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Abstract 

Background:  Feed efficiency is a major driver of the sustainability of pig production systems. Understanding the bio-
logical mechanisms that underlie these agronomic traits is an important issue for environment questions and farms’ 
economy. This study aimed at identifying genomic regions that affect residual feed intake (RFI) and other production 
traits in two pig lines divergently selected for RFI during nine generations (LRFI, low RFI; HRFI, high RFI).

Results:  We built a whole dataset of 570,447 single nucleotide polymorphisms (SNPs) in 2426 pigs with records for 24 
production traits after both imputation and prediction of genotypes using pedigree information. Genome-wide asso-
ciation studies (GWAS) were performed including both lines (global-GWAS) or each line independently (LRFI-GWAS 
and HRFI-GWAS). Forty-five chromosomal regions were detected in the global-GWAS, whereas 28 and 42 regions were 
detected in the HRFI-GWAS and LRFI-GWAS, respectively. Among these 45 regions, only 13 were shared between at 
least two analyses, and only one was common between the three GWAS but it affects different traits. Among the five 
quantitative trait loci (QTL) detected for RFI, two were close to QTL for meat quality traits and two pinpointed novel 
genomic regions that harbor candidate genes involved in cell proliferation and differentiation processes of gastroin-
testinal tissues or in lipid metabolism-related signaling pathways. In most cases, different QTL regions were detected 
between the three designs, which suggests a strong impact of the dataset structure on the detection power and 
could be due to the changes in allelic frequencies during the establishment of lines.

Conclusions:  In addition to efficiently detecting known and new QTL regions for feed efficiency, the combination 
of GWAS carried out per line or simultaneously using all individuals highlighted chromosomal regions that affect pro-
duction traits and presented significant changes in allelic frequencies across generations. Further analyses are needed 
to estimate whether these regions correspond to traces of selection or result from genetic drift.
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Background
Feed efficiency is a major driver of the sustainability of 
pig production systems. It represents from 50 to 83% of 
production costs depending on countries and systems 
[1]. Feed efficiency is also a major lever to reduce the 

environmental footprints of production [2]. In pig pro-
duction, the cost of feeding is usually measured by com-
puting the feed conversion ratio (FCR). Indeed, FCR is 
a ratio between two traits of interest in most breeding 
schemes (feed intake and growth rate), and its incorpora-
tion in selection indexes makes it difficult to accurately 
anticipate responses to selection on this trait and the 
correlated traits [3]. In 1963, Koch et  al. [4] proposed 
residual feed intake (RFI) as an alternative to quantify 
feed efficiency and overcome the limits of FCR. RFI is the 
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difference between individual feed intakes and predicted 
feed intake for the animals’ maintenance and production 
requirements. It is generally computed as a multiple lin-
ear regression of daily feed intake on production traits 
(growth rate and body composition traits in growing 
animals), and on the average metabolic body weight of 
the animal during the growth period, as an indicator of 
maintenance requirements. As a result, selection for RFI 
generates limited correlated responses on the other pro-
duction traits, as shown in several selection experiments 
in pigs [5, 6], and other species [7]. However, recording 
accurately individual feed intake for pigs raised in groups 
is costly, and large efforts are devoted to facilitate the 
improvement of feed efficiency, by either identifying bio-
markers [8, 9] or genomic markers (for instance [10, 11]). 
In spite of these efforts, the difficulty to identify quantita-
tive trait loci (QTL) or genomic variants that affect feed 
efficiency related traits is illustrated by the PigQTLDB 
statistics [12]: only 394 QTL are listed for feed conver-
sion traits, and 350 for feed intake traits, whereas more 
than 2000 are reported for growth traits, and more than 
3200 for fatness traits (PigQTLDB, accessed September 
2020, https://​www.​anima​lgeno​me.​org/​cgi-​bin/​QTLdb/​
SS/​index). Genomic information acquired from estab-
lished divergent lines for the trait of interest can be used 
to increase the power of detection of genomic variants 
for lowly heritable or highly polygenic traits, such as RFI 
in pigs [10] and litter traits in rabbits [13].

In this study, our aim was to identify genomic regions 
that affect RFI and other production traits in two pig 
lines that have been divergently selected for RFI during 
nine generations [5], by combining extensive genotyping 
of all breeding animals of the lines, and extensive pheno-
typing of their progeny. GWAS were applied to growth, 
feed intake and feed efficiency, carcass composition and 
meat quality traits on the full dataset. Different subsets of 
the population were used to be able to suggest biological 
hypotheses regarding the genetic background of the traits 
in the two divergent lines, and to decipher whether the 
chromosomal regions that affecting RFI differ between 
lines.

Methods
Ethic statement
All pigs were reared in compliance with national regu-
lations and according to procedures approved by the 
French Veterinary Services at INRAE experimental facili-
ties. The care and use of pigs were performed following 
the guidelines edited by the French Ministries of High 
Education, Research and Innovation, and of Agriculture 
and Food (http://​ethiq​ue.​ipbs.​fr/​sdv/​chart​eexpe​anima​le.​
pdf ).

Design
The data were obtained from a divergent selection exper-
iment on RFI carried out at the INRAE experimental unit 
GenESI since 2000 (Surgères, France, https://​doi.​org/​10.​
15454/1.​55724​15481​18584​7E12), on growing pigs from 
the French Large-White (LW) population. Selection pro-
cedures were previously described by Gilbert et al. [5]. In 
brief, the lines were established from 30 matings of LW 
animals (F0). From these litters, 116 males were tested 
to select the six most efficient (LRFI) and six least effi-
cient (HRFI) males as founders of two divergent lines, 
and about 40 pairs of sibs were randomly assigned to 
each line. In the following generations, from G1 to G9, 
96 males from each line were tested for RFI to select six 
extreme low or high boars depending on the line. In addi-
tion, 35 to 40 females were randomly chosen within-line 
in each generation to produce the next generation. No 
selection was applied for females. After nine generations 
of selection, an average inbreeding of 19% was estimated 
in the lines. From G1, matings were organized for at 
least two successive litters. Until G5, the first litter pro-
vided boar candidates for selection and future breeding 
females, and castrated males and females from the sec-
ond parity were tested to evaluate the direct and corre-
lated responses to selection on major production traits, 
including carcass composition and meat quality traits. 
In generation G9, the responses to selection reached 
− 165 g/day (LRFI line–HRFI line) for RFI (3.84 genetic 
standard deviations (σg)), and − 270  g/day for DFI (2.11 
σg) (Table 1). After G5, selection was applied to parity 4 
or 5, and responses to selection were measured on pigs 
born in parities 2 and 3. Hereafter, the breeding animals 
are called “breeders” and animals tested for responses to 
selection are called “response animals”.

