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Data-driven approaches promise to usher in a new phase of de-
velopment in fracture mechanics, but very little is currently known
about how data-driven knowledge extraction and transfer can be
accomplished in this field. As in many other fields, data scarcity
presents a major challenge for knowledge extraction, and knowl-
edge transfer among different fracture problems remains largely
unexplored. Here, a data-driven framework for knowledge extrac-
tion with rigorous metrics for accuracy assessments is proposed
and demonstrated through a nontrivial linear elastic fracture me-
chanics problem encountered in small-scale toughness measure-
ments. It is shown that a tailored active learning method
enables accurate knowledge extraction even in a data-limited re-
gime. The viability of knowledge transfer is demonstrated through
mining the hidden connection between the selected three-
dimensional benchmark problem and a well-established auxiliary
two-dimensional problem. The combination of data-driven knowl-
edge extraction and transfer is expected to have transformative
impact in this field over the coming decades.

fracture mechanics | fracture toughness | machine learning | transfer
learning

Data-driven approaches, e.g., machine learning (ML), have
emerged as a new paradigm in scientific research (1–11). So

far there is very little understanding in two essential components
of the data-driven approaches, knowledge extraction and trans-
fer, in the century-old engineering discipline of fracture me-
chanics. Here knowledge generally includes both qualitative and
quantitative understanding of a physical phenomenon, as well as
the connection between different physical problems. Interest-
ingly, both knowledge extraction and transfer have been involved
extensively in the historical development of fracture mechanics.
For example, size-dependent fracture strength was originally
observed in experiments. Exactly a century ago Griffith invoked
the laws of thermodynamics and formulated a quantitative
fracture theory which connects the fracture strength and flaw size
in brittle materials (12). Weibull built on Griffith’s work and
formulated the statistical nature and specimen-size dependence
of fracture strength by assuming a probabilistic distribution of
the largest flaw size (13). This statistical theory of size effect was
adapted and “transferred” by Ba�zant and Planas in the study of
quasi-brittle fracture (14, 15).
Indeed, using advanced ML algorithms, valuable knowledge

can be extracted from experimental or computational data on
fracture-related problems, as shown in some prior work (4–11).
However, these studies rely on limited datasets due to practical
issues associated with the generation of large amounts of data.
Data scarcity is a common challenge that raises the concern of
knowledge bias, as the accuracy cannot be correctly assessed
without sufficient data. On the other hand, it is imperative to
incorporate rigorous accuracy assessment in knowledge extrac-
tion, even when the quantity of data is limited. Moreover, there
have been no studies on knowledge transfer in the context of
data-driven fracture mechanics. It is still unclear how to

implement ML-based knowledge transfer between different
fracture mechanics problems.
Here, we propose a data-driven framework for knowledge

extraction in fracture mechanics, with particular emphasis on
accuracy assessment. The applicability of the proposed frame-
work is demonstrated through a specific example problem en-
countered in small-scale fracture toughness measurements. This
specific problem requires a predictive model in which accuracy
assessment is a nontrivial and data-intensive task yet of para-
mount importance. To this end, a general active learning
framework is proposed, which is found to significantly increase
the efficiency of data usage for accuracy assessment during
knowledge extraction. Furthermore, we explore the feasibility of
knowledge transfer in data-driven fracture mechanics by dem-
onstrating that ML solution to the chosen benchmark problem
with full three-dimensional (3D) complexity can be efficiently
constructed based on a much simpler two-dimensional (2D)
problem. The underlying physical connection between these two
problems turns out to be transferable to a series of different
scenarios. It is expected that the developed framework for data-
driven fracture mechanics can help boost further discoveries in
the field.

Results
Accurate Knowledge Extraction Is Data-Demanding. The selected
benchmark problem comes from a practical experimental
method for measuring fracture toughness (16–19) of brittle
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isotropic materials (e.g., polycrystalline silicon) by loading a
prenotched microcantilever of pentagonal cross-section at its
free end, as shown in Fig. 1. The fracture toughness is correlated
directly with the critical load at the onset of fracture as well as a
set of parameters that define the specimen geometry,
{a, b,w,L0,L1}. The relationship that describes the stress inten-
sity factor, KI, at the crack tip for a given load, P, is required.
Note that this is essentially a linear elastic boundary value
problem involving five independent dimensionless variables:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
x = (x1, x2, x3, x4) = (a

b
,
w
b
,
L0

b
,
L1

b
)

y = KI

PL1a0.5b−1w−2

. [1]

The correlation between y and x needs to be extracted (20), so
that the ratio of the stress intensity factor to the applied load,
KI=P = Γpent(a, b,w,L0,L1), can be obtained.
This correlation can be extracted in a data-driven manner and

stored as a predictive ML model, enabling broad application of
this fracture toughness characterization method. Note that in
such tests specimens are typically micromachined by focused ion
beams and their dimensions cannot be precisely controlled
(16–19). More specifically, the ML solution should provide an
accurate output of y for an arbitrary input x in a predefined pa-
rameter space, which in the present case is Λ = [0.1,   0.8]×
[1.0,   3.0] × [0.1,   0.4] × [2.0,   5.0], according to the range of
microcantilever dimensions used in practice. The dataset for
knowledge extraction comprises x∈Λ and its corresponding
target value of y, i.e., ytarget, from 3D finite element simulations
(more details in Data Acquisition from Finite Element Simulations).
The development of such a predictive ML model includes

