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White matter microstructure undergoes progressive changes during the lifespan, but the neurobiological underpinnings related to

ageing and disease remains unclear. We used an advanced diffusion MRI, Neurite Orientation Dispersion and Density Imaging, to

investigate the microstructural alterations due to demographics, common age-related pathological processes (amyloid, tau and

white matter hyperintensities) and cognition. We also compared Neurite Orientation Dispersion and Density Imaging findings to

the older Diffusion Tensor Imaging model-based findings. Three hundred and twenty-eight participants (264 cognitively unim-

paired, 57 mild cognitive impairment and 7 dementia with a mean age of 68.3 6 13.1 years) from the Mayo Clinic Study of Aging

with multi-shell diffusion imaging, fluid attenuated inversion recovery MRI as well as amyloid and tau PET scans were included in

this study. White matter tract level diffusion measures were calculated from Diffusion Tensor Imaging and Neurite Orientation

Dispersion and Density Imaging. Pearson correlation and multiple linear regression analyses were performed with diffusion meas-

ures as the outcome and age, sex, education/occupation, white matter hyperintensities, amyloid and tau as predictors. Analyses

were also performed with each diffusion MRI measure as a predictor of cognitive outcomes. Age and white matter hyperintensities

were the strongest predictors of all white matter diffusion measures with low associations with amyloid and tau. However, neurite

density decrease from Neurite Orientation Dispersion and Density Imaging was observed with amyloidosis specifically in the tem-

poral lobes. White matter integrity (mean diffusivity and free water) in the corpus callosum showed the greatest associations with

cognitive measures. All diffusion measures provided information about white matter ageing and white matter changes due to age-

related pathological processes and were associated with cognition. Neurite orientation dispersion and density imaging and diffusion

tensor imaging are two different diffusion models that provide distinct information about variation in white matter microstructural

integrity. Neurite Orientation Dispersion and Density Imaging provides additional information about synaptic density, organiza-

tion and free water content which may aid in providing mechanistic insights into disease progression.
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Abbreviations: BCC ¼ body of corpus callosum; CGC ¼ cingulum; CGH ¼ parahippocampal cingulum; CU ¼ cognitively unim-

paired; DTI ¼ diffusion tensor imaging; FA ¼ fractional anisotropy; FLAIR ¼ fluid attenuated inversion recovery; FX ¼ fornix;

GCC ¼ genu of corpus callosum; GM ¼ grey matter; ISOVF ¼ isotropic volume fraction; ITWM ¼ inferior temporal white matter;

MCI ¼ mild cognitive impairment; MCSA ¼Mayo Clinic Study of Aging; MD ¼mean diffusivity; NDI ¼ neurite density index;

NODDI ¼ neurite orientation dispersion and density Imaging; ODI ¼ orientation dispersion index; SCC ¼ splenium of corpus cal-

losum; SLF ¼ superior longitudinal fasciculus; WM ¼ white matter; WMH ¼ white matter hyperintensity

Introduction
The white matter (WM) architecture of the human brain

undergoes substantial changes across the life span. There

is clear evidence for the association between WM changes

and age as well as neuropathological processes that will

lead to cognitive decline.1–3 Diffusion MRI is a versatile

method that allows us to study these WM microstructur-

al details. Previous findings based on diffusion tensor

imaging (DTI) revealed reduced fractional anisotropy

(FA) and increased mean diffusivity (MD) in association

with amyloid deposition, a hallmark of Alzheimer’s dis-

ease,4 and cerebrovascular disease.5

Despite its sensitivity, the clinical utility of DTI is con-

strained by its inherent limitation in specificity of identi-

fying the different diffusion environments6 that exist

within most individual voxels. Characterizing the different

water pools within a voxel with a single diffusion tensor

is well known to be problematic in crossing fibre regions

of WM,7 and also confounds the macroscopically isotrop-

ic diffusion of grey matter (GM)8,9 with that of CSF. The

growing availability of multiband excitation allows the

acquisition of roughly three times as much data in the

same time as a standard DTI scan, making multiple b

value (diffusion weighting) shells clinically practical.

Distributing the diffusion samples over >2 b values

allows the use of more sophisticated and biologically

plausible models to characterize the general properties of

the microstructural environments inside the axons, between

them, and in the extracellular water. In addition, these mod-

els can ideally handle the ‘crossing fibre problem’ better than

DTI.7 Neurite orientation dispersion and density imaging

(NODDI) is an advanced dMRI technique that uses the add-

itional degrees of freedom from multi-shell data to probe the

microstructural complexity of neurites (dendrites and

axons),10 separately from CSF and to a large degree also

separately from each other. This biophysical modelling

method divides water diffusion in the brain into three micro-

structural compartments: intracellular space through the

Neurite Density Index (NDI), which measures the signal frac-

tion that is due to axons and dendrites; Orientation

Dispersion Index (ODI), which measures angular variation or

dispersion of the neurites; and the Isotropic Volume Fraction

(ISOVF), which measures free water (FW) fraction. More re-

cently, a number of studies have demonstrated the efficiency

of NODDI to provide finer granularity, in comparison to

DTI metrics, to decipher the intra and extracellular micro-

scopic features of age- and sex-specific diffusion trajecto-

ries.11,12 In addition, NODDI has been found to be useful

for the early detection of neurodegenerative changes13–15 and

its association with cognitive deficits.14,16

Recent findings have suggested that amyloid affects

DTI measures4,17 and also the greater effect of cerebro-

vascular disease on diffusion alteration than Alzheimer’s

disease in memory clinic patients.17 It is also well known

that WM plays an important role in normal cognition
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and age-related cognitive decline.18,19 However, the effi-

ciency of NODDI models over DTI models to detect

Alzheimer’s disease and cerebrovascular disease patholo-

gies, and their contribution to cognitive performance, in

population-based studies remains unclear. Given the

detailed quantification of biological processes by NODDI

models,6,20,21 we hypothesized that NODDI measures

would provide more sensitive features of microstructural

brain changes than conventional FA and MD10,22 and

would be more sensitive in capturing disease related proc-

esses. The overall goal of the study was to identify the

relationships between demographics (age, sex and educa-

tion/occupation), neuroimaging measures of Alzheimer’s

disease and cerebrovascular disease, and cognition with

diffusion MRI (NODDI and conventional DTI) in partici-

pants from Mayo Clinic Study of Aging (MCSA).