Phenotypes
For this study, 2426 phenotyped response animals were 
used, which corresponds to about 48 females and 48 
castrated males per line in each generation G1 to G5, 
plus 700 response animals per line distributed in gen-
erations G6 to G9. All animals were raised during the 
growing-finishing period (~ 28  kg to ~ 107  kg) in the 
same growing-finishing unit comprising four rooms of 
four pens, each equipped with a single-place electronic 
feeder (ACEMA 64; Skiold Acemo, Pontivy, France). 
Each animal had records for body weight (BW0 at 
the start of the test and BW1 before slaughter) and 
daily feed intake (DFI) to compute average daily gain 
(ADG) and feed conversion ratio (FCR) during the test 
period. The dressing percentage (DP) was computed 
based on weight records of warm carcass at slaughter. 
Twenty four hours after slaughter, backfat thickness 
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measured on carcass (carcBFT), and the weights of ham 
(Ham_W), loin (Loin_W), belly (Belly_W), shoulder 
(Shoulder_W), and backfat (BF_W), following a stand-
ardized cut, were recorded on the cold half carcass. The 
lean meat content (LMCcalc) was estimated from a lin-
ear combination of the weights of carcass ham, loin, and 
backfat, expressed as a percentage of the half-carcass 
weight [14]: LMC (%) = 25.08 − 1.23 backfat (%) + 0.87 
loin (%) + 0.73 ham (%). Meat quality measurements 
included pH on the adductor femoris (AD), semimem-
branosus (SM), gluteus superficialis (GS), and longissi-
mus dorsi muscles (LM), colorimetry L*, a* and b* on 
GS and gluteus medius muscle (GM), and water-holding 

capacity (WHC) assessed on GS according to the pro-
cedure described by Charpentier et  al. [15]. Finally, a 
meat quality index (MQI) was calculated from measure-
ments of the pH on SM, L* on GS and WHC according 
to the model proposed by Tribout et  al. [16]. RFI was 
defined as the residual of a multiple linear regression 
as follows: RFI = DFI − (1.48 × ADG) + (23.2 × LMC-
calc) −  (99.1 × AMBW), where AMBW is the average 
metabolic body weight during the test period and is 
equal to (BW11.6 − BW01.6)/[1.6 (BW1 − BW0)] [17]. 
Contemporary group (group of around 45 animals born 
in the same week and contemporarily tested in a given 
room), gender and pen size were added as fixed effects 
in the model, as described by Gilbert et al. [5].

Table 1  Number of QTL identified for each trait with the three groups of association studies

Association studies on the full population (global-GWAS, Global) and for each line separately (HRFI-GWAS, HRFI and LRFI-GWAS, LRFI) were performed. Traits with more 
than three different QTL between the HRFI-GWAS and LRFI-GWAS analyses are indicated in italic characters. For each trait h2 = heritability, and responses to selection 
expressed in genetic standard deviations of the trait are reported as computed by Gilbert et al. [27]

DFI: daily feed intake; ADG: average daily gain; FCR: feed conversion ratio; RFI: residual feed intake; carcBFT: backfat thickness measured on carcass; a*_GM: a* 
measured on the gluteus medius muscle; a*_GS: a* measured on the gluteus superficialis muscle; b*_GM: b* measured on the gluteus medius muscle; b*_GS: b* 
measured on the gluteus superficialis muscle; L*_GM: L* measured on the gluteus medius muscle; L*_GS: L* measured on the gluteus superficialis muscle; pH24h_AD: 
pH 24 h after slaughter measured on the adductor femoris muscle; pH24h_GS: pH 24 h after slaughter measured on the gluteus superficialis muscle; pH24h_LM: pH 
24 h after slaughter measured on the longissimus dorsi muscle; pH24h_SM: pH 24 h after slaughter measured on the semimembranosus muscle; WHC: water holding 
capacity of the gluteus superficialis muscle; MQI: meat quality index; LMCcalc: lean meat content of the carcass; DP: carcass dressing percentage; Belly_W: belly weight; 
BF_W: backfat weight; Ham_W: ham weight; Loin_W: loin weight; Shoulder_W: shoulder weight

Trait h2 Genetic differences in G9 
(σg)

Global HRFI LRFI Total

DFI 0.41 2.11 2 1 3 6

ADG 0.5 0.15 1 3 4

FCR 0.42 2.46 2 2 4

RFI 0.13 3.84 3 2 5

carcBFT 0.4 0.037 4 1 4 9

a*_GM 0.29 0.38 2 1 3

a*_GS 0.26 0.12 4 4 8

b*_GM 0.24 0.09 1 1 2

b*_GS 0.32 1.14 6 4 1 11

L*_GM 0.2 0.38 1 5 6

L*_GS 0.33 2.12 2 3 4 9

pH24h_AD 0.41 1.39 2 3 5

pH24h_GS 0.39 1.98 4 1 1 6

pH24h_LM 0.32 1.45 4 3 4 11

pH24h_SM 0.38 1.74 3 1 1 5

WHC 0.04 0.68 3 5 8

MQI 0.33 1.92 4 1 1 6

LMCcalc 0.59 1.31 3 1 4

DP 0.36 0.93 3 1 6 10

Belly_W 0.28 1.90 2 2

BF_W 0.43 0.9 2 1 3 6

Ham_W 0.51 0.97 2 1 1 4

Loin_W 0.54 1.69 2 1 3

Shoulder_W 0.38 1.11 1 1 2

Total 56 36 47 139
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Genotyping
Genomic DNA was purified from individual biological 
samples of the sires and dams of all generations using 
standard protocols. Over the time of the study, two dif-
ferent Illumina medium-density SNP chips were used 
according to the genotyping protocols defined by the 
supplier (Technological Center, Genomics and Tran-
scriptomics Platform, CRCT Toulouse). A first genotyp-
ing batch comprising 286 animals (12 sires from each 
generation G0 to G6, and G0, G3 and G6 dams) was 
genotyped for 64,232 SNPs using the Porcine SNP60v2 
BeadChip (60K SNPs chip), and a second batch of 1356 
animals (complementary breeding animals of the gen-
erations G0 to G6 and sires and dams of the following 
generations) was genotyped using the Porcine HD Array 
GGP chip comprising 68,516 SNPs (70K SNPs chip). 
Genotypes were obtained using the Genome Studio soft-
ware (V2.0.4) and coded as 0, 1 and 2 corresponding, 
respectively, to individuals homozygous for the minor 
allele, heterozygous and homozygous for the major allele. 
In addition, 32 G0 founders equally distributed between 
the lines (12 G0 sires, and 20 G0 dams that contributed 
most to the subsequent generations based on pedigree 
information) were genotyped with the Affymetrix Axiom 
Porcine HD Genotyping Array chip (Gentyane Platform, 
UMR 1095 INRAE Clermont-Ferrand) consisting of 
658,692 SNPs (650K SNPs chip).

