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Abstract

Purpose: The aim of this work is to shed light on the issue of reproducibility in MR image 

reconstruction in the context of a challenge. Participants had to recreate the results of “Advances 

in sensitivity encoding with arbitrary k-space trajectories” by Pruessmann et al.

Methods: The task of the challenge was to reconstruct radially acquired multicoil k-space data 

(brain/heart) following the method in the original paper, reproducing its key figures. Results were 

compared to consolidated reference implementations created after the challenge, accounting for 

the two most common programming languages used in the submissions (Matlab/Python).

Results: Visually, differences between submissions were small. Pixel-wise differences originated 

from image orientation, assumed field-of-view, or resolution. The reference implementations were 

in good agreement, both visually and in terms of image similarity metrics.

Discussion and Conclusion: While the description level of the published algorithm enabled 

participants to reproduce CG-SENSE in general, details of the implementation varied, for 

example, density compensation or Tikhonov regularization. Implicit assumptions about the data 

lead to further differences, emphasizing the importance of sufficient metadata accompanying open 

datasets. Defining reproducibility quantitatively turned out to be nontrivial for this image 

reconstruction challenge, in the absence of ground-truth results. Typical similarity measures like 

NMSE of SSIM were misled by image intensity scaling and outlier pixels. Thus, to facilitate 

reproducibility, researchers are encouraged to publish code and data alongside the original paper. 

Future methodological papers on MR image reconstruction might benefit from the consolidated 

reference implementations of CG-SENSE presented here, as a benchmark for methods 

comparison.
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1 | INTRODUCTION

Over the past decades, MRI experienced a vast thrust toward an algorithmic perspective 

owing to the increased computational power of standard computers leading to the invention 

and development of numerous reconstruction methods. This is reflected in the tremendous 

increase of publications registered on Pubmed that involve “MRI” and either 

“reconstruction” or “fitting” over the last 2 decades (see Figure 1). The peak of 3354 

publications in 2018 amounts to an average of 9 papers per day. Typically, computational 

innovation in these papers is shown by comparing novel methods to established algorithms 

in the field via suitable quality metrics.

One of the fundamental computational approaches to image reconstruction is parallel 

imaging, that is the idea to use a-priori knowledge about multiple receiver coil sensitivities 
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to accelerate scans. Image reconstruction then shifts from a simple Fourier transform—

which may optionally include a gridding step for non-Cartesian data—to solving a more 

complex inverse problem, based on a matrix equation of image encoding, as proposed in a 

general form in Pruessmann et al1 commonly referred to as “conjugate gradient CG-

SENSE.” A lot of image reconstruction papers published thereafter refer to this standard 

algorithm, often performing direct comparisons to prove the efficacy of their method. 

However, no commonly agreed-on reference implementation of the CG-SENSE algorithm is 

readily available. Therefore, these comparisons to the “SENSE” method are mere 

comparisons to one version of it, be it custom implementations, those based on openly 

available image reconstruction toolboxes, or even obtained from a black-box implementation 

provided by the scanner vendors. This lack of a reference implementation reflects a 

fundamental problem of research reproducibility in the MR image reconstruction domain.

The reproducible research study group (RRSG) of the ISMRM aims to enhance 

reproducibility by facilitating fair and simple comparisons to existing algorithms. However, 

comparing novel algorithms to re-implementations of published work without having access 

to the original code can lead to wrong conclusions. Often, algorithmic details are not 

reported in detail in publications and small deviations of input parameters can lead to strong 

differences in the output, regularly degrading the performance of the existing method, which 

is a general problem faced in the scientific community.2–8 A questionnaire opened by the 

RRSGG (https://blog.ismrm.org/2019/04/15/reproducible-research-study-group-

questionnaire/), regarding reproducible research, also showed that the majority of the 71 

participants (77.5%) sees a reproducibility problem in their research area. This proves that 

scientists are aware of the problem of reproducibility of research and how hard it can be to 

recreate paper results without access to code or data. To that end, the RRSG announced a 

reproducibility challenge in April 2019 as part of the Annual Meeting of the ISMRM in 

Montreal. The goal was to reproduce the core findings of the paper “Advances in sensitivity 

encoding with arbitrary k-space trajectories” from Pruessmann et al1 solely based on the 

description available in the paper, and to converge toward a reference implementation being 

accessible to the community. The choice to reproduce the CG-SENSE paper is based on the 

facts that it describes one of the basic algorithms for image reconstruction, often used in 

modified versions on the scanner console, that it serves as basis for many modern iterative 

reconstruction methods, and that there exists no official reference implementation of this 

fundamental algorithm. Participants were required to reproduce the main figures of the 

original paper given two fully sampled radial brain and heart datasets. Signal and trajectory 

data were supplied but neither sensitivity maps nor noise covariance scans. No programming 

language restrictions were given, as long as the source code was shared and the 

computational results could be reproduced. The detailed instructions can be found in the 

corresponding ISMRM blog post (https://blog.ismrm.org/2019/04/02/ismrm-reproducible-

researchstudy-group-2019-reproduce-a-seminal-paper-initiative/).