Materials and methods

Selection of participants

We identified 328 participants consisting of 264 cogni-

tively unimpaired (CU), 57 mild cognitive impairment

(MCI) and 7 dementia from the MCSA, an epidemio-

logical cohort designed to investigate the prevalence, inci-

dence and risk factors for MCI and dementia among the

residents of Olmsted County, Minnesota. The Rochester

Epidemiology Project (REP) medical records-linkage sys-

tem23,24 was used to enumerate the MCSA sample popu-

lation. The MCI and dementia participants were

diagnosed based on the previously published consensus

criteria.25 Our inclusion criteria were participants who

had multi-shell diffusion data, fluid attenuated inversion

recovery (FLAIR)-MRI, amyloid and tau PET scans. The

clinical diagnosis was made at the time of MRI assess-

ment and almost all clinical and imaging visits were with-

in 60–70 days (median was 63 days with a range of 0–

124 days). The amyloid negative/positive (A�/Aþ) and

tau negative/positive (T�/Tþ) proportions in the sample

were CU (A�T� n¼ 171, A�Tþ n¼ 23, AþT�
n¼ 41 and AþTþ n¼ 29), MCI (A�T� n¼ 16,

A�Tþ n¼ 3, AþT� n¼ 12 and AþTþ n¼ 26) and

dementia (AþT� n¼ 1 and AþTþ n¼ 6).

Standard protocol approvals, registrations and patient

consents: The study was approved by the Mayo Clinic in-

stitutional review board and written informed consent

was obtained from all participants or their surrogates.

Imaging

MRI acquisition and processing

All participants underwent a 3 T head MRI protocol on

one of two 3 T Siemens Prisma scanners running VE11

software with 64 channel receiver head coils. The proto-

col included a magnetization prepared rapid gradient echo

(MPRAGE) sequence (TR/TE/TI ¼ 2300/3.14/945 ms, flip

angle 9�, 0.8 mm isotropic resolution), and a diffusion

scan using the product VE11 Simultaneous Multi-Slice ac-

celeration with adaptive coil combination. For the diffu-

sion scan the field of view was 232 mm in X and Y and

162 mm in the Z direction, with 2.0 mm isotropic voxels.

The echo and repetition times were 71 and 3400 ms re-

spectively. Data consisted of 127 volumes with 13 non-dif-

fusion-weighted images (b¼ 0 s/mm2), and 114 diffusion-

encoding gradient directions (6 b¼ 500, 48 b¼ 1000 and

60 b¼ 2000 s/mm2), evenly spread over the entire spherical

shells using an electrostatic repulsion model,26 and inter-

spersed in time to minimize gradient heating.

The diffusion data were preprocessed using the in-

house developed pipeline. After visual inspection, an

intracranial mask was made for the diffusion MRI scan27

and the noise in the raw diffusion images was estimated

and removed using random matrix theory.28 Then FSL’s

eddy_cuda was used to correct for head motion and eddy

current distortion,29 followed by the correction of Gibbs

ringing30 and Rician bias.31 Diffusion tensors were fitted

for both the multi-shell and extracted b¼ 1000 data

using a non-linear least-squares fitting algorithm imple-

mented in dipy,32 from which FA and MD images were

generated. The NODDI model was fit by the Accelerated

Microstructure Imaging via Convex Optimization

(AMICO) implementation33 in Python. FA, MD, NDI,

ODI and ISOVF maps generated from a cognitively un-

impaired subject are shown in Fig. 1A.

Amyloid and tau assessment from PET scans

The acquisition and processing were described previous-

ly.34 From amyloid PET scans, a global amyloid load

measure for each subject [standardized uptake value ratio

(SUVR)] was computed by calculating the median uptake

in the prefrontal, orbitofrontal, parietal, temporal, anter-

ior cingulate and posterior cingulate/precuneus regions of

interest (ROIs) normalized by the median amyloid PET

uptake in the cerebellar crus grey matter. From tau PET

scans, a composite ratio for each subject was computed

by calculating median tau PET uptake in the entorhinal,

amygdala, parahippocampal, fusiform, inferior temporal

and middle temporal ROIs normalized by the median tau

PET uptake in the cerebellar crus grey matter.

WMH assessment from FLAIR scans

The 3D MPRAGE and 3D T2-weighted FLAIR images

were used to calculate WMH volume via a fully auto-

mated algorithm, updated from a previously described in-

house semi-automated method.35 Briefly, 3D FLAIR

images were preprocessed for intensity inhomogeneity

correction36 and de-noising using a non-local means fil-

ter.37 Then, WMH were segmented based on location

(spatial priors), intensity relative to the global distribution

of GM intensity values, and intensity relative to the local

neighbourhood of WM voxels. False-positive WMH seg-

mentations were reduced by applying a white matter
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mask derived from the 3D MPRAGE segmentation, and

by removing isolated single-voxel detections.