model selection, training, and assessment. To find an appropri-

ate model, the “link” from the four inputs, x = (ab, wb, L0
b ,

L1
b ), to the

output, y, needs to be identified. The following question can be
immediately raised: Are all inputs important for establishing
such a link? To address this issue, a data-based tool is built to
quantify the importance of each input (more details in Quanti-
fication of the Feature Importance). With this tool, and by using a
small amount of data, the relative error of the target variable, y,
caused by neglecting its dependence on xi is found to be at least
63.0%, 52.3%, 19.7%, and 37.2%, respectively. Therefore, all

four inputs are indispensable for this problem. A fully connected
neural network (NN) with rectified linear activation function
(ReLU) is selected, which consists of an input layer with four
nodes, two hidden layers with n1 and n2 nodes, and an output
layer with a single node, denoted by “4=n1=n2=1.” A supervised
learning problem is then formulated by minimizing the differ-
ence between the NN prediction, ypred, and the target value from
finite element method (FEM), ytarget (more details in Basic
Training Procedure for an ML Model). Informing the model with
a training dataset provides a series of different candidates due to
the randomness of initialization and training. By testing these
candidates with sufficient assessment data their accuracy can be
evaluated so that those with an acceptable prediction error can
be selected as qualified solutions to the problem.
To provide a broad scope of the correlation between y and x,

the training data are selected from a uniform grid across the
entire parameter space, Λ, with each input domain being dis-
cretized into (5,   8,   2,   2) intervals. It is not possible to estimate
whether these training data points are enough unless the accu-
racy of the trained model is correctly assessed. The model ac-
curacy can be defined as the maximum absolute percentage error
between the model prediction, ypred, and the target value, ytarget
(which corresponds to the worst-case scenario prediction):

E = max
x  ∈ Λ

⃒⃒⃒
ypred(x) − ytarget(x)

ytarget(x)
⃒⃒⃒
× 100%. [2]

The accuracy assessment is not trivial since it is defined in a
continuum parameter space but can only be evaluated in a
discrete assessment dataset. Inspired by the idea of mesh
convergence in finite element analysis (21), a series of assess-
ment datasets is built by refining the interval of the sampling
grid, i.e., {χ(0)h , χ(1)h , χ(2)h , . . . }. χ(0)h corresponds to a uniform grid
with (5,   8,   2,   2) intervals in each dimension, and χ(n)h corre-
sponds to a grid with (5,   8,   2,   2) × 2n intervals. The prediction
error of a trained model is evaluated on these datasets, and a
nondecreasing sequence of estimates of the model accuracy is
obtained, i.e., {E(0)

h ,E(1)
h ,E(2)

h , . . . }, the convergent value of which
provides a reliable estimate of model accuracy in the continuous
parameter space, i.e., E = E(∞)

h . If none of the trained models
achieves the desired accuracy, a larger training dataset or a more
complicated model architecture should be employed. This itera-
tive framework will ultimately provide a qualified predictive
model regardless of how the initial grid, χ(0)h , is selected. More-
over, the fact that the information is not distributed evenly
across the uniform grids motivates our active learning study
of data collection in An Active Learning Approach to Accuracy
Assessment.
As shown in Fig. 2, different NN structures, “4/16/16/1” and

“4/32/32/1,” are selected. The details of the training procedure
are described in Basic Training Procedure for an ML Model. It is
found that the smallest assessment dataset, χ(0)h , which is also
used for training, cannot provide a correct value of the model
accuracy. Most of the trained models can be correctly assessed
with χ(2)h , i.e., a convergent value of the model accuracy is ob-
served with 56,133 data points. Among the well-assessed models,
one can choose the appropriate model according to their accu-
racy. Specifically, using 486 training data and 56,133 assessment
data, a predictive model with less than 5.0% relative error can be
obtained, which stores the desired knowledge for this problem. It
is worth noting that while we have used the four dimensionless

variables, x = (ab, wb, L0
b ,

L1
b ), as descriptors of the fracture me-

chanics problem under study, in general more advanced feature
encoding methods, e.g., Fourier descriptor (22) or the principal
component of the signed distance function (23), can be

Fig. 1. Selected demonstration problem from a common sample to mea-
sure fracture toughness at small scales. A prenotched microcantilever with
pentagonal cross-section, whose dimensions are {w,b, a, L0, L1}, is loaded at
one end using a nanoindenter. The fracture toughness is directly correlated
with the critical load at the onset of fracture as well as the specimen ge-
ometry. The relationship, Γpent, that describes the stress intensity factor, KI,
at the crack tip for a given load, P, is required for a valid toughness
measurement.
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employed for more complicated geometries. While simple NNs
with a few hidden nodes are selected in this work, other ap-
proaches, such as the extreme learning machine algorithm with a
single-hidden layer feedforward NN (24), may also be employed
for this problem.
Thus, a template approach to accuracy assessment in the general

framework for extracting a predictive model involves a large
amount of data. The total consumption for acquiring 56,133 data is
∼25,000 central processing unit (CPU) hours with the finite element
software FEAP (25). Surprisingly, the majority of data usage is
allocated to accuracy assessment rather than knowledge extraction.