For each SNP panel, quality control was performed 
using the PLINK software (V1.90) [18]: SNPs with a 
call frequency (CF) lower than 95% and a minor allele 
frequency (MAF) lower than 1% were excluded, and 
animals with a call rate (CR) lower than 90% were dis-
carded. Deviations from Hardy–Weinberg equilibrium 
were also assessed with a p-value of 10–10. Unmapped 
SNPs and SNPs located on the sex chromosomes were 
removed based on the Sscrofa11.1 assembly of the refer-
ence genome (https://​www.​ensem​bl.​org/​Sus_​scrofa/​Info/​
Index) [19].

Imputation of genotypes
Two successive imputations were performed using the 
FImpute software [20]. A first level of imputation was 
performed with markers on the 60K and 70K SNPs 
chips, based on 29,957 common SNPs, to homogenize 
the medium-density genotyping data available for the 
1632 breeders of the lines. This leads to an intermedi-
ate dataset of 66,988 SNPs that are imputed from both 
medium-density (MD) chips (60K and 70K SNPs chips). 
In a second step, the genotypes of the high-density (HD) 
SNPs chip were imputed for all breeders using the HD 
SNP genotypes of the 32 G0 founders. A set of common 
45,708 SNPs was available between the MD imputed 
genotypes and the HD SNP chip. Finally, 570,447 SNPs 

distributed along the 18 pig autosomes were available for 
1632 breeding animals.

To evaluate imputation accuracy, first, five successive 
batches of 1000 SNPs were randomly selected among the 
common SNPs between the 60 and 70K SNP chips. For 
each SNP batch, the genotypes of these SNPs were set 
as missing for all animals genotyped with the 60K SNPs 
chip and imputed from the 70K SNPs chip information. 
Therefore, 5000 SNPs with real and imputed genotypes 
were used to compute Pearson’s correlations for each of 
the 286 pigs with 60K genotypes. Similarly, five batches of 
1000 SNPs were randomly selected among the common 
SNPs between both MD SNP chips, animals genotyped 
with the 70K SNPs array were re-coded as missing, and 
Pearson’s correlations between true and imputed geno-
types were computed for the 1346 animals with 70K SNP 
genotypes. Then, to evaluate the imputation quality to 
the HD level, the same strategy of removing successively 
five batches of 1000 SNPs from the data was applied 
using SNPs that were in common among the three chips. 
In addition, a leave-one-out approach was applied to the 
32 individuals with HD genotypes to evaluate the impu-
tation accuracy.

In addition, a multi-dimensional scaling (MDS) analy-
sis was performed using the cmdscale() function in the R 
software (V.3.6.2, R Core Team 2019) based on a identity-
by-state matrix constructed with the PLINK software 
[18].

Predicted genotypes in response animals
Response animals did not have genotypes themselves. An 
average expected genotype was computed for each ani-
mal from the imputed 650K genotypes of their parents. 
For each SNP, each individual was given the average gen-
otype of the parents (0, 0.5, 1, 1.5 or 2), thus within a lit-
ter, all animals were assigned the same genotypes. Thus, 
depending on the class of genotypes, the obtained geno-
type represented an approximation of the real genotype: 
(i) genotypes 0 and 2 were certain, as they resulted from 
two homozygous parents for the same allele (0 × 0  0 and 
2 × 2  2), (ii) genotypes 0.5 and 1.5 included combina-
tions of a homozygous genotype for one allele and a het-
erozygous genotype (0 × 1  0 or 1 and 1 × 2  1 or 2), and 
(iii) genotype 1 was the most heterogeneous class, with a 
mixture of true genotypes (0 × 2  1) and uncertain geno-
types (1 × 1  0 or 1 or 2). Animals whose parents had a 
missing genotype were excluded from the analysis.

Genome‑wide association studies
GWAS analyses were performed using the GEMMA soft-
ware (version 0.97) [21] on response animals with their 
own phenotypes and their average genotypes from the 
parents. Phenotypes were adjusted for significant fixed 
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effects and covariates (pen size, herd, sex, and contem-
porary groups for in  vivo measurements, slaughter date 
as fixed effects, and slaughter age as covariate for traits 
recorded at the abattoir, and slaughter BW as covariate 
for carcBFT) using linear models as proposed in Aliak-
bari et al. [22]. The resulting residues were integrated as 
phenotypes in GEMMA. To account for the structure of 
the population in the GWAS analyses, a pedigree rela-
tionship matrix A was computed. Association analyses 
were performed on the 24 traits available for the 2426 
response animals.

The statistical model used to test one marker at a time 
was y = xβ + Zu + ε , where y is the vector of adjusted 
phenotypes for all individuals; x is a vector of genotypes 
at the tested marker; β is the effect of the tested marker; u 
is a vector of random additive genetic effects distributed 
according to N (0,A�τ−1) , with � the ratio of the additive 
genetic variance and the residual variance τ−1 and Z the 
incidence matrix (identity matrix in this case); ε is a vec-
tor of residuals N (0, Iτ−1) , with I the identity matrix. In 
GEMMA, an efficient exact algorithm is implemented to 
first estimate � , and next derive β̂  and τ̂  for each marker 
[23].

Three types of populations were considered for GWAS. 
First, the full dataset, which combines the two lines, was 
analyzed in a global analysis (thereafter called global-
GWAS). Then, to evaluate if some QTL were segregat-
ing in one line only, the analyses were repeated within 
line (thereafter called lines-GWAS, or HRFI-GWAS and 
LRFI-GWAS when only one line was referred to).

For each analysis, the distributions of the test statis-
tics of the GWAS of each trait were checked using quan-
tile–quantile plots (Q-Q plot), and we computed the 
regression coefficients of the observed to the expected 
distribution under H0. Inflation factors were on average 
1.17 ± 0.15 for all analyses, indicating low deviations from 
the distribution of the test statistic under H0. However, a 
correction factor was applied to all the analyses to con-
trol type-I errors, by dividing each chi square statistic by 
the corresponding inflation factor, following the genomic 
control approach proposed by Devlin and Roeder [24]. 
The test nominal p-values were computed according to 
this new chi square statistic.

To account for the multiple testing issue in the com-
putation of genome-wide type-I errors, the significance 
threshold was obtained after a Bonferroni correction as 
follows:

 where the number of independent tests was computed 
as the sum of the number of independent tests for each 

−log10

(
0.05

∑nbchr
i=1 number of independent testsi)

)
,

chromosome. For each chromosome, this number was 
the number of principal components required to describe 
99.6% of the genotype variability, obtained from a princi-
pal component analysis applied to the correlation matrix 
between genotypes of the SNPs on the considered chro-
mosome (square root (r2) of linkage disequilibrium (LD) 
between each pair of SNPs, Gao et  al. [25]). The result-
ing genome-wide threshold (4.5 corresponding to 1690 
independent tests) was used to select significant associa-
tions for each type of analysis. In addition, a cut-off of 3 
(chromosome-wide threshold) was used only to assess 
whether a significant region identified in one analysis was 
suggestive in another one.