Cognitive performance measures

All MCSA participants underwent a detailed neuro-

psychological test battery that consisted of 9 tests cover-

ing 4 cognitive subdomains.25,38 The present study

utilized a global cognitive z-score that was derived as the

z-transformation of the average of all nine tests across

the 4 cognitive domains (memory, language, attention/ex-

ecutive and visuo-spatial function).39 Individual and com-

pound scores from Trail Making Test (Trails) A and B

(time to complete the test) were used as a sensitive test

for processing speed. The raw scores were transformed

into z-scores and averaged to create a composite score.

Image analysis

ROI-based analysis

We performed an ROI analysis in ten WM tracts which

were selected based on literature suggesting their

association with cognition.1,14,16,40–42: commissural fibres:

genu (GCC), body (BCC), and splenium (SCC) of corpus

callosum, and fornix (FX); association fibres: cingulum

(CGC), parahippocampal cingulum (CGH), superior lon-

gitudinal fasciculus (SLF), inferior fronto-occipital fascic-

ulus; and other relevant tracts: inferior temporal WM

(ITWM) and anterior limb of internal capsule (Fig. 1B).

The median values of FA, MD, NDI, ODI and ISOVF

were computed in these tracts by non-linearly registering

an in-house modified version of the JHU ‘Eve’ WM

atlas43 to each subject’s image using Advanced

Normalization Tools–Symmetric Normalization (ANTS-

SyN).44 In this analysis, we excluded the cuneus, precu-

neus, fusiform and lingual WM regions since they are

too small for reliable registration. The median values of

bilateral regions were then averaged, weighting by region

size, to produce a single measure for each bilateral

structure.

Voxel-based analysis of diffusion metrics

Diffusion images were analysed using an in house devel-

oped voxel-based analysis (VBA) pipeline for SPM12 in

Figure 1 DTI and NODDI maps from a participant and white matter tracts of interest from the JHU atlas. (A) FA, MD, NDI,

ODI and ISOVF maps generated from a 67-year-old cognitively unimpaired female participant. (B) White matter tracts of interest from JHU

atlas. FA, fractional anisotropy; ISOVF, isotropic volume fraction; MD, mean diffusivity; NDI, neurite density index; ODI, orientation dispersion

index.
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MATLAB to identify the global brain changes in associ-

ation with demographics and disease pathologies.

Briefly, each subjects FA, MD, NDI, ODI and ISOVF

maps were non-linearly registered to a custom-made

study-specific template using ANTs-SyN. To reduce par-

tial volume effects and understand the regional results

based on tissue classes, additional mask images were

made using GM, WM and GMþWM masks from each

subject’s segmented T1-weighted image. The masks were

registered to the study template using an ANTS-calcu-

lated warp from the subject’s T1-weighted image to a

T1-like target synthesized from the FA and MD tem-

plates. The GM, WM and GMþWM masks were

thresholded to include voxels with respective tissue type

fractions >0.5. Each of the normalized diffusion images

was then smoothed with an 8-mm FWHM isotropic

Gaussian kernel and analysed per-voxel within each tis-

sue-class mask, using SPM12.

Statistical analyses

Characteristics of the participants were summarized as

mean (standard deviation) for the continuous variables

and count (%) for the categorical variables. WMH was

presented and analysed as a percentage of total intracra-

nial volume (TIV). The distributions of WMH and amyl-

oid were skewed, and hence log transformed to obtain a

more normal distribution. To describe the relationships

between NODDI and DTI parameters, we performed a

series of unadjusted Pearson correlation analyses associat-

ing FA with NDI, FA with ODI, MD with NDI, MD

with ODI, and MD with ISOVF across subjects within

each WM tract. We also used unadjusted Pearson correl-

ation analyses to describe associations between demo-

graphics (age, sex and education/occupation),

cerebrovascular disease (WMH) biomarkers, Alzheimer’s

disease (amyloid and tau) biomarkers, and ROI-based dif-

fusion (FA, MD, NDI, ODI and ISOVF) measures (corr-

plot package 0.84).

To assess the contributions of cerebrovascular disease

(WMH) and Alzheimer’s disease (amyloid and tau) bio-

markers on the WM integrity changes, we fit multiple lin-

ear regression models with each ROI diffusion measure

as the outcome variable, and with age, sex, education/oc-

cupation scores, WMH, amyloid and tau as predictor

variables. All the imaging variables were standardized.

We also repeated the above analyses using voxel-wise

multiple regression analyses on the smoothed DTI and

NODDI images with age, sex, education/occupation,

WMH, amyloid and tau as predictor variables. The gen-

erated SPM-T maps were corrected for multiple compari-

sons using family-wise error (FWE) with PFWE <0.05.

The voxel level analyses also helped confirm ROI level

analyses and provide insights into subtle associations

missed by ROI analyses.

Finally, we estimated the association of global cogni-

tion with each diffusion variable after adjusting for age,

sex, education/occupation, cycle number (the number of

times the cognitive battery was administered to each spe-

cific subject to adjust for practice effects), and amyloid

and tau PET. We repeated the analyses for subdomain

scores (memory, attention, language and visuospatial) and

processing speed (Trail A, Trail B, composite score) with

regional WM microstructural integrity measures. We

computed partial Pearson correlations with 95% confi-

dence intervals and report the beta coefficients from the

multiple regression analyses.

Data availability

Data used in this study are available upon reasonable re-

quest via MCSA/ADRC data sharing website.

Results
The characteristics of the participants are summarized in

Table 1. The mean (standard deviation) age was 68.3

(13.1) years, 52% were men, 30% were APOE4 carriers,

35% were amyloid positive and 27% were tau positive.