An Active Learning Approach to Accuracy Assessment. Data scarcity
is a major challenge in building an accurate predictive ML
model. The results in Accurate Knowledge Extraction Is Data-
Demanding have demonstrated that the model accuracy can be
assessed by progressively acquiring data in a brute-force manner,
i.e., by sampling the full parameter space with a uniform and
refining interval. However, such systematic sampling can be in-
efficient due to noninformative data. Active learning and
design-of-experiment approaches alleviate the need for large
datasets by selecting the most informative data (26–28). Thus,
the goal is to identify points where the model exhibits the largest
prediction error without knowing the target values (as defined in
Eq. 1) beforehand or requiring any prior physical information
associated with the problem.
Inspired by recent developments in computer science (26, 27,

29), we employ the so-called query-by-committee algorithm. Here,
a committee of mutually independent models, C = {̂y(1), ŷ(2), . . . , ŷ(Nc)},
is established, which shows consistent predictive values with the
currently available data. The pointwise prediction error of the
committee is defined as

«(x) = max
i=1,2, ...,  Nc

⃒⃒⃒
ŷ(i)(x) − ytarget(x)

ytarget(x)
⃒⃒⃒
. [3a]

Based on the premise that the committee’s predictions at each
point in the parameter space follow an unbiased distribution, the
average prediction serves as an optimal alternative to the target
value, i.e., y = 1

Nc
∑
i
ŷ(i)(x) and lim

Nc→∞
y = ytarget. On this basis, the

pointwise prediction error of the committee, «(x), can be approx-
imated by

~«(x) = max
i

⃒⃒⃒
ŷ(i)(x) − y(x)

y(x)
⃒⃒⃒
. [3b]

Since the number of committee members, Nc, is limited by prac-
tical considerations, the value of «(x) could be slightly different
from ~«(x) . However, such disturbance barely affects the effort to
detect locations where «(x) attains local maximum values from
~«(x). In other words, the maximum values of ~«(x) and «(x) in a
local patch, Λ′, of the parameter space, Λ, are found to be nearly
colocalized:

arg max
x  ∈ Λ′

«(x) ≈ arg max
x  ∈ Λ′

~«(x). [4]

The evaluation of ~«(x) would guide us to points where the com-
mittee shows the largest prediction error. Acquiring the target
values at these points allows an accuracy assessment of the com-
mittee and provides crucial data for improving the committee’s
overall accuracy. Note that the purpose of our committee setup
for accuracy assessment in active learning is different from that
of the ensemble method in ML (30), which aims to make a de-
finitive prediction based on a weighted sum of each member’s
prediction.
Accordingly, an iterative framework for collecting data is

formulated (discussed in detail in Committee-Based Active Learning
Approach). During each iteration, 20,000 NNs of the same structure
(“4/32/32/1”) are trained with all the available data. More than 60%
of the NN models make predictions with a relative error of less
than 1.0% at these data points. These models are then enrolled
into the committee. The points with the largest values of ~«(x) are
found throughout the parameter space, and the target values at
these points are acquired from simulations so that the maximum
prediction error of the committee, Ec, can be assessed. The newly
collected data are added to the current dataset and utilized for
the next iteration. The iteration ends when the desired accuracy
is achieved.
This active learning approach significantly improves the effi-

ciency of data usage for accuracy assessment and knowledge
extraction, as shown in Fig. 3. After five iterations, using 486
initial and 362 newly collected data, a committee of NNs with
less than 5.0% relative error is established. Each committee
member is a qualified and well-assessed ML model that provides
precise predictions with less than 5.0% relative error. To verify

Fig. 2. Accuracy assessment of the predictive models is data-demanding.
NNs with different structures, (A) “4/16/16/1” and (B) “4/32/32/1,” are se-
lected to extract knowledge from a small dataset, χ(0)h . The resulting pre-
dictive models are assessed with a series of enriched datasets, χ(1)h and χ(2)h .
Due to the randomness of initialization and training, these models have
different prediction performances. With χ(1)h and χ(2)h , these models exhibit a
convergent value of the maximum absolute percentage error (max. APE)
between the model prediction and target value. The convergent value
provides a reliable estimate of the accuracy of these models. The best pre-
dictive models exhibit a relative error of less than 4.16% and 3.78%, re-
spectively, for the two cases.

Fig. 3. The iterative active learning framework for extracting knowledge
with metrics. (A) The iteration is initialized with 486 data points, which are
uniformly dispersed in the parameter space. Through training 20,000 NNs of
the same structure (“4/32/32/1”), a committee of more than 12,000 models is
established. The committee’s accuracy is estimated to be less than 12% rel-
ative error by acquiring selective data from simulations. The newly collected
data are utilized in the next iteration. After five iterations, 362 new data
points are collected, and a group of NNs with less than 5.0% relative error is
obtained. (B) The premise that «(x) and ~«(x) are colocalized (as described Eq.
4) is verified with the newly selected points in each iteration. As expected,
~«(x) is a good approximation to «(x).
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the assumption that «(x) and ~«(x) are colocalized (as described in
Eq. 4), their behaviors for newly selected points in each iteration
are evaluated. As expected, the point with a larger value of ~«(x)
usually exhibits a larger value of «(x), especially when ~«(x)≥ 4.0%.

Data-Driven Knowledge Transfer. The results in Accurate Knowl-
edge Extraction Is Data-Demanding and An Active Learning Ap-
proach to Accuracy Assessment have demonstrated that the
desired knowledge can be extracted from simulation data with-
out any prior knowledge of the system, as most important
physical information is already contained in the dataset. Natu-
rally, it can be expected that the incorporation of physical
knowledge of the system may have a significant impact on creating
the predictive model. Some prior attempts used physics-informed
ML models, i.e., NNs coupled with governing equations, for
capturing the physical correlation between inputs and outputs
(26, 31). However, there is no governing equation that can be
theoretically derived for the fracture problem under consideration.
Instead, an existing ML model that deals with a similar but simpler
problem might be more likely to provide useful knowledge. This
follows the idea of transfer learning, i.e., the knowledge gained
while learning to solve one problem can be transferred to help
solve another.
Here, it is interesting to note that the fracture of a notched

cantilever with pentagonal cross-section is similar to that of a 2D
notched cantilever under a line force p, as shown in Fig. 4A. The
knowledge gained from solving this 2D problem, which is much
easier compared to the 3D problem, can be stored as an auxiliary
ML solution, i.e., KI = p ·Γ2D(a,H,L0,L1). The establishment of
Γ2D is detailed in SI Appendix.
The transfer of the auxiliary solution relies on mining the

connection between Γpent and Γ2D. Discovering this connection is
not a trivial task as it requires advanced data analysis. Note that
Γ2D has the capability of predicting the stress intensity factor for

a rectangular cross-section cantilever (width w and height H),
i.e., KI=P = w−1 ·Γ2D(a,H,L0,L1), as shown in Fig. 4B. By
comparing the beam compliance of the pentagonal cross-section
cantilever and the rectangular cross-section cantilevers (width w
and height H± = b + w