In this work, we present the outcome of this initiative, compare the different submissions 

and discuss potential problems in reproducing the findings of a scientific paper solely from 

the manuscript. Furthermore, we consolidated the submissions from the participating groups 

into two reference implementations (Python and Matlab), which are available online in the 

ISMRM git repository and could serve as a benchmark for future publications seeking 
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comparison to CG-SENSE. The reference implementations will be discussed in more detail 

in Section 2.6, specifically focusing on critical points in the implementation. The main 

features of each submission will be shown in Section 2.5 and differences regarding 

implementation details and possible sources of deviations to the reference implementations 

will be discussed. We would like to note that the results of the challenge should not be seen 

as a comparison of the performance of any third party software or open source libraries used 

by the participants. Finally, recommendations for conducting reproducible research and 

future challenges are given.

2 | METHODS

2.1 | Design of the first RRSG challenge

Since this was the first ever reproducibility challenge by the study group, we designed it 

around a rather simple premise to encourage submissions from the community. This started 

with the choice of the paper. We wanted a paper that is seminal in our field, where the 

authors did not already provide a reference implementation themselves. We wanted to be 

able to provide all the data ourselves and not rely on any closed source or proprietary 

software for any step of the data processing. We also wanted a paper where we expected the 

results of the challenge to be uncontroversial. In fact, we expected that the submissions of 

the participants would successfully reproduce the main results of the paper without showing 

fundamental differences, but still would reveal some interesting differences that we could 

learn from about reproducibility issues. Finally, since one of the goals of this initiative is to 

build up a library of standard reference implementations that can be used for comparison 

when publishing new methods, we wanted to cover a method that is commonly used as a 

reference by MRM authors. A second design choice was the timeline. We wanted the 

turnaround of the participants to be relatively quick, because we wanted to see how well the 

paper can be reproduced within a time frame of a couple of weeks. In particular, we 

announced the challenge and provided the material on March 28, 2019, and set the deadline 

for submissions for May 1, 2019.

In the rest of this section, we are providing a brief review of the CG-SENSE method that 

was introduced in Pruessmann et al1 a detailed description of the data that was used for the 

challenge and an overview of the individual submissions and finally a description of the 

consolidated reference implementations that were developed after the conclusion of the 

challenge.

2.2 | CG-SENSE

Throughout this work, let nx × ny denote the image dimension in pixels and nc the number of 

receive coils. For simplicity, assume that nx = ny = n. The total number of k-space samples, 

that is, number of read-outs times number of read-out points, is denoted as nk. 

Reconstructing an image v ∈ ℂn2
 from undersampled data m ∈ ℂnknc acquired with multiple 

receive coils nc is an inverse problem following a linear encoding process

Ev = m (1)
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with E:ℂn2
ℂnknc being the linear encoding matrix, mapping from image space to k-space.

1,9 The encoding matrix E describes the whole MRI acquisition pipeline, consisting of coil 

sensitivity profiles Sγ ∈ ℂnknC and Fourier transformation combined with the sampling 

operator, that is, the nonuniform FFT (NUFFT : ℂnknC ∈ ℂn2
). Assuming independent 

and identically distributed Gaussian noise in the acquired k-space data, the bias free solution 

with minimal variance is given by the minimum least-squares solution of Equation (1) with 

respect to v. The addition of regularization (λ > 0) can improve the estimate but gives up the 

zero bias property. The resulting optimization problem reads as

v* = argmin
v

∥ Ev − m ∥2
2 + λ

2 ∥ v ∥2
2

= EHE + λI −1EHm
(2)

with H denoting the Hermitian transpose. As the inverse of EHE is computationally 

demanding, the problem is typically solved in an iterative fashion. Optionally, the 

conditioning of the matrix inversion can be improved by the addition of a small constant 

value λ ≥ 0 to the diagonal EHE + λI, with I being the identity matrix. This type of 

modification is typically referred to as Tikhonov regularization.10 For λ = 0, the problem 

reduces to ordinary least squares. A numerically fast method to solve Equation (2) is given 

by the conjugate gradient (CG) algorithm, outlined in Algorithm 1. A full description of the 

CG algorithm can be found in Shewchuk.11 The CG algorithm can be applied to problems of 

the form in Equation (1) but requires a positive (semi-)definite matrix E. This requirement 

cannot be guaranteed for arbitrary encoding matrices E. One way to solve 2 is to apply CG 

to the normal equation

EHE + λI v = EHm, (3)

which yields the least-squares solution defined by Equation (2). Another advantage of the 

normal equation is that it has a positive (semi-) definite operator (EHE + λI) by definition. 

Thus, the requirements for the CG algorithm are met.