To define QTL intervals, the genome was divided into 
1-Mb windows following the Sscrofa11.1 assembly of 
the reference genome. First, for each analysis (HRFI-
GWAS, LRFI-GWAS and global-GWAS performed for 
each trait), the 1-Mb windows with at least one SNP 
with a significant p-value at 5% genome-wide (−log10(p-
value) ≥ 4.5) were retained, and adjacent windows with 
significant signals were combined into a single "QTL-
window" per trait. In a second step, all the QTL windows 
were combined across traits using the same approach 
as above: adjacent and overlapping QTL-windows were 
fused, thus allowing the definition of a complete list of 
"QTL-regions". When a QTL-region was significant for 
several traits, for each one, the most significant marker 
and the associated allelic substitution effect was retained 
to tag the QTL (trait × region) for this trait in further 
analyses – thereafter called SNP-QTL.

The QTL positions were compared to previously 
mapped QTL in pigs using the pigQTLdb database [12], 
and QTL significant for RFI trait were screened for func-
tional candidate genes using the Ensembl annotation 
V.101 (August 2020).

Changes in allelic frequencies of SNP‑QTL
The power of detection in GWAS is strongly influenced 
by the allelic frequencies of the analyzed markers [26]. 
Within each QTL region, the different SNP-QTL were 
considered to examine the changes in allele frequencies 
with line selection. It should be noted that in addition to 
selection, changes in allele frequencies can also be due to 
genetic drift, especially in small closed populations. For 
instance, under the Wright-Fisher model (panmixia, no 
selection, N = 40) in our lines, genetic drift would result 
in generation 9 in standard deviations of allele frequen-
cies of 0.164 for SNPs with an initial frequency of 0.5. 
However, our objective was not to test if allele frequen-
cies responded to selection, but to illustrate changes in 
allele frequencies with time, accounting for all genera-
tions, in QTL regions. These SNP-QTL allele frequen-
cies were estimated for the response animal genotypes, 
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i.e. from their average genotypes. To investigate how 
selection affected allele frequencies, and thus power of 
detection, allele frequencies were computed by adding 
animals from one generation at a time, starting from 
G1 individuals only. Then, the allele frequencies by add-
ing G2 response animals were obtained by combining 
genotypes of G1 and G2 response animals, and so on 
until G9. The estimated frequencies in G9 (using all the 
animals from G1 to G9) corresponded to the informa-
tiveness of the markers used in the main lines-GWAS. 
In each line, a regression of the generation number (1 
to 9) on the SNP allele frequencies was then applied to 
test changes in allelic frequencies on cumulative datasets 
across generations. For each SNP-QTL, the significance 
of the slope was tested in each line using a Wald test. The 
comparison of the slopes (the regression coefficients of 
the allelic frequencies) between lines highlighted four 
distinct cases: (i) markers with frequencies that did not 
change with line selection (no slope differed from zero 
with the Wald tests), (ii) markers co-selected in the two 
lines (slopes differed from zero and had identical signs), 
(iii) markers selected in opposite directions in the lines 
(slopes differed from zero with different signs), and (iv) 
markers with frequencies that changed in one line only 
(slope different from zero in one line only). Using only 
the significant slope values, a QTL evolution score was 
computed for each SNP-QTL as (9 generations * (|slope 
HRFI| +|slope LRFI|)) and to summarize their evolution per 
trait, an average score over all SNP-QTL for each trait 
was computed.

Results
Quality control and imputation of genotypes
True SNP genotyping data were available for all sires 
and dams from G0 to G9. The quality control of the 
genotypes was carried out first for each SNP chip inde-
pendently. With a CR threshold of 90%, 10 animals geno-
typed with the 70k SNP chip and no individual genotyped 
with the 60K and 650K SNP chips were discarded (see 
Additional file  1: Table  S1). For the SNPs, 15,114 SNPs 
from the 60K SNP chip (5776 for CF < 95% and 9125 for 
MAF < 1%), 11,891 SNPs from the 70K SNP chip (5323 
for CF < 95% and 6568 for MAF < 1%), and 99,587 SNPs 
from the HD SNP chip (53,735 for CF < 95% and 45,852 
for MAF < 1%) were removed. No SNP was removed with 
the Hardy–Weinberg equilibrium filter. In total, geno-
types of 286 animals for 49,118 SNPs from the 60k SNP 
chip, genotypes for 1346 animals for 56,625 SNPs from 
the 70K SNP chip, and finally genotypes for 32 animals 
for 559,105 SNPs from the HD SNP chip were retained 
for further analyses (see Additional file 2: Table S2).

To obtain HD genotypes for all parents in the design, 
two successive runs of imputations were performed. 

First, the imputation of the missing genotypes on each 
MD support (60K and 70K SNP chips) allowed us to 
obtain genotypes for 66,988 SNPs for all sires and dams. 
The imputation accuracy was on average 0.995 regard-
less of the generation of the imputed individuals (see 
Additional file  3: Figures  S1a and 1b). A second run of 
imputation was applied to all breeding animals from 
the 32 founder individuals genotyped with the HD SNP 
chip. The imputation accuracy was also high, with aver-
age accuracies around 0.979 (see Additional file 3: Figure 
S1c). A few animals in G0 and G3 had accuracies lower 
than 0.97. The accuracy estimated via the leave-one-out 
approach confirmed the values estimated with the cor-
relations, with an average of 0.975 (see Additional file 3: 
Figure S1d). In total, genotypes for 570,447 SNPs were 
obtained for all parents from G0 to G9.

An MDS analysis was performed on the genotype 
matrix to represent the changes in genomic content of 
the lines with generations (Fig.  1). The first component 
corresponded to the dispersion of individuals according 
to the lines, and the second component corresponded to 
the successive generations in both lines.

Genome‑wide association studies
From the imputed genotypes of all parents, an aver-
age genotype was computed for all response animals. 
Thus, genotypes coded 0, 0.5, 1, 1.5 or 2 were avail-
able for 2426 individuals. In total, the design included 
596 full-sib families including 4.07 (± 2.9) individu-
als on average. Within a sibling, all individuals shared 

Fig. 1  The first two axes of the multidimensional scaling (MDS) 
analysis, based on the 570,447 genotypes. Points represent 
individuals (corresponding to all sires and dams of the population, 
N = 1632) and colors are generations
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the same average genotype. The proportions of the five 
possible genotypes were estimated for each SNP and 
each individual in the design, with indication of their 
uncertainty. For each SNP, the proportion of certain 
genotypes, corresponding to classes 0, 1 (half of them) 
and 2, represented 1276 genotypes on average, i.e. 53% 
of the individuals, with a median of 1130 genotypes 
that are certain, this proportion being higher for SNPs 
with an extreme MAF. In addition, for each individual, 
among the 66,988 SNPs for the MD imputed genotypes 
considered in the calculation, from 31,132 to 40,852 
SNPs (an average of 35,232 SNPs) were predicted with 
certainty (see Additional file 4: Figure S2).