4 ± w
4), an intuitive relation can be formed:

Γn = αΓn
+ + (1 − α)Γn

−, [5a]

where Γ = Γpent(a, b,w,L0,L1) and Γ± = w−1 ·Γ2D(a,H±,L0,L1).
For an arbitrary configuration {a, b,w,L0,L1}, the values of Γ±
are known beforehand. However, the interpolation coefficient,
α∈ (0,   1), has yet to be determined. Through dimensional anal-
ysis, α should be a bounded function of four independent dimen-

sionless variables, x = (x1, x2, x3, x4) = (ab, wb, L0
b ,

L1
b ), and one tuning

parameter, n:

α = αn = α(x1, x2, x3, x4; n). [5b]

The importance of xi to α can be identified conveniently from 16
different configurations of x (more details in Quantification of the
Feature Importance), which estimates the possible deviation of Γ
in Eq. 5 if the dependence of α on xi is neglected. The additional
flexibility factor, n, is intentionally introduced to tune the impor-
tance of xi, as shown in Fig. 5. Surprisingly, an optimal value of
n = −1 is found, in which case the importance of x, especially x3
and x4, are minimized. This observation provides valuable in-
sights into the undiscovered connection between Γpent and Γ2D.
More specifically, the dependence of α on x3,4 and even x1,2 can
be reduced if the resulting deviation of Γ in Eq. 5 is within
tolerance.
The ideal scenario is that α can be replaced with a constant,

e.g., α = 0.5452, which is acquired from the center of the pa-
rameter space. As a result, a reduced expression of Γ is obtained:

Γ = 1
αΓ−1

+ + (1 − α)Γ−1
−
,     α = 0.5452. [6]

To validate this simplification, the relative error between Γ and
its target value from finite element simulations needs to be eval-
uated. By sampling the parameter space with a uniform and re-
fining interval, the relative error is estimated, in a reliable
manner, to be less than 7% with 625 data points. This marginal
deviation suggests a successful practice of knowledge transfer,
i.e., the knowledge of how Γ depends on x is almost fully
inherited from the auxiliary solution, Γ2D.

Fig. 4. The pentagonal cross-section cantilever shares a similar feature of
fracture with a 2D notched cantilever. (A) A 2D notched cantilever, whose
dimensions are {a,H, L0, L1}, is loaded at its free end by a line force, p. The
established solution to this problem, Γ2D, describes the stress intensity factor
at the crack, KI, for a given p. (B) Γ2D can also be used to predict the stress
intensity factor for a rectangular cross-section cantilever (width w and
height H) under an external load, P. (C) The pentagonal cross-section falls in
between two corresponding rectangular cross-sections: One is contained
within the pentagon and the other itself contains the pentagon. It is postulated
that the solution for the notched cantilever with pentagonal cross-section,
Γpent, is implicitly connected to its rectangular cross-section counterparts
(described by Γ2D).

Fig. 5. Identifying and tunning the importance of xi to the prediction of
Γpent. The (feature) importance of xi to α can be identified from 16 different
configurations of x, which can be further tuned by varying the additional
flexibility factor, n (Eq. 5). Interestingly, the optimal value of n = −1 is found
to minimize the importance of x, especially x3 and x4. This observation
provides valuable insights into the choice of α, as well as the establishment
of the connection between Γpent and Γ2D.
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The relative error of Γ in Eq. 6 can be narrowed by incorpo-
rating the dependence of α on x1 and x2, i.e., by replacing α with
α̂(x1, x2). To establish this function, an intermediate value of
x3,4 = xp3,4 = (0.25,   3.5) is chosen from the center of the param-
eter space. Also, for arbitrary x1,2 combined with the selected xp3,4,
a unique value of α can be determined by Eq. 5, which provides a
one-to-one mapping, i.e., α̂ = α̂(x1, x2). Thus, a new reduced ex-
pression of Γ is proposed:

Γ̂ = 1
α̂Γ−1

+ + (1 − α̂)Γ−1
−
,     α̂ = α̂(x1, x2). [7]

Similarly, with 625 data points, the relative error between Γ̂ and
its target value is estimated to be less than 3%. Compared with
Eq. 6, the dependence of Γ2D on x3,4 (instead of all variables) is
transferred, and the relative error of Γ̂ is narrowed. Interestingly,
a balance between simplicity and accuracy is achieved in Eq. 7
with this selective knowledge transfer.
Therefore, a practical protocol of knowledge transfer from Γ2D

to Γpent is formulated (Eqs. 6 and 7), in which the simplification
of α to α and α̂ is crucial. On this basis, a hierarchical framework
for predicting Γpent is established, as shown in Fig. 6. The de-
pendence of α on x is represented by a switchable kernel in this
framework, which can have multiple versions, i.e., α and α̂. Note
that these two versions feature different levels of simplification
and error tolerance. If the constant α is selected, this framework
predicts Γpentwith less than 7% relative error. If α̂ is selected, this
framework has the capability of predicting Γpent with less than
3% relative error. Note that the knowledge of α̂ needs to be
extracted from a set of discrete data, which causes additional
error in the prediction of Γpent. For example, a simple fully
connected NN with two nodes in the input layer, four nodes in
the hidden layer, and a single node in the output layer, denoted
by “2/4/1,” can be employed for learning α̂(x1, x2). A small dataset