If the noise correlation between receive coil channels can be estimated, for example, from a 

separate noise scan, the coils and data can be pre-whitened to account for the correlation 

between different channels. This process creates virtual coils which can be used in the CG 

algorithm instead of physical coils without requiring any other modifications.1

The conditioning of the problem and, thus, the convergence speed of the algorithm can be 

improved by including a density compensation function into the reconstruction pipeline. 

This accounts for the typically nonuniform density in the k-space center of non-Cartesian 

sampling strategies. This modification comes at the cost of a slightly altered noise 

distribution and solution. In practice, the difference between the original and the modified 

solution is minor in most cases, with the density compensated solution showing larger 

errors. As an alternative, preconditioning can be used to speed up convergence without 

altering the solution or noise distribution.12 The diagonal density compensation matrix D 
can be included in the encoding matrix E by
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E = D
1
2E, (4)

weighting each k-space signal by its spatial density. It should be noted that this introduces a 

weighting in the data consistency, which then deviates from the noise optimal least squares 

formulation. Intensity correction of the coil sensitivity profiles I can be included in analogy 

by

E = EI . (5)

Substituting E with E in Equation (3) gives the density and intensity corrected image 

reconstruction problem. After convergence, it remains to apply the intensity correction I to I
−1v to obtain the final reconstruction result v, which reduces to a point-wise division in 

image space.1

2.3 | Non-uniform fast Fourier transform

If measured k-space points are acquired on a non-Cartesian grid, modifications to the 

standard FFT are necessary. The main steps involved are as follows:

• Density compensation (optional).

• Gridding the non-Cartesian k-space to a regular but oversampled grid. Usually 

done with one of the following approaches.

1. Convolution with a pre-computed kernel. Most common are Kaiser-

Bessel–based kernels.13

2. High accuracy interpolation using the Min-Max interpolation approach 

following14

• Standard FFT of the now Cartesian data.

• Deapodization—Accounting for intensity variations due to the convolution with 

the gridding kernel.

• Cropping to the desired Field-of-View (FOV).

These steps are generally referred to as nonuniform FFT (NUFFT). Even though it achieves 

the same computational complexity (N log N) as the standard FFT, the computation is 

typically slower and scaling with dimensionality is worse.
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2.4 | Data

The evaluation in this work was performed on two different datasets. First, the algorithm 

was evaluated using radially sampled data provided by the organizers of the 2019 RRSG 

challenge. Second, during follow-up work after the conclusion of the challenge, radial and 

spiral data including noise reference scans were acquired. These datasets closely follow the 

sampling trajectories and noise treatment of the original CG-SENSE paper, and were 

reconstructed with the consolidated reference implementations to evaluate their correctness 

and properties.

2.4.1 | Challenge data—The challenge data consist of two radial k-space datasets, one 

brain and one cardiac measurement, supplied in the .h5 data format.15 The dataset entries are 

ordered using the BART toolbox convention,16 that is, for the data, the dimensions [1, 

Readout, Spokes, Channels] and for the trajectory [3, Readout, Spokes], where the first entry 

encodes the three spatial dimensions. The distance between sampling points is 1/FOVos and 

the entries run from −N/2 to N/2 with N being the matrix size of the desired FOV. FOVos is 

the readout-oversampled FOV. The brain data consisting of 96 radial projections. Two-

dimensional radial spin echo measurements of the human brain were performed with a 

clinical 3 T scanner (Siemens Magnetom Trio, Erlangen, Germany) using a receive only 12 

channel head coil. Sequence parameters were: TR = 2500 ms, TE = 50 ms, matrix size = 256 

× 256, slice thickness 2 mm, in plane resolution 0.78 × 0.78 mm2. FOV was increased to a 

matrix size of 300 × 300 after acquisition. The sampling direction of every second spoke 

was reversed to reduce artifacts from off-resonances.17 The cardiac dataset consists of 55 

radial projections acquired with a 34-channel coil on a 3 T system (Skyra, Siemens 

Healthcare, Erlangen, Germany). A real-time radial FLASH sequence with TR/TE = 

2.22/1.32 ms, slice thickness 6 mm, 5 × 11 radial spokes per frame, 1.6 × 1.6 mm2 

resolution and a flip angle of 10° was used. Matrix size was set to 160 × 160 with 2-fold 

oversampling and a FOV of 256 × 256 mm2, which was up-scaled by a factor of 1.5 after 

acquisition to fully contain the heart, leading to a reconstruction FOV of 384 × 384 mm2 

with a 240 × 240 matrix size.

2.4.2 | Reference data—In addition to the original challenge data, two new datasets, a 

radially acquired heart dataset and spirally acquired brain dataset, were used in this work. 

The heart data were acquired from the Karolinska Institutet and the acquisition parameters 

are as follows: Prototype bSSFP pulse sequence with golden-angle radial trajectory, acquired 

at 1.5 T (Aera, Siemens Healthcare, Erlangen, Germany) with an 18-channel surface coil 

and a 12-channel spine coil (with 8 active elements). Sequence parameters were: matrix size, 

256 × 256 pixel, acquired pixel size 1.4 mm2, 420 radial views, slice thickness 8 mm, 

TR/TE = 3.14/1.57 ms, flip angle 50°, receiver bandwidth 930 Hz/px, an 18-channel surface 

coil and a 12-channel spine coil (with 8 active elements) was used.