First, association studies corresponding to global-
GWAS were carried out on all response animals, for 
each of the 24 traits. Significant regions were selected 
by applying a genome-wide threshold of 4.5. Forty-five 
regions of 1 Mb (31 regions), 2 Mb (6 regions), 3 Mb (7 

regions) or 8  Mb (1 region) were significant for at least 
one trait, corresponding to 56 QTL-windows (trait 
× region) for the global-GWAS. For all traits (except 
Belly_W, Shoulder_W and a*_GS), at least one QTL was 
detected in these analyses (Fig.  2), the list and charac-
teristics of these QTL are reported in Additional file  5: 
Table S3.

To assess whether the identified QTL regions were 
identical and shared between the two lines, comple-
mentary GWAS analyses were performed per line, 
using either the set of individuals from G1 to G9 of the 
HRFI line or the set of individuals from G1 to G9 of the 
LRFI line. The QTL identified with the three analyses 
were compared (Table 1 and Fig. 2). As an example of 
the outcome of these analyses, Manhattan plots for RFI 
obtained with the global-GWAS and lines-GWAS are 
reported in Additional file 6: Figure S3. For the analy-
ses performed by line, the number of regions detected 

Fig. 2  Location of all SNP-QTL identified on the 18 autosomes from the Global-GWAS, LRFI-GWAS and HRFI-GWAS. The SNP-QTL corresponding to 
Global-GWAS are represented by horizontal bars, LRFI-GWAS by arrows to the right of the chromosomes and HRFI-GWAS by arrows to the left of the 
chromosomes. Each color represents one of the 24 traits; LRFI: low RFI line; HRFI: high RFI line; DFI: daily feed intake; ADG: average daily gain; FCR: 
feed conversion ratio; RFI: residual feed intake; carcBFT: backfat thickness measured on carcass; a*_GM: a* measured on the gluteus medius muscle; 
a*_GS: a* measured on the gluteus superficialis muscle; b*_GM: b* measured on the gluteus medius muscle; b*_GS: b* measured on the gluteus 
superficialis muscle; L*_GM: L* measured on the gluteus medius muscle; L*_GS: L* measured on the gluteus superficialis muscle; pH24h_AD: pH 24 h 
after slaughter measured on the adductor femoris muscle; pH24h_GS: pH 24 h after slaughter measured on the gluteus superficialis muscle; pH24h_
LM: pH 24 h after slaughter measured on the longissimus dorsi muscle; pH24h_SM: pH 24 h after slaughter measured on the semimembranosus 
muscle; WHC: water holding capacity of the gluteus superficialis muscle; MQI: meat quality index; LMCcalc: lean meat content of the carcass; DP: 
carcass dressing percentage; Belly_W: belly weight; BF_W: backfat weight; Ham_W: ham weight; Loin_W: loin weight; Shoulder_W: shoulder weight
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for a trait could differ between lines. For instance, more 
loci were detected in the HRFI line for ADG, b*_GS, 
L*_GM and WHC, whereas more regions were detected 
in the LRFI line for carcBFT, pH24h_AD and DP. In the 
HRFI line, 36 QTL were identified in 28 regions, and 
in the LRFI line, 47 QTL were identified in 42 regions. 
Only one region overlapped between the two lines: on 
SSC6, a region located between 7 to 10  Mb affected 
pH24h_LM in LRFI and L*_GS, b*_GS, and MQI in 
HRFI, which are highly correlated traits related to meat 
quality (Fig. 3).

Cut weights were the traits with the smallest num-
ber of QTL (1 to 3 per analysis) (Table  1). Meat qual-
ity measurements had the largest number of QTL (up 
to 6). Nineteen regions associated with growth, feed 

intake, and feed efficiency were detected, including five 
regions associated with RFI and four with FCR.

Thirteen regions were shared between the 45 regions 
identified in the global-GWAS and the 69 unique 
regions from the analyses per line, with only five com-
mon regions between the global-GWAS and HRFI-
GWAS analyses, nine common regions between the 
global-GWAS and LRFI-GWAS, and the SSC6 region 
described above detected in the three analyses (Fig. 3a). 
Among these regions, only nine QTL (trait x region) were 
identified jointly in the global-GWAS and in one of the 
lines-GWAS (Fig. 3b), and none was shared in the three 
analyses. Thus, very few QTL were common between 
the three GWAS (Fig. 2). To assess whether a SNP-QTL 
significant in one analysis reached significance or sug-
gestive thresholds in the other analyses, their p-values 
were compared. First, in the comparison between the 
lines-GWAS (Fig. 4a), most of the SNP-QTL detected via 
HRFI-GWAS had −log10(p-values) generally lower than 
the suggestive threshold of 3 in the LRFI-GWAS. Similar 
results were obtained comparing SNP-QTL of the LRFI-
GWAS to their p-values with the HRFI-GWAS. For the 
SNP-QTL significant in the global-GWAS, the −log10(p-
values) with the lines-GWAS were intermediate and 
exceeded the suggestive threshold in one of the lines for 
several QTL.

In addition, for the SNP-QTL corresponding to the 
QTL detected in the line analyses (HRFI-GWAS and 
LRFI-GWAS), the −log10(p-values) obtained in the 

Fig. 3  Comparison of GWAS results obtained from Global-GWAS 
(Global), HRFI-GWAS (HRFI) and LRFI-GWAS (LRFI). a Comparison of 
the number of identical regions and b comparison of the number of 
identical QTL (trait x region)

Fig. 4  Plot of the − log10(p-value) of the SNP-QTL. The − log10(p-value) are obtained in first case with the two lines analyses for all SNP-QTL 
detected for the lines or the global analyses (a), and in second case obtained with the global analysis for SNP-QTL detected with the GWAS 
performed per line (b)
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global-GWAS were also low (Fig.  4b), with more than 
the half (56.6%) of the SNP-QTL having -log10(p-values) 
lower than 3.