χ(0)reduced is acquired from a uniform grid across the reduced

parameter space, Λreduced = [0.1,   0.8] × [1.0,   3.0], with each in-
put domain being discretized into (4,   4) intervals. By refining the
interval of the sampling grid, two enriched datasets, χ(1)reduced and
χ(2)reduced, can be obtained, corresponding to grids with (8,   8) and
(16,   16) intervals. The NN is informed by χ(0)reduced (more details in
Basic Training Procedure for an ML Model) and assessed on χ(1)reduced

and χ(2)reduced. It is found that an additional error of 1.3% for pre-
dicting Γpent arises when α̂ is approximated by the trained NN.
The above example of successful knowledge transfer provides

a unique perspective on how to solve a linear elastic fracture
mechanics problem in a data-driven manner. Instead of directly
extracting the solution from data (as discussed in Accurate
Knowledge Extraction Is Data-Demanding and An Active Learning
Approach to Accuracy Assessment), finding its relevance to a re-
solved auxiliary problem through careful data analysis can pro-
vide useful insights. Once the connection between these
problems is established, the solution can be built on the existing
knowledge from the auxiliary problem, rather than from scratch.
This may substantially shorten the time and reduce the cost for
solving a complex problem. Our selected benchmark problem
showcases the capabilities of data-driven knowledge transfer in
fracture mechanics. A framework (Fig. 6A) is designed based on
the discovered connection (Eqs. 6 and 7) between the unsolved
problem of a pentagonal cross-section cantilever (Fig. 1) and the
resolved 2D counterpart (Fig. 4). The replaceable kernel can
switch between α and α̂ (Fig. 6B), which provides two reliable
predictive models with less than 7% and 5% relative error, respec-
tively. Interestingly, most of the data, i.e., 625 data points, are used to
discover the hidden connection while only a small amount of data are
required for extracting the switchable kernel, i.e., 1 point for α or 289
points for α̂. This practice offers a state-of-the-art combination of
data-driven knowledge transfer and knowledge extraction in fracture
mechanics, which turns out to be data-efficient.

Discussion
Importance of Knowledge Accuracy. In this work, both knowledge
extraction and knowledge transfer are demonstrated to be ef-
fective approaches in data-driven fracture mechanics. The im-
portance of knowledge accuracy for making predictions is
highlighted. Inaccuracies in knowledge mainly arise from either
unreliable data sources or limited approximation capabilities of
the selected ML models. The first issue can be resolved through
proper data acquisition, e.g., high-resolution FEM. The latter is
inevitable, making an estimation of the resulting error necessary.
However, reliable accuracy assessment is data-demanding and
challenging as all possible configurations of the problem need to
be explored. To enable accuracy assessment in a data-limited
regime, a tailored active learning approach is proposed. This
approach relies on establishing an unbiased and independent
committee, i.e., a large assembly of well-informed ML models.
The average of the committee members’ predictions provides an
optimal alternative to the target value, which is essential for
locating the configurations where the committee has the largest
prediction error. By acquiring the target values for these high-
risk configurations, the upper bound of each committee mem-
ber’s prediction error is determined, causing all the models in the
committee to be well-assessed. It is important to collect enough
committee members (∼10 times larger than the degrees of freedom
in theMLmodel) to guarantee that the average prediction from the
committee is a valid approximation to the target value, which sets
the basis for accuracy assessment. On the other hand, the newly
acquired data during this process are expected to be most useful in
improving the overall accuracy of the committee. This forms an
iterative framework for learning and assessment, which ultimately
provides a group of accurate and well-assessed ML models using a
small amount of data.

Fig. 6. The hierarchical framework for predicting Γpent based on knowledge
transfer. (A) The predictive framework utilizes the well-established auxiliary
solution, Γ2D, and the discovered connection to predict Γpent. The switchable
kernel in this framework, which concretizes the dependence of α on x, can
have multiple versions, i.e., α and α̂ (Eqs. 6 and 7). (B) These two versions
feature different levels of error tolerance, less than 7% and 3% relative
error for α and α̂, respectively. Note that the original form of α in Eq. 5 shows
the best approximation capability but does not provide a solid connection
between Γ2D and Γpent. The second kernel, α̂, is established with a simple fully
connected NN (“2/4/1”), which adds 1.3% relative error.
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Unraveling Hidden Connections between Related Problems Enables
Knowledge Transfer. The success of knowledge transfer in data-
driven fracture mechanics is expected to benefit from advanced
data analytics, as well as human intelligence and well-established
domain knowledge. First, it is essential to find an appropriate
auxiliary problem that is relevant and resolved, with the input of
researchers’ experience and intuition. Second, the underlying con-
nection between the auxiliary problem and the problem under
consideration needs to be recovered from a limited amount of data
via intelligent data analysis and knowledge extraction. Finally, the
discovered connection can be incorporated into a hybrid frame-
work, which transfers the prior knowledge to the current problem.
The combination of knowledge transfer and extraction not only
offers engaging opportunities for further exploration of data-driven
fracture mechanics but also poses challenges of enhancing the
versatility and accuracy of the extracted knowledge.

