed 
cancer worldwide, accounting for 11.6%  of total cancers 
diagnosed (1). Currently, due to the lack of effective tumor 
molecular markers available to guide clinical diagnosis and 
treatment, the rate of successful treatment in patients with lung 
cancer remains poor; therefore, it remains an urgent priority 
to develop novel therapeutic drugs (28). Traditional Chinese 
medicine has long been used for the treatment of lung cancer 
and has demonstrated considerable clinical value, such as 
inhibiting metastasis, enhancing the host immune response 
and reducing the adverse effects of chemotherapy (29‑31). The 
results of the present study revealed that shikonin inhibited cell 
proliferation, invasion, and migration, reduced glucose uptake, 
lactate and ATP levels, increased apoptosis and downregulated 
the expression levels of PFKFB2 in lung cancer cells.

Shikonin, a natural naphthoquinone compound, is extracted 
and separated from the dry roots of Lithospermum erythro‑
rhizon and has been found to play roles in numerous biological 
activities, including exerting anti‑inflammatory, antiviral and 
antitumor effects, immune system regulation, promoting wound 
healing and protecting against multi‑drug resistance (32‑34). 
Among these biological activities, the anticancer effect of 
shikonin has been well reported. For example, a previous 
study reported that shikonin reduced the tumor diameter by 
25% and increased the 1‑year survival rate by 47.3% in patients 
with lung cancer (35). In addition, Zhang et al (36) demon‑
strated that shikonin inhibited the migration and invasion of 
thyroid cancer cells. Guo et al (37) also found that shikonin 

Figure 5. Overexpression of PFKFB2 accelerates the Warburg effect in lung cancer cells. (A) Overexpression of PFKFB2 in A549 cells increased (A) glucose 
uptake, (B) lactate levels and (C) ATP levels. Overexpression of PFKFB2 in H446 cells increased (D) glucose uptake, (E) lactate levels and (F) ATP levels. 
*P<0.05. PFKFB2, 6‑phosphofructo‑2‑kinase/fructose‑2,6‑biphosphatase 2; NC, negative control.
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inhibited cell proliferation and induced apoptosis in glioma. 
Wang et al (38) reported that shikonin inhibited the prolif‑
eration and promoted apoptosis of breast cancer cells. The 
results of the present study demonstrated that shikonin could 
inhibit proliferation, migration and invasion, and increase the 
apoptosis of A549 cells in a dose‑dependent manner, which 
were consistent with the findings of previous studies (36‑38). 
However, the results of the present study showed a lower 
apoptosis rate, which is different to the results obtained in the 
aforementioned studies. Taken together, these results indicated 
that shikonin might exert antitumor effects in lung cancer.

Cancer cells do not use mitochondrial oxidative phosphor‑
ylation, even in the presence of oxygen, but instead use aerobic 
glycolysis, a phenomenon termed the Warburg effect (39,40). 
The Warburg effect has been reported to permit tumor cells 
to overcome metabolic stress and promote energy replenish‑
ment, which is vital for the proliferation and survival of cancer 
cells (41,42). In addition, the Warburg effect was suggested to 
impact the microenvironment and promote chemoresistance, 
angiogenesis and metastasis (43,44). Hence, investigating the 
Warburg effect may be crucial for determining the underlying 

mechanisms of the development and progression of NSCLC. 
The results of the present study found that shikonin could 
dose‑dependently reduce glucose uptake, lactate and ATP 
levels in lung cancer cells. These data indicated that shikonin 
may inhibit the malignant evolution of lung cancer by inhib‑
iting the Warburg effect.

PFKFB is an important regulator of glycolysis in cancer, 
and it was previously reported that the PFKFB family served an 
important role in the development and progression of numerous 
tumor types, such as lung, pancreatic and gastric cancer (45‑47). 
Previous studies demonstrated that the expression levels of 
PFKFB2 were upregulated in melanoma, osteosarcoma and 
thyroid carcinoma (48‑50). Furthermore, Liu et al (51) reported 
that microRNA‑613 inhibited cell proliferation, invasion 
and the Warburg effect by regulating PFKFB2 expression 
in gastric cancer. Ozcan et al (22) also found that PFKFB2 
inhibited glycolysis and proliferation in pancreatic cancer cells. 
The present study results showed that the expression levels of 
PFKFB2 were significantly upregulated in human NSCLC 
tissues and lung cancer cell lines, and that the overexpression of 
PFKFB2 increased cell proliferation, migration, glucose uptake, 

Figure 6. PFKFB2 participates in the shikonin‑induced effects on glycometabolism, apoptosis and migration. A549 cells were incubated with 50 µM shikonin 
for 24 h. (A) Glucose uptake, (B) lactate levels and (C) ATP levels were analyzed in A549 cells. (D) Cell migration ability of A549 cells was analyzed using a 
wound healing assay. Scale bar, 100‑µm. (E) Flow cytometry was used to analyze the apoptosis of A549 cells. *P<0.05. PFKFB2, 6‑phosphofructo‑2‑kinase/fruc‑
tose‑2,6‑biphosphatase 2; siRNA, small interfering RNA; NC, negative control; NS, non‑significant; PI, propidium iodide.
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lactate and ATP levels in lung cancer cells. In addition, shikonin 
treatment downregulated the expression levels of PFKFB2. 
Furthermore, there were no significant differences in glucose 
uptake, lactate levels, ATP production, apoptosis and migration 
between the knockdown of PFKFB2 or treatment of shikonin 
and the knockdown of PFKFB2 in cells treated with shikonin. 
These results indicated that PFKFB2 may play an important 
role in the effects of shikonin treatment in lung cancer.

To the best of our knowledge, the present study was the 
first to demonstrate that shikonin inhibited lung cancer cell 
migration and the Warburg effect by regulating PFKFB2 
expression, which may provide a novel insight into the mecha‑
nism underlying the anticancer effects of shikonin. However, 
it is important to note the limitations of the present study. 
For example, the proportion of apoptotic cells was too low 
to ascertain that shikonin induced apoptosis. In addition, the 
current study did not block the Warburg effect to further vali‑
date the effect of shikonin on cell proliferation, apoptosis and 
migration. The above limitations may weaken the conclusions 
of the present study; therefore, koningic acid, an irreversible 
and selective inhibitor of GAPDH (a rate‑controlling glyco‑
lytic enzyme during the Warburg effect) will be used in future 
studies to block the Warburg effect to further validate the 
mechanism of shikonin in lung cancer (52).

In conclusion, the results of the present study suggested that 
shikonin inhibited the metabolism, migration and proliferation 
of lung cancer cells. In lung cancer tissues, PFKFB2 expres‑
sion levels were upregulated and promoted the progression of 
lung cancer. In addition, PFKFB2 was found to participate in 
the shikonin‑induced effects on the glycolysis and migration 
of lung cancer cells. These data suggested that treatments 
targeting PFKFB2 may benefit patients with lung cancer. In 
addition, shikonin may represent a potential novel compound 
for the treatment of lung cancer.
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