Cognitively unimpaired individuals comprised 80% of

this sample.

Association between DTI and
NODDI metrics in different WM
tracts

Pearson correlations between FA, MD, NDI, ODI and

ISOVF are shown in Fig. 2. Correlations within the same

regions between measures: across the WM tracts, MD

and NDI showed the strongest association with each

other (r � �0.676) except for in the fornix. In contrast,

a modest association was observed between MD and

ODI in half of the regions (fornix and association tracts).

FA and NDI were associated modestly in most of the

WM tracts, while FA and ODI (indicators of dispersion)

had strong associations in the association tracts, anterior

limb of internal capsule and inferior temporal WM (r �
�0.51). Similarly, MD was associated strongly with

ISOVF in the corpus callosum.

Associations with demographics and
biomarkers of cerebrovascular
disease and Alzheimer’s disease

Univariate associations: the univariate associations using

unadjusted Pearson correlations between tract measures

and age, sex, education/occupation, WMH, amyloid and

tau are shown in Fig. 3. This figure highlights three

broad aspects of the data: older age was significantly

associated with lower FA, lower NDI, higher MD and

higher ISOVF; the sex and education/occupation scores

had either modest or no association with diffusion meas-

ures; and WMH showed the strongest association with

Basis of microstructural changes BRAIN COMMUNICATIONS 2021: Page 5 of 15 | 5



all diffusion metrics in major WM tracts. We also

observed associations across pairs of tracts with each

DTI and NODDI measure (bottom of each triangle in

Fig. 3). One can observe greater variability in the FA,

ODI and ISOVF correlations across the tracts but MD

and NDI appear to be correlated across all the tracts.

Figure 2 Correlation matrix. Association between diffusion measures (FA and MD, FA and NDI, FA and ODI, MD and NDI,

MD and ODI, MD and ISOVF). Colour legend indicates the range of correlations, the size of the circle indicates the strength of the

correlation, and the symbol ‘X’ indicates the non-significant P-value. FA, fractional anisotropy; ISOVF, isotropic volume fraction; MD, mean

diffusivity; NDI, neurite density index; ODI, orientation dispersion index.

Table 1 Characteristics table with the mean (SD) listed for the continuous variables and count (%) for the categorical

variables

CU n 5 264 MCI n 5 57 Dementia n 5 7 P-

value

Male, n (%) 135 (51%) 30 (53%) 4 (57%) 0.94

Age, years 65.9 (12.8) 77.2 (9.8) 84.7 (4.2) <0.001

APOE4 carrier, n (%) 63 (27%) 21 (40%) 5 (71%) 0.010

Education/occupation 12.9 (2.2) 11.9 (2.8) 12.1 (2.3) 0.013

CMC 1.5 (1.4) 2.6 (1.8) 3.0 (1.0) <0.001

MMSE 29.0 (1.1) 26.1 (1.9) 20.3 (3.9) <0.001

zGlobal 0.63 (0.99) �1.80 (1.17) �3.05 (0.49) <0.001

zMemory 0.64 (0.96) �1.85 (0.92) �3.04 (0.15) <0.001

zAttention 0.41 (1.02) �1.50 (1.57) �3.24 (0.78) <0.001

zLanguage 0.35 (0.99) �1.48 (1.38) �2.96 (1.32) <0.001

zVisual-spatial 0.56 (0.99) �1.05 (1.23) �1.87 (1.36) <0.001

Trails A 32.0 (11.7) 51.4 (24.9) 91.5 (51.3) <0.001

Trails B 75.6 (40.0) 163.5 (96.2) 262.3 (93.0) <0.001

Amyloid, SUVR 1.49 (0.34) 1.95 (0.62) 3.04 (0.41) <0.001

Amyloid positive, n (%) 70 (27%) 38 (67%) 7 (100%) <0.001

Tau, SUVR 1.18 (0.11) 1.29 (0.21) 1.54 (0.30) <0.001

Tau positive, n (%) 52 (20%) 29 (51%) 6 (86%) <0.001

WMH percentage 0.66 (0.88) 1.22 (0.93) 1.98 (1.57) <0.001

The P-values reported are from an ANOVA for continuous measurements and a chi-squared for categorical variables.

CU, cognitively unimpaired; CMC, cardiovascular and metabolic conditions; MCI, mild cognitive impairment; MMSE, mini mental state examination; SUVR, standardized uptake value

ratio; WMH—white matter hyperintensity.
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Multiple regression models with

focus on disease pathologies

The regression models with standardized disease patholo-

gies (WMH, amyloid and tau) as predictors and standar-

dized WM integrity measures of FA, MD, NDI, ODI and

ISOVF as outcomes are shown in Fig. 4 and

Supplementary Table 1. Associations with WMH: Across

all models, WMH had the strongest associations with all

dMRI metrics from all tracts. Higher WMH (a surrogate

of cerebrovascular disease) was significantly associated

with lower FA, higher MD, lower NDI and higher

ISOVF. Splenium was the only region where WMH

showed a statistically significant association with ODI.

Associations with amyloid and tau

Higher amyloid was significantly associated with higher

MD in parahippocampal cingulum (P¼ 0.026). Higher

amyloid was associated with lower NDI in the same re-

gion, but the P-value was 0.053. In addition, higher MD

was significantly associated with greater tau in inferior

temporal WM (P¼ 0.014).

Voxel level associations for
confirmation of ROI analyses

Similar to the ROI analysis, the voxel-wise analyses

found the strongest associations for age and WMH with

all diffusion metrics as displayed in Fig. 5. Modest asso-

ciations were found with amyloid for both DTI and

NODDI in the medial temporal lobe regions, specifically

at the grey and WM junctions (Supplementary Fig. 1A).