The Elegance and Versatility of the Established Connection. Dirac
wrote, “A physical law must possess mathematical beauty.” The
established connection (in two versions, Eqs. 6 and 7) can be
revisited under this principle. Note that both versions are derived
from Eq. 5, in which Γ is expressed as a weighted generalized
mean of Γ± with a coefficient α and exponent n. Determining α
and n in Eqs. 6 and 7 provides a physical connection between Γ
and Γ±. The discovery of both the integer exponent, n = 1, and
the weak dependance of α on various configurations significantly
simplifies the connection. Interestingly, by assuming α = 1=2, Γ
takes a more concise form, i.e., the harmonic mean of Γ±:

Γ = 2
Γ−1
+ + Γ−1

−
. [8]

The deviation of the connection from the acquired data might
be an artifact caused by either numerical errors from simulations
or by the inaccuracy of the prior knowledge. It is anticipated

that the recovered connection (Eq. 8) can be applied to a
series of new fracture mechanics problems, which are formu-
lated by relaxing the constraint on the bottom angle, 2θ, of
the pentagonal cross-section (Fig. 7 A and B). With Γ± =
w−1 ·Γ2D(a, b + w

4 tan θ ± w
4 tan θ,L0,L1) being modified accordingly,

the prediction of Γ by Eq. 8 is consistent with the simulation
results in Fig. 7C and Table 1. It is worth pointing out that other
methods such as symbolic regression (32) could potentially enable
such knowledge transfer as well. For example, the mathematically
concise connection (Eq. 8) may also be uncovered using purely
data-driven symbolic regression. In comparison, our present study
suggests that combining domain knowledge and data analytics can
make the knowledge transfer more interpretable.

The Principle behind the Established Connections. Although the re-
covered connection (Eq. 8) arises from data analysis, rather than
an interpretable physical theory, it would be interesting to in-
vestigate its physical origin and insights. First, the discovery of
the connection is enlightened by the 2D nature of the stress field
near the straight crack front in the cantilevers (Figs. 1, 4, and 7).
Second, these cantilevers differ by additional 3D geometric
feature of the boundary (Figs. 1 and 7), while maintaining the 2D
feature of the crack front. In short, these cantilevers are char-
acterized by an identical 2D feature, e.g., KI, although they ex-
hibit differences in geometry. The geometric difference affects
KI when an external load, P, is applied. Therefore, the shared
feature, KI, in the pentagonal cross-section cantilever may be
recovered from its 2D counterparts, in a similar manner that the
geometric complexity can be related to a 2D cantilever (or a
rectangular cross-section cantilever). The area of a pentagon is
the average of that of two rectangles (Fig. 4C), and the ratio of
KI to P in the pentagonal cross-section cantilever can be esti-
mated as a generalized mean of KI=P in the rectangular (2D)
counterparts (Eq. 8). Overall, the above discussion rationalizes
the principle behind the discovered connection, for which a
rigorous theoretical derivation is not feasible. If the geometric
complexity of a fracture problem does not severely distort its
similarity to a set of resolved problems (e.g., similar notched
cantilevers and same fracture mode in this work), then their

Fig. 7. Application of the recovered connection to a series of new fracture
mechanics problems. (A) A prenotched microcantilever, with a modified pen-
tagonal cross-section, is loaded at one end. It is desired to determine the ratio of
the stress intensity factor at the crack tip, to the external load, i.e., Γθ = KI=P. (B)
The new problems are formed based on the original one (in Fig. 1) by relaxing
the constraint on the bottom angle, 2θ, of the pentagonal cross-section. Note
that the modified pentagonal cross-section falls in between two rectangular
cross-sections. (C) The recovered connection (Eq. 8) is demonstrated to be ap-
plicable to these new problems, with Γ± being modified accordingly. The dif-
ference between the prediction by Eq. 8 and the simulation results is less than
10% for different angles, θ, and different configurations, as listed in Table 1.

Table 1. Comparison between the recovered connection and
finite element simulations

Configuration
no. a=b w=b L0=b L1=b

Relative error*

θ = 45°,
%

θ = 60°,
%

θ = 75°,
%

1 0.10 1.00 0.10 2.00 2.15 1.06 0.93
2 0.10 1.00 0.10 5.00 1.92 1.34 1.40
3 0.10 1.00 0.40 2.00 2.69 1.40 0.81
4 0.10 1.00 0.40 5.00 2.05 0.98 0.17
5 0.10 3.00 0.10 2.00 5.83 3.28 0.93
6 0.10 3.00 0.10 5.00 6.32 3.84 0.02
7 0.10 3.00 0.40 2.00 6.36 2.40 0.48
8 0.10 3.00 0.40 5.00 6.06 2.84 1.08
9 0.80 1.00 0.10 2.00 4.89 2.15 0.66
10 0.80 1.00 0.10 5.00 3.34 1.51 1.12
11 0.80 1.00 0.40 2.00 5.54 3.66 2.44
12 0.80 1.00 0.40 5.00 2.15 1.06 1.35
13 0.80 3.00 0.10 2.00 0.87 2.30 5.48
14 0.80 3.00 0.10 5.00 4.11 0.04 3.82
15 0.80 3.00 0.40 2.00 2.99 1.32 0.49
16 0.80 3.00 0.40 5.00 2.35 0.38 2.47

*The relative error is defined as
�
�ðΓ� ΓtargetÞ=Γtarget

�
�3100%, where Γtarget is

acquired from finite element simulations.
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intrinsic connection may be recovered using a weighted gener-
alized mean of solutions to the latter.