Change in allele frequencies across generations
The allele frequencies of the SNP-QTL detected either 
in the global-GWAS or lines-GWAS were evaluated in 
G1 to G9 to reflect the informativeness of these GWAS 
(called G9 hereafter) and in G1. When the SNP-QTL was 
detected in the global-GWAS, all response animals were 
used to compute the frequencies; for SNP-QTL from the 
lines-GWAS, only the animals of the significant analysis 
(HRFI-GWAS or LRFI-GWAS) were used. The resulting 
frequency histograms are shown in Fig. 5. In G1 only, the 
distribution of the allelic frequencies of the SNP-QTL of 
the global-GWAS and that of the SNP-QTL of the lines-
GWAS did not differ significantly (Fig.  5a). In G9, the 
distribution of the SNP-QTL allelic frequencies differed 
largely between the two types of analyses (Fig. 5b): 85.5% 
of the SNP-QTL of the global-GWAS remained in the 
same range of frequencies, between 0.2 and 0.6, whereas 
only 57.7% of the SNP-QTL of the lines-GWAS had 
allele frequencies within that range of values (P < 0.001 
for a Chi2 with 1 df, when comparing between the two 
types of analyses the number of SNP-QTL with frequen-
cies between 0.2 and 0.6 with the number of SNP-QTL 
with other frequencies). In addition, 9% of the SNP-QTL 
of the lines-GWAS had a frequency higher than 0.6, 
whereas no marker reached such frequencies among the 
SNP-QTL of the global-GWAS.

In addition to the estimation of the global allelic fre-
quencies, we evaluated if in each line the detected SNP-
QTL in each type of analysis evolved differently. First, 
the differences in allele frequency between the HRFI 
and LRFI lines were estimated in the G1 generation (at 
the beginning of the selection) (Fig. 6). Regardless of the 
analysis (global- or lines-GWAS) in which the SNP-QTL 

was detected, initially more than 63% of the SNP-QTL 
showed small differences in line frequency (< 0.1) and 
less than 11% of the SNP-QTL showed a difference in 
line frequency greater than 0.2. These SNP-QTL were not 
particularly detected in one or the other type of analysis. 
Next, to better describe the changes in allele frequency 
across generations, frequencies of SNP-QTL from the 
global-GWAS and lines-GWAS were successively esti-
mated in each line by adding data from the next genera-
tion to the previous generations: G1 allele frequencies 
were obtained from G1 individuals only, G2 allele fre-
quencies were obtained from G1 and G2 individuals 
etc. Using the nine resulting frequencies computed for 
each line, a linear regression of the generation number 
on the allele frequencies was applied within line (Fig. 7). 
The comparison between lines of the regression coeffi-
cients of the allelic frequencies highlighted four distinct 
cases (Fig.  8). Altogether, the allelic frequencies of 4.5% 
of the SNP-QTL did not change with selection (Fig. 7a), 
24.8% of the markers were co-selected in the two lines 
(Fig. 7b), 41.3% evolved in opposite directions in the two 
lines (divergence) (Fig. 7c), and 29.3% of the markers had 
frequencies that changed in one line only (17.3% in LRFI 
and 12% in HRFI) (Fig.  7d). Again no difference in the 
distribution of the SNP-QTL by category was identified 
in either type of analysis (p-value = 0.51 for a Chi2 with 
3 df ).

For RFI in the two lines, four of the five detected QTL 
corresponded to regions that were selected in opposite 
directions in the lines, with strong differences in line fre-
quencies: two RFI SNP-QTL showed differences in allelic 
frequency between lines greater than 0.2 in G1 and the 
other two RFI SNP-QTL showed large changes in allelic 
frequency (regression slope > 0.024/generation). To sum-
marize the changes in SNP-QTL allele frequencies for 
each trait, an average evolution score between G1 and 
G9 was computed using the estimated evolution scores 

Fig. 5  Distribution of SNP-QTL allele frequencies of Global-GWAS (in grey) and Lines-GWAS (in black). Distribution representing individuals from the 
line of the significant analysis a in G1 generation (G1 individuals only) and b in G9 generation (G1 to G9 individuals)
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Fig. 6  Distribution of differences in allele frequencies between the lines. The differences in allele frequencies are the absolute values between lines 
for SNP-QTL resulting from the Global-GWAS and Lines-GWAS in G1

Fig. 7  Linear regression of the generation number on the allele frequencies computed in each line. Allele frequencies were estimated in the two 
lines by combining, for each generation, individuals of the generation n with the previous ones (animals from generation G1 to G n-1). Allelic 
frequencies evolutions are reported for SNP-QTL corresponding to a no-evolution, b co-evolution in both lines, c opposite-evolution, and d 
evolution only in one line, situations
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of the different SNP-QTL detected for each trait. These 
averages were between 0.09 (Shoulder_W) and 0.35 
(RFI). A correlation coefficient of 0.63 was then estimated 
between the genetic line differences in G9 computed pre-
viously for the 24 different traits [27] (Table 1) and these 
averages (Fig. 9).

Discussion
The objective of this study was to identify QTL that 
affect RFI and production traits in pig lines that have 
been divergently selected for RFI and to understand if 
the traits had different genetic backgrounds between the 
lines. By optimizing the genotyping to reach a sufficient 
power of detection of QTL in the full design and in the 
two lines, separately, QTL were detected for all traits and 
hypotheses about the trait genetic background in the two 
lines can be formulated.

Using average parental genotypes to detect QTL
While the use of SNP chips now enables the genotyp-
ing of an individual at a reasonable cost, the genotyping 
of a design comprising several thousands of individuals 
still represents a significant investment. In each genera-
tion of our design, at least two parities were produced, 
one to select future breeders, and one to control the 

responses to the selection on feed consumption, growth 
and meat quality traits via measurements at the slaugh-
terhouse. After nine generations of selection, around 
2500 "response animals" had phenotypes. These indi-
viduals have the advantage of having individual records 
for unmeasured traits in breeders (post-mortem meas-
urements). To optimize the costs, we genotyped all 1632 
breeders on MD SNP chips to exhaustively survey the 
segregating alleles in the design. In addition, the 32 main 
contributors to the design were chosen from the G0 sires 
and dams to be genotyped using the HD SNP chip, and 
an imputation step was carried out to have HD geno-
types for all breeding individuals. The strong pedigree 
relationships in the design enabled a very good quality of 
HD imputation, since they help to better detect long hap-
lotypes used to infer missing SNPs [28]. A second step 
was carried out, so that each response non-genotyped 
animal could have a genotype. Such imputation of non-
genotyped animals has been used in cattle [29] as part 
of genomic evaluations to increase the size of reference 
populations. In cattle, the most common situation is to 
determine by imputation the genotypes of the dams of 
the bulls, knowing the genotypes of the maternal grand-
sire, one (or more) offspring and the sires with which 
they were mated [30]. In such cases, the strategy takes 

Fig. 8  Slopes of the linear regression equations of the allele frequencies on the nine generations. Slopes were calculated in each line, for all 
SNP-QTL identified with Global-GWAS (in grey) and Lines-GWAS (in black). Four situations (differentiated by different labels) were identified 
according to the significance of the slope (different from zero with p < 0.05 with a Wald test) in one or the two lines
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advantage of family information (Mendelian rule of allele 
transmission) and combines it with allele frequencies 
and LD between markers at the population level. In our 
case, at each generation n, all response animals had both 
parents genotyped at generation n-1. Given these trio 
structures, an expected genotype at each position could 
be deduced from the genotypes of the parents using sim-
ple segregation rules: since the genotypes were coded as 
an allelic dosage for one reference allele, the genotype 
expectation for each offspring was simply the average of 
the genotypes of its two parents. As a result, 2426 ani-
mals with genotypes (predicted) and phenotypes were 
available for subsequent GWAS analyses.