The extent and strength of tau associations with dMRI

measures was minimal (Supplementary Fig. 1B).

Association of diffusion measures
with cognition

Association results from multiple linear regression models

of the global cognition and cognitive subdomain z-scores

with DTI and NODDI metrics after controlling for age,

sex, education/occupation, cycle visit, amyloid and tau

Figure 3 Correlation matrix. Association between demographics (age, sex, education/occupation) or white matter hyperintensity

(WMH) or amyloid or tau and diffusion measures. Edu.occ represents education/occupation. Colour legend indicates the range of

correlations, the size of the circle indicates the strength of the correlation, and the symbol “X” indicates the non-significant P-value. FA,

fractional anisotropy; ISOVF, isotropic volume fraction; MD, mean diffusivity; NDI, neurite density index; ODI, orientation dispersion index.
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are shown in Fig. 6 for the corpus callosum tracts (where

the correlations were highest). The regression coefficients

for all tracts with global cognition are shown in

Supplementary Table 2. Corpus callosum generally had

the most significant findings except for analyses of NDI

and ODI where superior longitudinal fasciculus and cin-

gulum respectively had the greatest impact. The associa-

tions between subdomain scores and diffusion metrics

had a similar pattern to that of global cognition with

stronger associations with attention. Further analyses

revealed significant associations between diffusion metrics

and speed scores (Supplementary Fig. 2). As expected, the

strongest associations were observed for corpus callosum

fibres with MD and ISOVF and these changes were

greatest with Trail B as an outcome.

Association of diffusion measures with
disease pathologies and cognition in
non-demented participants

We also performed sensitivity analyses after excluding de-

mentia participants. As described above, we evaluated (i)

the contribution of WMH, amyloid and tau on WM

changes (after adjusting for age, sex, education/occupa-

tion) and (ii) association of global cognition, subdomain

and processing speed scores with corpus callosum WM

measures (after adjusting for age, sex, education/occupa-

tion, and cycle number and amyloid and tau PET). There

were no significant differences observed in these sensitiv-

ity analyses as shown in the supplemental material

(Supplementary Figs 3–5).

Figure 4 Association of diffusion metrics with white matter hyperintensity (WMH), amyloid and tau after controlling for

age, sex and education/occupation. Different symbols below are used for each of the primary predictors. FA, fractional anisotropy;

ISOVF, isotropic volume fraction; MD, mean diffusivity; NDI, neurite density index; ODI, orientation dispersion index.
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Discussion
We investigated the performance of DTI and NODDI

models in capturing the microstructural brain changes

associated with demographics and pathological processes

and their association with cognition in 328 MCSA sub-

jects aged 33–98 years. The major findings of the study

were as follows: (i) NODDI and DTI are two different

biophysical models that provide distinct information

about variation in WM health. There was complementary

information such that only MD and NDI had the stron-

gest correlations with each other across the tracts; (ii)

Age and WMH had the strongest associations with DTI

and NODDI measures among the measured WM tracts;

(iii) After adjusting for demographics, WMH was the

strongest predictor of diffusion measures; (iv) Both dMRI

measures were able to detect subtle Alzheimer’s disease

related WM changes mainly at the medial temporal grey-

Figure 5 Association between age or white matter hyper intensity (WMH) and diffusion measures. Significance level set at

P< 0.05, FWE corrected with an extend threshold K¼ 100. (þve and –ve represents the kind of association between variables). FA, fractional

anisotropy; ISOVF, isotropic volume fraction; MD, mean diffusivity; NDI, neurite density index; ODI, orientation dispersion index.

Figure 6 Association of diffusion metrics with cognition after controlling for age, sex and education/occupation, cycle visit,

amyloid and tau. Different symbols below are used for each of the diffusion measures. BCC, body of corpus callosum; FA, fractional

anisotropy; GCC, genu of corpus callosum; ISOVF, isotropic volume fraction; MD, mean diffusivity; NDI, neurite density index; ODI,

orientation dispersion index; SCC, splenium of corpus callosum.
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white matter junctions and also WM tracts in the tem-

poral lobes; and (v) MD and ISOVF in the corpus cal-

losum were strongest predictors of cognitive function.

Taken together, NODDI and traditional DTI measures

are comparable in their predictive ability of WMH and

cognition, but the non-overlapping information provided

by each may aid in providing mechanistic insights into

disease progression.

Advanced biophysical models versus
traditional models

An advanced biophysical model such as NODDI lever-

ages richer multi-shell diffusion gradients to examine the

physiological alterations in neurites. In Fig. 2, we directly

compared variation in DTI with variation in NODDI sig-

nal. The idea is that DTI signals are sensitive to gross

anatomical and neuropathological changes associated

with WM,45 but they are inherently non-specific to disen-

tangle the complex tissue properties of a given voxel with

crossing, kissing and fanning fibres.10,46 On the other

hand, NODDI measures demonstrated more putative cell

microstructure associations across studies10,47–51 and have

been found to be strongly correlated with neurobiological

underpinnings.7,52,53 While decreases in NDI and

increases in ISOVF are straightforward to understand,

ODI changes have been hard to interpret because there is

no simple physical mechanism that directly relates them

to disease processes, such as demyelination, inflammation,

or atrophy. Also, the direction of the correlation between

axonal loss and ODI changes depends on region.

Consider a hypothetical axon that runs parallel to a bun-

dle for a few centimetres and then perpendicularly to a

different bundle. The loss of the axon would increase the

ODI in the parallel region and decrease it in the perpen-

dicular region (ODI ¼ 0 for a perfectly aligned bundle

and goes to 1 where fibres spread out equally in all

directions).