Universality of the Guiding Principle for Knowledge Transfer. From a
more general perspective, this principle can be applied to several
different scenarios. 1) Different loading modes, e.g., pure
bending and axial tension, can be applied to the cantilevers,
while keeping the 2D feature of the fracture mechanics problem.
Based on this, the following hypothesis is formed: The ratio of KI

to the magnitude of the remote load in the pentagonal cross-
section cantilever can be approximated by the generalized mean
of its 2D (rectangular) counterparts. 2) Consider a flat elliptical
crack (with major axis b and minor axis a) embedded in an
infinite solid subject to uniform far-field tension, σ, in the normal
direction of the crack plane (as shown in Fig. 8). Although the
stress intensity factor is not uniform along the crack front, its
maximum, KI,(a, b), is located at the minor axis vertices. Note that
varying b results in a series of ellipses that are tangent to each
other at their minor axis vertices including two special cases, a
circular crack (b = a) and a tunnel crack with a straight front
(b = ∞). All these ellipses have the same direction of crack
propagation at the minor axis vertices, which suggests KI,(a, b),
KI,(a, b=a) and KI,(a, b=∞) are connected. Their geometric difference
can be quantified by the finite number, b−n1, thus the elliptical
crack can be approximated by a weighted generalized mean of
the tunnel crack and circular crack, with an interpolation coef-
ficient, α = (b=a)−n1. On this basis, the connection between
KI,(a, b), KI,(a, b=a) and KI,(a, b=∞) can be postulated as

Kn2
I,(a, b) = (1 − α)Kn2

I,(a,∞) + αKn2
I,(a, a),     α = (b=a)−n1 . [9]

Similar connection with n1 =   n2 = 1 has been proposed from a
different perspective in ref. 33. Since the exact solutions to the
internal circular crack, tunnel crack, and elliptical crack are all
well-established (33, 34), this hypothesis (Eq. 9) can be readily
examined. It is found, with n1 =   1 and n2 = 3=2, the deviation of
KI,(a, b) between the hypothesized solution (Eq. 9) and the exact
solution is less than 5%, as shown in Fig. 8C. Therefore, the
principle behind these established connections is demonstrated
to be universal and provides a unique perspective on how to
discover hidden connections and enable knowledge transfer be-
tween problems in fracture mechanics.

Methods
Data Acquisition from Finite Element Simulations. The stress intensity factor,
KI, at the crack tip can be evaluated from domain J-integral (35–37) and 3D
finite element simulations for the cantilevers with pentagonal cross-section.
As shown in Fig. 9, an encastré boundary condition is applied to the fixed
end of the cantilever and a displacement-controlled boundary condition to
the free end. More than 10,000 full integration elements (C3D20) are
employed with refined mesh near the crack tip. The simulations are per-
formed through a user-defined subroutine in the finite element software
FEAP (25) or the built-in function in ABAQUS (38). The average wall time for
each simulation was ∼100 s when running in parallel on 16 CPUs with FEAP.

Quantification of the Feature Importance. The quantification of the impor-
tance of inputs (i.e., features) to the prediction of the target output provides
valuable insights into the problem. The complexity of the problem can be
reduced by neglecting unimportant features. Only relevant features are
selected as inputs for the ML model. This also impacts the acquisition of data
as the dataset sizewill shrinkwith a reduced number of features. Therefore, it
is necessary to identify the feature importance of inputs, i.e., x = (x1, x2, x3, x4)
in our selected problem.

Most of the current methods to evaluate the feature importance rely on
the establishment of a predictive model which can tell how sensitive the pre-
diction is to the model inputs (39). These approaches require a large amount of
data and appropriate choice of models. Therefore, a simple technique, which
only requires a small amount of data and no predictive models, is developed.

To study the dependence of y on x in Eq. 1, a small set of data points are
selected from a uniform grid across the entire parameter space,
i.e., χFI = {x(1)1 , x(2)1 , . . . , x(N1 )

1 } × {x(1)2 , x(2)2 , . . . , x(N2 )
2 } × {x(1)3 , x(2)3 , . . . , x(N3 )

3 } × {x(1)4 , x(2)4 , . . . , x(N4 )
4 }. At

each point x = (x(i)1 , x(j)2 , x(k)3 , x(l)4 )∈ χFI, a target value of y = y(i, j,k, l) can be

obtained from simulations. If y is independent of x1, y(i1 , j,k, l) = y(i2, j, k, l) holds
for arbitrary (j, k, l). Otherwise, these values differ greatly. Therefore, the dif-
ference among these target values quantifies the feature importance of x1:

FI1 = max
i1 , i2 , j,k, l

⃒⃒⃒
y(i1, j, k, l) − y(i2 , j,k, l)

y(i2 , j, k, l)

⃒⃒⃒
. [10]

As Ni increases, this is equivalent to the relative error of ytarget if its de-
pendence on x1 is neglected. Similarly, the feature importance of other in-
puts can be evaluated.

To study the importance of x to Γ in Eq. 5, it is essential to utilize pre-
obtained correlations between Γ± and x. More specifically, at each point

x = (x(i)1 , x(j)2 , x(k)3 , x(l)4 ), Γ(i, j,k, l)
± can be obtained from Γ2D. Γ = Γ(i, j,k, l) and

α = α(i, j, k, l)n can be acquired from simulations. If the dependence on x1 is

neglected, α(i1 , j, k, l)n can be replaced by α(i2 , j,k, l)n for arbitrary (j, k, l). As a result,

the evaluation of Γ, i.e., Γ(i1 , j,k, l) can be replaced by Γ(i1→i2 , j, k, l):

Fig. 8. Demonstration of the principle of knowledge transfer for an elliptical crack. (A) Consider an internal elliptical crack (with major axis b and minor axis
a) in an infinite solid subject to uniform far-field tension, σ, normal to the crack plane. For the sake of demonstration, it is desired to determine the stress
intensity factor at the minor axis vertices, KI,(a,b). (B) The circular crack (b = a) and tunnel crack (b = ∞) are two special cases of the elliptical crack and have the
same direction of crack propagation at the minor axis vertices. Based on the guiding principle (discussed in The Principle behind the Established Connections
and Universality of the Guiding Principle for Knowledge Transfer), KI,(a,b), KI,(a,b=a) and KI,(a,b=∞) should be connected. (C) With the exact solutions to the
internal circular crack, tunnel crack, and elliptical crack, the hypothesized connection (Eq. 9) is validated. The difference between the hypothesized solution
and the exact solution is less than 5% over a broad range of b=a.