Understanding the differences in the regions detected 
between analyses
The regions detected with each type of analysis (global- 
or lines-GWAS) were very different and only 10 among 
the 129 detected QTL were shared between global-
GWAS and lines-GWAS. The SNP-QTL detected with 
the global-GWAS were far from reaching the threshold 
of significance in the lines-GWAS. Similarly, most of 
the SNP-QTL detected with the lines-GWAS were far 

from reaching the threshold of significance in the global-
GWAS. Although the number of individuals included in 
the global-GWAS was more than twice that in the line 
analyses, the addition of individuals belonging to the 
other line seems to have reduced the power of detection 
of QTL segregating in the first line. Even if the allelic fre-
quencies of the SNP-QTL detected in the global-GWAS 
or lines-GWAS were comparable in G1, they largely dif-
fered after nine generations of selection, i.e. more SNPs 
with low allele frequencies were identified with the lines-
GWAS. The pedigree kinship matrix was used in the 
GWAS model to correct for the strong genomic structure 
of the population. Although this classical approach is 
successful to control type-I errors of the analyses, it also 
limits the power of detection of QTL in highly differen-
tiated regions between lines, since their link with trait 
variability would be absorbed into the additive genetic 
component of the model. Thus, global-GWAS essentially 
allow the detection of regions that segregate at inter-
mediate frequencies in both lines. As an alternative, the 
analyses carried out by line allow the detection of regions 
that are close to fixation with selection in one of the lines. 
From these results, it seems that the power of detection 

Fig. 9  Genetic differences in G9 between the two lines. The genetic differences were expressed in genetic standard deviations of the trait (σg) 
as a function of the average evolution of allelic frequencies in the QTL regions of the trait between the two lines. The magnitude of the genetic 
correlation between each trait and RFI is indicated with a grey gradient; DFI: daily feed intake; ADG: average daily gain; FCR: feed conversion ratio; 
RFI: residual feed intake; carcBFT: backfat thickness measured on carcass; a*_GM: a* measured on the gluteus medius muscle; a*_GS: a* measured on 
the gluteus superficialis muscle; b*_GM: b* measured on the gluteus medius muscle; b*_GS: b* measured on the gluteus superficialis muscle; L*_GM: 
L* measured on the gluteus medius muscle; L*_GS: L* measured on the gluteus superficialis muscle; pH24h_AD: pH 24 h after slaughter measured on 
the adductor femoris muscle; pH24h_GS: pH 24 h after slaughter measured on the gluteus superficialis muscle; pH24h_LM: pH 24 h after slaughter 
measured on the longissimus dorsi muscle; pH24h_SM: pH 24 h after slaughter measured on the semimembranosus muscle; WHC: water holding 
capacity of the gluteus superficialis muscle; MQI: meat quality index; LMCcalc: lean meat content of the carcass; DP: carcass dressing percentage; 
Belly_W: belly weight; BF_W: backfat weight; Ham_W: ham weight; Loin_W: loin weight; Shoulder_W: shoulder weight
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related to allele frequencies in each line is the main dif-
ference between QTL-SNPs detected with the lines-
GWAS and global-GWAS. Thus, given the power of the 
design, it is likely that the biological pathways involved in 
RFI variability in the two lines are similar, but with dif-
ferent contributions to the trait in each line, contrary to 
some previous hypotheses [10, 27].

Comparison with published regions
Among the five QTL detected for RFI, three regions 
were detected close to previously published RFI QTL. 
The region on SSC14 at 130–131  Mb is close to the 
region described by Do et al. [31] who proposed G-pro-
tein-coupled receptor kinase 5 (GRK5) (129,114,449–
129,343,412  bp) as a candidate gene. Wang et  al. [32] 
reported that a GRK5 deficiency led to insulin resist-
ance and hepatic steatosis, and to decreases in diet-
induced obesity and adipogenesis in mice. At the position 
131,181,710–131,579,703  bp, FGFR2 (fibroblast growth 
factor receptor 2) could also be an interesting candidate 
gene. All four FGF receptors and several FGF ligands are 
present in the intestine and are key players in control-
ling cell proliferation, differentiation, epithelial cell res-
titution, and stem cell maintenance. FGFR2 is expressed 
in the human ileum and throughout adult mouse intes-
tine [33]. The second region closest to published RFI 
QTL is the 184–186  Mb interval on SSC13 near the 
QTL reported by Bai et al. [34] and Do et al. [31]. In this 
region, TMPRSS15 (transmembrane serine protease 15) is 
an interesting candidate gene. This gene encodes an intes-
tinal enzyme that is responsible for initiating the activa-
tion of pancreatic proteolytic proenzymes. It catalyzes 
the conversion of trypsinogen to trypsin, which in turn 
activates other proenzymes including chymotrypsino-
gen procarboxypeptidases and proelastases. TMPRSS15 
has been associated to enterokinase deficiency, a life-
threatening intestinal malabsorption disorder charac-
terized by diarrhea and failure to thrive [35]. On SSC17, 
two RFI QTL have been published by Do et al. [31] close 
to the SOGA1 gene (suppressor of glucose, autophagy-
associated protein 1, 40,020,107–40,098,992  bp) and by 
Onteru et al. [10] close to the DOK5 gene (docking pro-
tein 5, 55,391,074–55,541,561  bp). These two QTL sur-
round the region that we detected and could correspond 
to a unique QTL. At position 48,090,077–48,100,816 bp 
and at position 48,132,911–48,149,732  bp, respectively, 
PLTP and ZNF335 are additional candidate genes. In 
humans, Coleman et al. [36] identified the region encod-
ing ZNF335 as a susceptibility locus for the coeliac dis-
ease, a chronic immune-mediated disease triggered by 
the ingestion of gluten [36]. The PLTP (phospholipid 
transfer protein) transfers phospholipids from triglycer-
ide-rich lipoproteins to high-density lipoprotein (HDL). 

In addition to regulating the size of HDL particles, this 
protein may be involved in the metabolism of cholesterol. 
PLTP-KO mice absorb less cholesterol than wild-type 
mice, and also have a deficient secretion in the intestine 
[37].