Unfortunately, at the macroscopic scale of a voxel the

NODDI measures by themselves do not specify which

axons changed. FA also suffers from this ambiguity, but

unlike ODI is also directly coupled to demyelination and

atrophy. Therefore, contrasting the relationship between

DTI (FA and MD) and NODDI (NDI, ODI and ISOVF)

can help understand the regional variations in these asso-

ciations, which are largely unknown in the population.

The most consistent relationship between NODDI and

DTI was seen with MD and NDI (but not with ODI and

ISOVF), implicating that rather than orientation and

geometry of tracts, a higher density may drive more dif-

fusion restriction.50 We found a positive association of

FA with NDI across various WM tracts with primarily a

stronger relationship in corpus callosum fibres. This fibre

pathway connects the two hemispheres, and the observed

positive association between NDI and FA suggests the ex-

istence of the same underlying physiological processes

(reduced axonal packing and demyelination).10,50

Interestingly, ODI did not show a close association with

FA in the corpus callosum, which may be due to their

different responses to degeneration when most of the

fibres are strongly aligned.10,54 Specifically, if the callosal

boundary retreats due to atrophy, the edge voxels will be

filled in by more CSF, affecting FA but not ODI.

Outside the corpus callosum, the associations between

NODDI and DTI measures were inconsistent in the asso-

ciation and temporal WM tracts, which may be explained

by the differing sensitivity of neurites to growth/matur-

ational trajectories.55,56 Across the regions, the correl-

ation between DTI and NODDI measures was smallest in

the fornix. The fornix is part of the limbic system that

connects the hippocampus to the subcortical structures

and is also well known for partial volume contamination

by CSF. This selective weakened association indicates the

correction for CSF-contamination effects in the NODDI

method.

Diffusion measures and age, sex and
education/occupation

Age-associated WM changes in imaging have been widely

reported. Past studies demonstrated NODDI as a key

marker for studying ageing,47,57–59 and the association of

age and sex.1 Consistent with the ageing literature, age

was associated with a decrease in FA and NDI, increase

in MD ISOVF, and increase or decrease in ODI (which

depends on the tract tortuosity and the presence of cross-

ing fibres). Among the diffusion parameters, MD had the

most sensitive age effects across the majority of tracts,1,60

while the unconstrained diffusivity metric ISOVF demon-

strated the greatest age effect in corpus callosum (genu

and splenium) and cingulum. The overall widespread in-

crease in ISOVF with age suggests the increase in FW

concentration in specific brain regions. However, the key

drivers of this increased FW are largely unknown. In

addition to cerebrovascular disease and neurodegenerative

pathologies, other possible underlying neuropathological

factors include an influx of CSF or other factors like cell

shrinkage,41 edoema,61 and neuroinflammation.62

Interestingly, past MRI and histology evidence clarified

this as age- related increase in interstitial water.63,64

While most tracts had strong correlations with age,

there were some subtle differences. With NDI, the associ-

ation tracts (especially cingulum, superior longitudinal

fasciculus and inferior fronto-occipital fasciculus) had the

greatest age associations suggesting the presence of higher

neurite density fibres in more metabolically active brain

regions65,66 that may be vulnerable to detrimental system-

ic age effects. ODI exhibited heterogeneous regional var-

iations with age. Although there is reduced tract

complexity in the corpus callosum fibres, the higher dis-

persion in fornix, cingulum and parahippocampal cingu-

lum suggests the greater loosening, fanning and possibly

bending of axonal bundles with the advancement of

age.1,49 As stated above, this could be explained as
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evidence of continuous remodelling of WM during the

life span which is more evident after the sixth decade.

Notably, the age-related changes in the hippocampal con-

nections might explain the amnestic changes in the elderly

population.16,49

The sex-specific WM integrity association of DTI and

NODDI is sparsely covered in the literature. A few DTI

studies evaluated sex differences and reported inconsistent

findings. The inconsistency across these findings may be

due to the heterogeneity of populations and differences in

the analysis methods. In this study, we observed small

sex differences in eight tracts, with higher FA in males

and greater ODI and ISOVF in females which is consist-

ent with previous studies in healthy adults.1,49,67

Reserve and resilience factors are important modulating

parameters between brain injury and cognitive outcomes.

Past studies showed education/occupation as a ‘proxy’ for

cognitive reserve and related differences in fibre tract in-

tegrity.68,69 Similarly, a previous study in the MCSA

population demonstrated a significant association of intel-

lectual enrichment on FA of the genu.70 Although this as-

sociation was modest, the present study showed a

positive association of DTI and NODDI measures with

corpus callosum, cingulum, parahippocampal cingulum,

superior longitudinal fasciculus, inferior fronto-occipital

fasciculus and inferior temporal WM, which is consistent

with prior DTI studies.70,71 The anatomical localization

provides insights into the associations between resilience

mechanisms and brain maturation and plasticity.