The brain data were acquired from ETH Zurich on a 3 T MR system (Philips Healthcare, 

Best, The Netherlands) using a 16-channel head coil with integrated magnetic field sensors 

(Skope MR Technologies and ETH, Zurich, Switzerland) with the following acquisition 

parameters: GE spiral trajectory with three interleaves, FOV = 22 cm, pixel size 1 × 1 mm2 
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with 2 mm slice thickness, TR/TE = 2000/25 ms, flip angle 90°. A total of 27121 samples 

per spiral were acquired.

The datasets are supplied as .h5 files containing trajectories, multichannel data, coil 

sensitivity maps, and noise covariance matrix. Written informed consent was obtained from 

all healthy volunteers following the local ethics committee’s regulations. An overview of 

each acquisition and related parameters can be found in Supporting Information Table S1 

online.

2.5 | Submissions

The main features of each submission are summarized in Table 1. Additional information 

and implementation details can be found in the online supporting information. To comply 

with the original algorithm, some sort of k-space filter function needs to be applied after 

termination of the CG algorithm. The most popular choice in all submissions is an arctan-

based filter function as used in the original publication1 and given by

f kx, ky = 0.5 + 1
πarctan

β * kc − kx
2 + ky

2

kc
. (6)

The cutoff radios kc and the parameter β are stated in each submission individually if 

applicable. If other filters are used, they are described in the corresponding paragraph of the 

submission in the online supplementary material. The desired undersampling factor is 

attained by skipping every other acquired line for brain data to achieve factors of {1, 2, 3, 4} 

compared to the acquired number of spokes. The heart data are undersampled by selecting 

the first {55, 33, 22, 11} projections. Different realizations of undersampling for a given 

implementation are described in the corresponding paragraph of the online supplementary 

material. In compliance with the original publication,1 all submissions used a “zero” image 

as initial guess.

2.5.1 | Revised submissions—To avoid registration of individual submissions and 

eliminate errors due to necessary interpolation, participants were given the opportunity to 

submit revised code to account for differences in FOV and/or resolution between the 

reference and their submissions. Both the original and the revised submission are 

subsequently compared to the reference to show initial deviations and corrected images.

2.6 | Consolidated implementation

Accounting for the two major programming languages used throughout the submissions, 

reference implementations are developed both in Python and Matlab.

2.6.1 | General steps—To facilitate comparability between the two implementations, 

coil sensitivity profiles are pre-computed using the Walsh et al18 algorithm and all available 

projections. Density compensation is derived from the trajectory by gridding a k-space of 

ones followed by division of the maximum value. Taking the inverse of the gridded k-space 

yields the estimated density compensation function.19 Reconstruction FOV and 

oversampling ratio are directly determined from the supplied trajectory. No scaling of the 
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trajectory to specific intervals (eg, [−0.5, 0.5]) is required. The apodization function is 

derived by Fourier transformation of the pre-computed gridding kernel followed by 

normalization with the maximum value. Furthermore, each iteration comprised intensity 

correction in image space based on the L2-norm of the sensitivity maps. In case of acquired 

noise reference data, noise pre-whitening is performed as a preprocessing step as described 

in.1 The algorithm is initialized with an image of all zeros. Similar to the original work, the 

CG algorithm is terminated after a fixed number of iterations is reached which is chosen as 

10 for all combinations of undersampling. As a final post-processing step, a k-space filter is 

applied after the last CG iteration to mask out ill-conditioned k-space areas, that is, areas 

outside the circular support of the acquired data are masked out via hard thresholding. A 

supplementary step-by-step guide explaining details involved in each step of the 

reconstruction is provided online via a Jupyter notebook.

2.6.2 | Matlab specific—Sensitivity maps are assumed to be pre-computed and read in 

at the start of the reconstruction. As in the original ETH submission, gridding is performed 

by a matrix-vector multiplication with a sparse matrix to reduce computation times for this 

time-critical operation, performed twice per iteration. The gridding kernel is based on a 

Kaiser window with width of 5 and 10 000 pre-computed points. The value of the kernel for 

gridding a specific measurement point is determined via nearest neighbor interpolation. 

Furthermore, each iteration comprised intensity correction in image space as well as density 

correction in k-space, as described in the previous section. Explicit Tikhonov regularization 

is not included in accordance to the original paper.