Potential pleiotropic effects
The large number of traits recorded in our design and the 
known genetic correlations between these traits [27] ena-
ble the detection of pleiotropic regions, i.e. regions that 
affect multiple traits. Among the four regions detected 
for FCR, no QTL co-localized with a RFI QTL. For the 
other traits, only two QTL were detected within 10 Mb of 
the RFI QTL: one QTL at 8 Mb influencing pH24h_LM 
on SSC9 between 1 and 2 Mb, and one QTL on pH24h_
AD at 1 Mb of the QTL for RFI located at 113–114 Mb 
on SSC14. Compared to the previously published QTL 
regions for RFI, we identified only one QTL for DFI in the 
region described by Guo et al. [38] on SSC3 between 126 
and 128 Mb. In spite of the reported correlations between 
these traits and RFI, among the 36 QTL detected in our 
study for DFI, MQI, WHC, pH24h_AD, pH24h_GS, and 
pH24h_SM, only one QTL co-located with the RFI QTL 
identified in our study or in previously published studies.

Changes in QTL allele frequencies and trait responses 
to selection
The allele frequencies of the majority of the detected 
regions changed between generations G1 and G9, with 
more than 70% of the regions for which SNP-QTL 
evolved in opposite directions or in one line only. How-
ever, the magnitude of the changes in allelic frequencies 
of the QTL regions varied among the traits, and was 
strongly correlated with previously reported line dif-
ferences in G9 [27]. Indeed, the regions with the larg-
est changes in allelic frequencies were detected for RFI, 
which was the trait used for selection. For the other 
traits, the higher the genetic correlation with RFI, the 
higher the variation in allelic frequency of the associ-
ated QTL regions. As a result, QTL that affect FCR, 
DFI and MQI showed the largest changes in allelic fre-
quency with generations. The responses of QTL that 
affect meat quality traits are consistent with the high and 
early responses to selection previously detected in this 
experimental population for these traits [5]. Altogether, 
our analyses underline a clear relationship between 
the quantitative responses to selection of the traits and 
the changes in allelic frequencies in some QTL regions, 
which potentially point out to chromosomal regions that 
were selected during the experiment. Nevertheless, it is 
important to note that changes in allelic frequencies can 
also result from genetic drift. In such populations with a 
small effective size and strong directional selection, the 
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power of detection of signatures of selection using stand-
ard methodologies [39] can be low due to the major effect 
of genetic drift on the changes in allele frequencies. How-
ever, recently-developed new methods, based on genetic 
time series could provide new insights for the detection 
of regions under selection in small populations [40].

Conclusions
In this study, our aim was to characterize the molecular 
architecture of RFI in two lines that have been divergently 
selected for this trait. In addition to efficiently detecting 
known and new QTL regions, the combination of GWAS 
performed per line or simultaneously using all individu-
als allowed the identification of candidate regions on the 
genome and to understand how the genomes of both 
lines have evolved. Analyzing the allelic frequencies from 
G1 to G9, we identified that most of the differences in the 
results of QTL detection between the global or the two 
lines-GWAS were due to differences in informativity of 
the SNP-QTL in the two lines after nine generations of 
selection. Even if we cannot distinguish whether these 
evolutions in allelic frequencies are a direct effect of 
the directional selection or are due to drift, the regions 
detected can explain the responses to selection of differ-
ent traits reported before. In addition, we conclude that 
the majority of the QTL regions followed divergent pat-
terns in the lines, and that the same metabolic pathways 
were certainly involved in both lines. We identified sev-
eral new regions that underlie RFI variability and propose 
new candidate genes that complement the data acquired 
in previously published analyses.
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Additional file 1: Table S1. Number of animals used for the analyses 
after quality control. Details of the number of animals before and after 
application of a filter on the call rate (CR) were given for chips (60K, 70K 
and 650K SNPs chips), imputation levels (MD/HD imputation) and average 
genotypes calculated from the genotypes of both parents (HD predicted).
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were given for chips (60K, 70K and 650K SNPs chips), imputation levels 
(MD imputation and HD imputation) and average genotypes calculated 
from the genotypes of both parents (HD predicted).

Additional file 3: Figure S1. Correlations between true and imputed 
genotypes for animals genotyped on 60K, 70K or 650K SNPs chip. For 
each analysis, correlations were estimated setting 5000 SNPs as missing (5 
batches of 1000 SNPs) on one chip among SNPs in common between the 
two arrays used. Animals are sorted and colored by generation. Correla-
tions between true and imputed genotypes (a) for the 286 animals geno-
typed with the 60K SNPs chip using animals with 70K genotypes as refer-
ence population, and (b) for the 1346 animals genotyped with the 70K 
SNPs chip using animals with 60K genotypes as reference. (c) Correlations 

between true and imputed genotypes after imputation to 650K SNPs from 
the imputed medium density genotypes. (d) Correlations between true 
and imputed genotypes based on the leave-one-out cross-validation.

Additional file 4: Figure S2. Proportion of certain expected genotypes 
per animal, per SNP and in relation to the MAF of the SNPs. The proportion 
of certain genotypes corresponds to expected genotypes from parents 
which are homozygous for the same allele or homozygous for opposite 
alleles, and half of the genotypes from matings of two heterozygous 
parents were also taken into account. This proportion was studied per 
individual for the 66,988 SNPs of the 60K SNPs chip (a), per SNP for the 
2426 pigs (b) and finally per SNP while taking into account the MAF of 
each SNP (c).

Additional file 5: Table S3. QTL regions detected with the three groups 
of association studies. These QTL regions were found from the full 
population (Global-GWAS) and from each line separately (HRFI-GWAS and 
LRFI-GWAS). DFI: daily feed intake; ADG: average daily gain; FCR: feed con-
version ratio; RFI: residual feed intake; carcBFT: backfat thickness measured 
on carcass; a*_GM: a* measured on the gluteus medius muscle; a*_GS: a* 
measured on the gluteus superficialis muscle; b*_GM: b* measured on the 
gluteus medius muscle; b*_GS: b* measured on the gluteus superficialis 
muscle; L*_GM: L* measured on the gluteus medius muscle; L*_GS: L* 
measured on the gluteus superficialis muscle; pH24h_AD: pH 24 h after 
slaughter measured on the adductor femoris muscle; pH24h_GS: pH 24 h 
after slaughter measured on the gluteus superficialis muscle; pH24h_LM: 
pH 24 h after slaughter measured on the longissimus dorsi muscle; pH24h_
SM: pH 24 h after slaughter measured on the semimembranosus muscle; 
WHC: water holding capacity of the gluteus superficialis muscle; MQI: meat 
quality index; LMCcalc: lean meat content of the carcass; DP: carcass dress-
ing percentage; Belly_W: belly weight; BF_W: backfat weight; Ham_W: 
ham weight; Loin_W: loin weight; Shoulder_W: shoulder weight

Additional file 6: Figure S3. Manhattan plots for GWAS of RFI trait in 
global, HRFI line or LRFI line populations. The plot shows the − log10(p-
values) for all SNPs in the analysis against their genomic position. 
Changes in color represent different chromosomes. The dashed line 
represents the threshold for genome wide significance (threshold of 
-log10(p-value) = 4.5).
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