Diffusion measures as markers of
cerebrovascular disease

Although WMH is the most commonly used biomarker

for cerebrovascular disease,2 it only represents extensive

(and structurally visible) WM damage and fails to meas-

ure the disruption or subtle changes of the underlying

WM tracts. There is growing evidence supporting the

utility of DTI to characterize the WM changes in cerebro-

vascular disease40,72,73 even before the appearance of

WMH and cognitive decline. Notably, the observed de-

crease in diffusion directionality and an increase in the

extent of water diffusion in conjunction with WMH are

consistent with prior findings.40,67,73 Consistent with this

idea, a recent study using FW imaging demonstrated a

greater contribution of cerebrovascular disease markers

than Alzheimer’s disease biomarkers (CSF and PET) in

memory clinic patients.17

Similar to the age effect, we found a strong association

of WMH with corpus callosum and association fibres.5

Although there is evidence for more vascular damage in

the thinly myelinated anterior corpus callosum,5,74,75 the

present study showed slight variations across the meas-

ures. Importantly, conventional DTI performed as well as

NDI in detecting cerebrovascular disease changes.76 The

decreased density and dispersion of the neurites and

increased FW might contrast the lack of specificity in FA

and MD to explain the underlying histological changes

associated with WMH. The NDI finding in the genu of

the corpus callosum was in accordance with a prior

NODDI study that explored the diabetic encephalopathy

in subjects with cognitive impairment.72 The only meas-

ure that did not show consistent associations with WMH

was ODI. We believe this is due to ODI nominally being

a property of only healthy neurites, and thus being more

orthogonal to neuronal decay than the other NODDI

measures or DTI.

Though the correlations with vascular risk were not a

focus of the manuscript, as previously reported74 we

found that WM measures from traditional DTI (FA and

MD) and NODDI (NDI specifically) were significantly

associated with worsening vascular risk (Results not

shown). Recent researchers focussed on using global dif-

fusion MRI as a cerebrovascular disease marker.71,76,77

However, this work sheds light on the variability in re-

gional associations suggesting a greater sensitivity and

specificity of regional markers. Future work should be

undertaken to widely validate and compare diffusion out-

comes as cerebrovascular disease measures.

Diffusion measures and

neuroimaging Alzheimer’s disease

measures

The association between amyloid deposition and WM

microstructure is still a matter of debate. A non-mono-

tonic behaviour was found between both measures in

GM78 and WM79,80 in human studies. Consistent with

our region level findings, prior DTI studies reported

reduced FA in corpus callosum and fornix81,82 in cogni-

tively unimpaired individuals and increased axial diffusiv-

ity83 and accelerated FA decrease84 in the

parahippocampal cingulum of amyloid positive individu-

als. As expected, the current study identified a significant

global association between Ab deposition and increased

MD and ISOVF along with decreased NDI in medial

temporal lobe grey-white matter junctions, which are con-

sistent with a more recent study that reported lower neu-

rite density in limbic and association fibres and higher

medial temporal FW.85 The medial temporal lobe is an

early region of neuronal changes in Alzheimer’s disease,

so the parahippocampal cingulum findings were as

expected. We also found associations between tau and

non-specific MD and ISOVF association in the inferior

temporal WM (Fig. 4). These results are supported by a

study of tau and NODDI in a transgenic Alzheimer’s dis-

ease model.86 Our findings in the temporal lobe (hippo-

campal and parahippocampal regions) and the temporo-

occipital fusiform gyrus suggest that NODDI may be able

to provide more detailed information about neurite health

in the presence of Alzheimer’s disease pathology.
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Diffusion measures with cognition

Association between WM DTI alterations and cognitive de-

cline in the CU, MCI and Alzheimer’s disease populations

have been reported previously.40,67,70,75 Although there was

decreased FA and increased MD in association with cogni-

tive decline, the exact sources of DTI signal were not

studied. The present study is one of the earliest studies to

compare DTI and NODDI based on their association with

cognitive performance after accounting for amyloid and tau,

which allows us to evaluate its utility as a cerebrovascular

disease marker. As expected, both DTI and NODDI were

significantly associated with global cognition and cognitive

subdomain scores after adjusting for age, sex, cycle visit

and Alzheimer’s disease biomarkers. The overall pattern

suggests that higher coherence and density, and lower FW

concentration and tract complexity, both correlate with bet-

ter cognitive performance.16,87 Across the tracts, the stron-

gest association of reduced WM integrity and worse global

cognitive performance was observed in the corpus callosum.

This is consistent with a previous DTI study in cerebrovas-

cular disease that reported highly significant correlations of

genu and splenium with global cognitive performance.40

Impaired interhemispheric connection pathways contribute

to multiple impaired cognitive functions, such as impaired

memory, psychomotor speed, frontal lobe mediated atten-

tion and executive function.88,89 Additionally, these observa-

tions replicated our recent study in MCI that showed

greater predictability of high FA of genu on better cognitive

performance,75 even after controlling for amyloid and tau

PET.

Although there are contributions from other domains,

we found that the associations with WM integrity and

cognitive performance were mainly driven by attention.

Importantly, our detailed investigation indicated that FW

fraction in the corpus callosum predicted cognitive de-

cline. In general, reduced neurite density correlated with

worse cognitive performance with most of the tracts in

all domains. Among these, the stronger association of

NDI than FA in superior longitudinal fasciculus may be

due to its proximity to the crossing fibres in the centrum

semiovale,90 which corresponds to higher FA and lower

tract complexity. Another speculation may be that the su-

perior longitudinal fasciculus is connecting lateral pre-

frontal to parietal brain areas, which are responsible for

the multifaceted processes we studied here. Notably, cin-

gulum performed uniformly well across all domains and

diffusion metrics to predict cognition. This bundle is the

prominent WM tract that interconnects frontal, parietal,

and medial temporal lobe and the posterior cingulate cor-

tex. Surprisingly, the parahippocampal cingulum bundle,

which connects the hippocampus to the rest of the brain

areas, emerged as an important tract in visuospatial func-

tion. In contrast, deteriorations in parahippocampal cin-

gulum have previously been implicated in association

with episodic memory in older subjects91 and Alzheimer’s

disease.92

Diffusion metrics are suggested to be most strongly

associated with processing speed.71,93 Therefore, we also

tested these hypotheses in the supplemental material and

found that both DTI and NODDI strongly predicted

processing speed (Trail B and combined). As expected,

commissural fibres had the greatest effect size.