2.6.3 | Python specific—If no coil sensitivity maps are supplied in the data file, receive 

coil sensitivities are estimated via the SoS approach, dividing each gridded coil image by the 

SoS reconstruction. To account for the typical smooth sensitivity profiles, the raw data are 

multiplied with a Hanning window with window width of 50 pixels, masking out high 

frequency components of the acquired k-space data prior to SoS reconstruction and coil 

sensitivity estimation. Optionally, the nonlinear inversion (NLINV) algorithm20 can be used 

to estimate coil sensitivities prior to reconstruction. The pre-computed gridding kernel is 

derived using a Kaiser-Bessel function.13,19 The kernel width is set to 5 and 10 000 points of 

the window are pre-computed. The value of the kernel for gridding a specific measurement 

point is determined via linear interpolation of the pre-computed values. Optional Tikhonov 

regularization and a termination criterion can be enabled by setting the corresponding values 

larger than zero in the configuration file.

2.7 | Numerical comparison

The results from each submission were compared on a pixel-by-pixel basis to the Python 

consolidated reference implementation. To account for possible intensity variations and 

outliers, each image was normalized by its 0.95 quantile intensity value prior to the 

difference operation. Reconstructions not matching the FOV of the reference were cropped 

prior to the difference operation. Cropping was performed symmetrically around the image 

center.
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The two reference implementations were compared to each other in a similar fashion. 

Additionally, the structural similarity index measure (SSIM), using the parameters as 

suggested byZhouWang et al,21 and normalized root-mean-squared error (NRMSE), defined 

in Equation (7), are used as metrics to compare the magnitude images of the two 

implementations with each other.

NRMSE  =
1
n2 i Σ xi − xi

ref 2

1
n2 ∑i xi

ref
(7)

3 | RESULTS

3.1 | Submissions

Example reconstruction results for an acceleration factor of 2 are shown for images after 

evaluation of the right-hand-side of Equation (3) (Initial) and for images after convergence 

of the algorithm (Final) for each submission in Figure 2. All results are displayed with a 

window width from the minimum to the maximum occurring value in each image. Visually, 

intensity variations are noticeable owing to the different maximum values; however, contrast 

between different tissues seems to be similar in all submissions. Some submissions also use 

different FOVs for the brain (Eindhoven, no cropping; ETH, cropped to 340 × 340; Stanford, 

cropped asymmetrical to 300 × 300) compared to the others or different matrix sizes in the 

same FOV (USC, 256 × 256; and Utah, 512 × 512). No major structural differences are 

observable in the reconstruction except for the case of Eindhoven. The brain reconstruction 

from KI did neither use Tikhonov regularization nor early stopping, and the k-space was not 

filtered, resulting in a noisy appearance compared to other submissions. In addition, it shows 

a slight rotation to the left.

For the heart data shown in Figure 3, more differences are observed. First, FOV differences 

occur more frequently (Eindhoven, cropped to 320 × 320; ETH, cropped to 360 × 360; 

NYU, cropped to 300 × 300; Stanford, asymmetric crop to 240 × 336). Second, matrix size 

in the same FOV and thus resolution is changed by some submissions (Berkeley, 300 × 300; 

USC, 256 × 256, Utah, 320 × 320). The heart reconstruction results for 11 spokes from 

Berkeley seem to be more noisy than the others. The reconstructions using the reference 

implementations, are given in Figures 4 and 5 for Python and Matlab, respectively. Neither 

intensity nor contrast variations are visible between the two reference implementations.

3.2 | Differences to consolidated implementation

Visually, no major differences to the submissions are visible. Pixel-wise difference plots are 

shown in Figure 6 for brain and Figure 7 for heart data, respectively. Reconstructions from 

Eindhoven, KI, USC, Stanford, and Utah show some misalignment caused by image center 

shift, rotation, or matrix size differences compared to the reference after cropping to the 

desired resolution of 300 × 300 pixels. Small intensity variations across the brain are visible 

in the final step of the TUG M. reconstruction. Reconstructions from Berkeley, B.U.F.F., 

ETH, NYU, and TUG H. show the least deviations to the reference. Visually no difference in 
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the brain tissue can be seen. Initial steps seem to show good agreement if image alignment 

matches with only minor intensity difference in some submissions. Heart data show overall 

more differences, especially in areas of low signal-to-noise ratio (SNR). The heart itself 

seems consistent between most reconstructions. At the highest acceleration, differences 

become more pronounced.

The pixel-wise comparison between the two reference implementations in Figure 8 for brain 

(top part) and heart (bottom part) data shows the overall excellent accordance between the 

Matlab and Python reconstruction results. No major differences are visible in any of the 

images. The single-coil images and initial images show very slight intensity differences. The 

visual impression is supported by high SSIM values (0.9987–0.9998) and small NRMSE 

values (0.006–0.028). The highest differences are visible outside of the brain at the border of 

the used image mask. Similar excellent accordance between both reconstructions is achieved 

for heart data. NRMSE and SSIM are comparable to the brain data but areas with little to no 

signal outside the body show slight, noise-like deviations.

Finally, Figure 9 shows the two additionally supplied datasets. Both reference methods are 

able to produce clean images and visually, no differences can be observed.