Liu et al. PNAS | 7 of 9
Knowledge extraction and transfer in data-driven fracture mechanics https://doi.org/10.1073/pnas.2104765118

EN
G
IN
EE

RI
N
G

https://doi.org/10.1073/pnas.2104765118


⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
 

Γ(i1, j, k, l) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(1 − α(i1, j, k, l)n )[Γ(i1 , j,k, l)− ]n + α(i1, j, k, l)n [Γ(i1 , j, k, l)+ ]nn

√
Γ(i1→i2, j, k, l) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(1 − α(i2 , j, k, l)n )[Γ(i1 , j, k, l)− ]n + α(i2 , j, k, l)n [Γ(i1, j, k, l)+ ]nn

√ . [11]

Therefore, the difference between Γ(i1 , j, k, l) and Γ(i1→i2 , j, k, l) reflects the error
of Γ caused by neglecting the dependence of α on x1. Thus, the feature
importance of x1 can be evaluated as

FI*1 = max
i1, i2 , j, k, l

⃒⃒⃒
Γ(i1→i2, j, k, l) − Γ(i1 , j,k, l)

Γ(i1 , j, k, l)

⃒⃒⃒
. [12]

Similarly, the feature importance of other inputs can be evaluated.
This method can be generalized to evaluate the combined importance of

multiple variables, e.g., x1 and x2:

FI*1,2 = max
i1, i2 , j1 , j2 , k, l

⃒⃒⃒
⃒Γ(i1→i2, j1→j2, k, l) − Γ(i1, j1 , k, l)

Γ(i1, j1 , k, l)

⃒⃒⃒
⃒. [13]

It is worth mentioning that the value of the feature importance depends on
the tuning parameter n. This additional flexibility is introduced to tune the
feature importance so that feature reduction can be achieved.

Strictly speaking, the evaluation of the feature importance depends on the
size of χFI as it is entirely data-driven. For finite (N1,N2,N3,N4), this method always
provides a lower bound of the maximum relative error caused by feature reduc-
tion. As more data points are acquired, a convergent and accurate estimate of the
error induced by feature reduction can be obtained. However, even with a small
amount of data, e.g., 16 data points with N1 = N2 = N3 = N4 = 2, this method
already provides valuable information about feature selection and reduction.

Basic Training Procedure for an ML Model. The training of NNs is performed on
the open-source platform TensorFlow r2.2 (40), with the “mean absolute
percentage error” loss function and the Nadam algorithm. This specific loss
function can effectively avoid vanishing gradients when the difference be-
tween ypred and ytarget is small. A two-step strategy is adopted, i.e., 5,000
training iterations with a learning rate of 0.01 followed by another 5,000
iterations with a learning rate of 0.001 as to achieve good predictions on the
training dataset. However, its performance outside the training data points
is yet to be investigated. It is worth mentioning that the dataset is not split
into three subdatasets (training, validation, and testing sets) during
the training step, since the model will be rigorously validated and tested in
the subsequent assessment step. The assessment step rigorously prevents the
issue of overfitting without extra treatments (e.g., regularization). The hyper-
parameters in the training iterations (e.g., coefficients in the Nadam algorithm)

are set to default values in TensorFlow. While these settings resulted in suc-
cessful training of the selected simple NNs, more advanced tuning techniques
(41–43) may be required in the case of more sophisticated NNs.

Committee-Based Active Learning Approach. The adopted active learning
approach relies on the establishment of an unbiased and independent com-
mittee, which consists of a large number of models. It is technically challenging
to train massive models with limited computational resources. Therefore, a
special technique is developed to assemblemultiple NNswith the same structure
into one compact model, by utilizing tensor operations. Training this assembled
model is highly efficient on graphics processing units, i.e., the wall time it takes
to train the assembled model is comparable to the time for a single NN. In this
study, 20,000 NNs of the same structure (“4/32/32/1”with the “ReLU” activation
function) are initialized with random weights and then assembled. The as-
sembled model is trained (more details in Basic Training Procedure for an ML
Model) and then assessed by comparing their predictions with the available
data. More than 60% of the NNs are qualified as they make consistent pre-
dictions (with less than 1.0% relative error) at these data points. Thus, a com-
mittee of more than 12,000 NNs is established.

To locate the points where the committee has the largest prediction error,
its approximated value, ~«(x) defined in Eq. 3b, needs to be evaluated in the
entire parameter space. A pool-based method is employed to find the lo-
cations of the maximum values of ~«(x). A dense grid is constructed inside the
parameter space by discretizing each dimension, xi, into mi = (35,   100,   10,   10)
uniform intervals, which provides a pool of 439,956 points. The value of ~«(x) is
evaluated throughout the pool and the local maximum points can be located. If
the local maximum of ~«(x) is greater than a selected tolerance, the target value,
ytarget, at this point will be acquired through finite element simulations. This way, a
new set of data, χac, is obtained and added to the current dataset. The maximum
value of «(x) at these new points gives exactly the maximum prediction error of
the committee in the entire parameter space, i.e., Ec = max

x   ∈  χac
«(x). The enriched

dataset will be used to improve the committee’s overall accuracy in the subsequent
step. After several iterations, the committee’s prediction error can be significantly
reduced, and each committee member can serve as an accurate and well-assessed
ML solution.

Data Availability.All study data are included in the article and/or SI Appendix.
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