4 | DISCUSSION

4.1 | Achievements of the challenge

The first ISMRM reproducibility challenge led to twelve submissions from research groups 

spread across many countries. Furthermore, the challenge gave rise to the production of two 

consolidated implementations of the seminal paper, written in the two most commonly used 

programming languages across all submissions. However, it also raised the question of what 

concretely reproducibility means and how to measure similarity between different images. 

Even though many different toolboxes and reconstruction approaches were used by the 

participants the visual appearance of the reconstructions is very similar.

4.2 | Difference of submissions

4.2.1 | Imaging parameter—As no desired FOV was given, some problems arose with 

the correct choice of the reconstruction FOV. It is common to assume an oversampling of 2 

compared to the radial acquisition but for the supplied data, this was not the case. The brain 

was oversampled by a factor of 1.706 and the heart by 1.3. These factors could be derived 

from the supplied trajectory but were not taken into account by all submissions. Larger 

FOVs can be easily corrected for by simply cropping to the desired FOV, which is 

commonly done symmetrically around the image center. All decided to crop in such a way, 

except for the submission of Stanford which crops symmetrically around the object. 

Although such an approach leads to a centered image, it can be tedious. The main reason for 

cropping the FOV is to crop away areas with aliasing, which typically folds back at the 

edges of the oversampled image grid.19,22 The aliasing gets worse with increased distance 

from the image center due to the amplification from the deapodization function and, 

depending on the gridding kernel, additional errors from outside of its pass-band can be 

introduced at the image edges.13,19,22
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4.2.2 | Gridding/NUFFT—As can be seen in the difference images in Figures 6 and 7, 

reconstructions with larger FOV show little or no structural differences to the references. A 

more concerning modification is the change of resolution as such changes can potentially 

lead to interpolation-related changes in visual appearance of the image. A possible source of 

such an increased or decreased pixel size lies in the way, how acquired data points are placed 

in the k-space via the gridding operation. If an oversampled grid is defined but the location 

of the samples in the trajectory is not correctly altered to span the whole range of this 

oversampled k-space, only the central part will be filled. Similar, if the points-to-grid lie 

outside of the desired k-space, they either are not gridded at all or enter on the opposite side 

of k-space, depending on the used boundary conditions. This leads to an interpolation in 

image space and an artificially altered resolution, that is, interpolation to higher or lower 

resolution, respectively. Small structural differences in the submissions may stem from 

different treatment of the supplied k-space trajectory. Normalization of the k-space 

coordinates, as is done in many submission, might lead to modifications of the actual k-

space position if done independently for each of the spatial dimensions. This can lead to a 

rotation or distortion of the reconstructed image. Such differences cannot easily be corrected 

in the final images as those would involve some sort of interpolation to the desired matrix 

size or image registration, introducing errors related to the interpolation kernel. Therefore, 

no attempt was made to correct for different resolutions in the final image, leading to rather 

large deviations in the pixel-wise difference maps. Revised submissions in Figure 10, 

accounting for deviations in trajectory handling and/or FOV, show numerical differences for 

brain and heart data which are in-line with most of the other submissions. This suggests that 

the rather huge differences in the original submissions solely stem from wrongly treated 

trajectory information or FOV cropping.

4.2.3 | Algorithmic—The increased noise in the KI reconstruction may stem from the 

large amount of CG iterations combined with not using any regularization or k-space 

filtering. Running the CG algorithm for too many iterations leads to increased noise in the 

final reconstruction. This can also be seen in the heart reconstruction from 11 spokes from 

the Berkeley submission. Thus, early stopping is used as regularization in the original 

publication. Another form of regularization used in the submissions is plain Tikhonov 

regularization based on the L2-norm of the image, that is, λ > 0 in Equation (3). The 

regularization parameter, typically termed λ, is used to balance between data costs and 

regularization. Even though this is not included in the original publication, results from 

submissions with Tikhonov regularization show only minor differences to the reference 

using early stopping, see Figures 6 and 7. However, choosing a correct regularization 

parameter can be a challenging task. A too large value for the regularization parameter can 

lead to slow convergence and may be the reason for residual intensity variations in the TUG 

M. submission for both, brain and heart data. On the other hand, choosing a regularization 

parameter is usually easier than choosing a number of iterations, because it can be done 

based on sound principles.23–25

The solution of the inverse problem of finding an image from nonuniform acquired data 

highly depends on the quality of the pre-computed coil sensitivity profiles. A wrong or 

inaccurate estimate ultimately leads to poor reconstructed images. Even seemingly 
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appropriate coil sensitivity profiles originating from different estimation methods can lead to 

noticeable differences in the reconstructed images, as could be expected due to their integral 

part in the forward and adjoint operator of the image reconstruction problem 1. Visual 

effects include intensity variations or signal voids in the image. In addition, the estimated 

coil profiles influence the solution via the intensity normalization, directly estimated from 

the coil profiles. To facilitate reproducibility of results included in this paper and to rule out 

the influence of different coil sensitivity estimation approaches when comparing to this CG-

SENSE implementation all data provided online also contains estimated coil sensitivity 

profiles, which were used to generate the reference reconstruction results in both algorithms.

4.2.4 | Evaluation—As images are typically given in arbitrary units, a direct numerical 

comparison can be challenging. As a result, image intensity normalization was applied. 

However, if normalization fails due to outliers or, in a more general sense, due to deviations 

with respect to the expected intensity histogram, it can lead to a false impression of rather 

large differences. This may be the reason for the increased deviations in the ETH submission 

of the heart data compared to the brain data as can be seen in the bright error map in Figure 

7. To this end, no numerical metrics were used to compare submissions to the reference 

implementation as these would suffer even more from intensity variations or image shifts.

4.3 | Reference implementations

During the development of the reference implementations, we identified that processing 

steps related to gridding yield the largest deviations, for example, trajectory normalization, 

apodization correction, and gridding kernel normalization. The largest deviations were 

associated with the normalization of the trajectory to a specific range, for example, |

trajectory| ≤ | 0.5 |, as required by some NUFFT implementations. The least deviations can 

be achieved without any modifications of the supplied trajectory, that is, taking the natural 

range of k-space locations as acquired and stored alongside the raw k-space data from the 

scanner and adapting the gridding to account for the increased range of possible values (eg, |

N/2| ≫ |0.5|, with N being the matrix size of the desired FOV).

The two reference implementations show no major difference inside the brain as evident in 

Figure 8. A very slight intensity difference for single coil and initial images can be seen 

which might be related to the apodization correction. Minor implementation details, such as 

the linear interpolation of the gridding kernel vs the nearest neighbor interpolation or the 

FFTW26 in Matlab vs the FFTPACK-based algorithm Cooley and Tukey,27 Bluestein28 of 

Python, in combination with the iterative steps of the algorithm may lead to the remaining 

differences. The heart data show overall good agreement with increased deviations in areas 

with little to no signal, either inside the lungs or outside the body. The area of interest, the 

heart, shows no substantial difference between the two reference implementations. The 

SSIM and NRMSE metrics are computed within the same binary mask used for 

reconstruction. Thus, even better values for these metrics are expected if only the brain 

tissue itself is evaluated. The same is true for the heart reconstruction. Cropping the area to 

only include reliable pixels, that is, pixels with high enough signal, SSIM values could be 

further improved.
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To this end, the implementations of the CG-SENSE algorithm in Matlab and Python can be 

considered equally accurate and thus the submitted algorithms were compared to just one of 

the two references, the Python-based implementation.

4.4 | Licensing code and data

When the challenge was initiated, very little constraints were implied on how data could be 

used and code should be provided, to enable widespread participation. However, in 

retrospect, a widespread adoption and reuse of the data and code submissions created by the 

challenge requires some consideration of licensing, in order to stand on firm legal footing.

This is because if no license is specified, the owners of code or data retain all copyright, and 

have to give explicit permission for its use. But in the context of reproducibility, making 

software open-source and reusable for other researchers is key. Two classes of software 

licenses are best suited for this cause: copyleft licenses, such as the General Public License 

(GPLv3), or permissive licenses, such as the MIT license.

There are good resources explaining the differences between those,29 including a very 

accessible website how to choose one: https://choosealicense.com/. In brief, MIT has the 

least restrictions and simplifies commercial use, whereas GPL puts emphasis on keeping 

code open source, that is, if one builds on GPL-licensed code, one has to make it publicly 

available, even in commercial settings. This also means that MIT-licensed code can be used 

within a GPL project, but not the other way around, and one might have to choose GPL as a 

license then.

For sharing data, the situation is complicated by the fact that data might be considered part 

of software and documentation, or work of creative art, for which the class of creative 

common (CC) licenses were envisaged (https://creativecommons.org/choose/). If the source 

should be attributed and any use granted, including alterations and commercialization, CC-

BY 4.0 is an appropriate choice for data. Recently, the Open Data Commons (https://

opendatacommons.org/) initiative of the Open Knowledge Foundation started to provide 

specific licensing tools for data.

For this challenge, we decided to license all data and code of the reference implementation 

under the MIT license, in order to keep licensing as simple and permissible as possible. We 

list the choice of licensing for all contributions in Table 1.

4.5 | Future impact

The first RRSG challenge has already been met with a very positive response, both in 

reproducing the selected publication, but more importantly in bringing together a community 

of researchers who are interested in reproducible science and MR image reconstruction. On 

top of that, we also see very practical use of its outcome in the future, as a benchmark for 

novel implementations of CG-SENSE. The clear definition of the challenge and its outcome 

measures, combined with the resulting reference implementation and comparison code, 

might encourage researchers to put their own reconstruction tools to the test. It should be 

noted that proper tuning of iteration numbers or regularization parameters is indispensable if 

reference methods are applied to new data to enable a fair comparison.

Maier et al. Page 14

Magn Reson Med. Author manuscript; available in PMC 2021 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://choosealicense.com/
https://creativecommons.org/choose/
https://opendatacommons.org/
https://opendatacommons.org/


In fact, researchers have already started to adopt this idea and created submissions after the 

official challenge had ended. A recent effort by the Hamburg University of Technology 

(https://github.com/MagneticResonanceImaging/ISMRM_RRSG) demonstrates 

reproducibility of the CG-SENSE algorithm in the modern programming language Julia30 

(https://julialang.org/) utilizing their MRIReco.jl reconstruction package.31 We believe that 

this could become a general model for future software publications to use proposed example 

data and outcome measures of reproducibility challenges in order to show performance and 

scope of these tools in a more standardized fashion.

Reproducibility of image reconstruction in MRI can be challenging, especially with the 

increased complexity of the used algorithms. Even though the description in a paper allows 

to re-implement the reconstruction algorithm, a lot of details may be not stated explicitly and 

can lead to unexpected outcome, for example, exact step-sizes used in optimization, scaling 

of gradients, internal SNR estimates and other pre- and post-processing steps. These 

problems arise in many iterative fitting strategies throughout the whole field of MRI 

research, for example, quantifying tissue parameters, estimating perfusion/diffusion metrics, 

just to name a few.

Quantifying tissue parameters, more specifically the T1 relaxation constant, is also the aim 

of the “Reproducibility Challenge 2020” of the study group. Reproducing exact quantitative 

values at multiple sites is challenging due to small variations in measurement imaging 

hardware and software. The challenge aims to identify the sources of variation and tries to 

standardize T1 mapping across multiple sites.

5 | CONCLUSION

This work shows that reproducing research results without access to the original source code 

and data leaves room for interpretation. Even though visual differences are minor for most 

submissions, a lot of deviations in various implementation details can be observed. During 

the evaluation, it became clear that the task of comparing the submissions to each other is by 

no means trivial. Seemingly minor details, such as maximum image intensity or FOV and 

resolution can lead to huge deviations in a pixel-wise comparison even though visually 

differences are small. This raises the question of what can be considered ground truth. A 

question, which has no clear answer if neither original code nor data are available. A 

consolidated implementation can be used as substitute in such cases, as done in the present 

work. From what we have learned in this first reproducibility challenge, our 

recommendation is publishing not only papers but also code and data to make sure research 

is really reproducible.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Number of publications on PubMed including “MRI” and either “reconstruction” or 

“fitting.” Data search done on the 4th of August 2020
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FIGURE 2. 
Example images after evaluation of the right-hand side of equation (Initial) and after 

termination of the algorithm for (Final) for each submission. Shown are results for 

acceleration factor of 2 of the supplied challenge brain data. All results are shown as they are 

returned by each algorithm. Visually observable differences include intensity variations 

among the reconstructions as well as some image center shifts and FOV differences. In 

addition, some reconstructions utilized image masks for the background
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FIGURE 3. 
Example reconstruction results for each challenge submission. Shown are results using 55 

and 11 spokes of the supplied challenge heart data. Visually observable differences amount 

to FOV changes as well as image center changes. Intensity variations are not as severe as in 

the case of brain data. Again, some reconstructions made use of a mask to suppress 

background signal
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FIGURE 4. 
Consolidated reconstruction results using the Python reference implementation
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FIGURE 5. 
Consolidated reconstruction results using the Matlab reference implementation
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FIGURE 6. 
Relative pixel-wise difference of the initial and final step, taken from the brain example and 

compared to the Python reference implementation. To account for different intensities, all 

images were normalized prior to the difference operation, however the submissions were not 

registered in terms of lateral shifts or rotation. Still, most reconstructions do not show 

substantial structural differences to the reference
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FIGURE 7. 
Relative pixel-wise difference of the example reconstruction using 55 and 11 radial 

projections, compared to the Python reference implementation. To account for different 

intensities, all images were normalized prior to the difference operation. Most 

reconstructions show similar structural information in the heart itself but differ in low signal 

areas
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FIGURE 8. 
Relative pixel-wise difference between the Matlab reference reconstruction results and the 

Python reference implementation. To account for different intensities, all images were 

normalized prior to the difference operation. SSIM and NRMSE values between the two 

references are given next to each image. Metrics are computed from values within a binary 

mask, containing the brain and heart, respectively. Note the 10-fold smaller windowing 

(−10/10%) compared to the other submissions
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FIGURE 9. 
Example reconstruction results of the two additional supplied datasets. Top rows show the 

spirally acquired brain dataset and bottom rows show radially acquired cardiac data. Both 

reconstructions included noise pre-whitening prior to reconstruction from a dedicated noise 

scan preceding image acquisition. Windowing is performed between the minimum and 

maximum intensity value in each image
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FIGURE 10. 
Relative pixel-wise difference of revised submissions, correcting FOV and/or trajectory 

related deviations to the reference implementation. In contrast to the initial submissions only 

minor deviations are visible
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