The present study has several strengths and limitations.

The main strength was the extensive analyses of single

and multi-shell diffusion data on WM health and cogni-

tion. Also, this is the first study to assess the relationship

between NODDI metrics and cerebrovascular disease and

Alzheimer’s disease biomarkers together along with asso-

ciations with cognitive performance. The inclusion of a

representative sample population strengthens the general-

izability of the findings. Our voxel-wise and regional

findings mostly corroborated each other, and the slight

differences may be due to partial volume effects, smooth-

ing, and more stringent FWE corrections. The major limi-

tations are the cross-sectional nature of the study and the

lack of histological confirmation of the observed associa-

tions. Another limitation is the smaller number of sub-

jects in the dementia group, but the results remain the

same after excluding them. Furthermore, the regulariza-

tion scheme used by the AMICO implementation of

NODDI acts like a prior that gives a mild preference to

some values of NDI, ISOVF, and especially ODI, which

could be obscuring some differences between subjects.

Future longitudinal research with multiple biophysical

models11 may provide more sensitive and conclusive

findings.

In summary, the present study provides evidence of

microstructural WM alterations due to ageing and age-

related pathological processes, and their impact on cogni-

tion. Although NODDI-derived indices perform similar to

traditional FA and MD in predicting cognitive perform-

ance, NODDI provides additional insights into the under-

lying synaptic density, organization and FW content

which are biological processes that cannot be separated

with DTI. Among DTI and NODDI indices, MD and

FW fraction provided by ISOVF were the key parameters

in predicting cognition. This study also highlights the spa-

tial heterogeneity of tracts across the metrics and which

highlights the importance of looking at each diffusion

metrics to investigate changes in each WM region of the

brain as a function of disease progression.
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Supplementary material is available at Brain

Communication online.
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4. Caballero MÁA, Song Z, Rubinski A, et al. Age-dependent amyl-

oid deposition is associated with white matter alterations in cogni-

tively normal adults during the adult life span. Alzheimers

Dement. 2020;16(4):651-661.

5. Cox SR, Lyall DM, Ritchie SJ, et al. Associations between vascular

risk factors and brain MRI indices in UK Biobank. Eur Heart J.

Jul 21 2019;40(28):2290-2300.
6. Pines AR, Cieslak M, Larsen B, et al. Leveraging multi-shell diffu-

sion for studies of brain development in youth and young adult-

hood. Dev Cogn Neurosci. 2020;43:100788.

7. Schilling KG, Janve V, Gao Y, Stepniewska I, Landman BA,

Anderson AW. Histological validation of diffusion MRI fiber

orientation distributions and dispersion. Neuroimage. 2018;165:

200-221.

8. Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. Diffusional

kurtosis imaging: The quantification of non-gaussian water diffu-

sion by means of magnetic resonance imaging. Magn Reson Med.

2005;53(6):1432-1440.

9. Jensen JH, Helpern JA. MRI quantification of non-Gaussian water

diffusion by kurtosis analysis. NMR Biomed. Aug 2010;23(7):

698-710.
10. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC.

NODDI: Practical in vivo neurite orientation dispersion and dens-

ity imaging of the human brain. Neuroimage. 2012;61(4):1000-16.

11. Beck D, de Lange AG, Maximov II, et al. White matter microstruc-

ture across the adult lifespan: A mixed longitudinal and cross-sec-

tional study using advanced diffusion models and brain-age

prediction. Neuroimage. 2020;224:117441.

12. Toschi N, Gisbert RA, Passamonti L, Canals S, De Santis S.

Multishell diffusion imaging reveals sex-specific trajectories of

early white matter degeneration in normal aging. Neurobiol

Aging. 2020;86:191-200.
13. Parker TD, Slattery CF, Zhang J, et al. Cortical microstructure in

young onset Alzheimer’s disease using neurite orientation disper-

sion and density imaging. Hum Brain Mapp. 2018;39(7):

3005-3017.
14. Slattery CF, Zhang J, Paterson RW, et al. ApoE influences regional

white-matter axonal density loss in Alzheimer’s disease. Neurobiol

Aging. 2017;57:8-17.
15. Vogt NM, Hunt JF, Adluru N, et al. Cortical microstructural alter-

ations in mild cognitive impairment and Alzheimer’s disease de-

mentia. Cereb Cortex (New York, NY: 1991). 2020;30(5):

2948-2960.

16. Wen Q, Mustafi SM, Li J, et al. White matter alterations in early-

stage Alzheimer’s disease: A tract-specific study. Alzheimers

Dement (Amsterdam, Netherlands). 2019;11:576-587.
17. Finsterwalder S, Vlegels N, Gesierich B, et al.; Utrecht VCI study

group. Small vessel disease more than Alzheimer’s disease deter-

mines diffusion MRI alterations in memory clinic patients.

Alzheimers Dement. 2020;16(11):1504-1514.

Basis of microstructural changes BRAIN COMMUNICATIONS 2021: Page 13 of 15 | 13



18. Bells S, Lefebvre J, Prescott SA, et al. Changes in white matter

microstructure impact cognition by disrupting the ability of neural

assemblies to synchronize. J Neurosci. 2017;37(34):8227-8238.

19. Filley CM, Fields RD. White matter and cognition: Making the

connection. J Neurophysiol. 2016;116(5):2093-2104.

20. Jelescu IO, Budde MD. Design and validation of diffusion MRI

models of white matter. Front Phys. 2017;28:61.

21. Novikov DS, Veraart J, Jelescu IO, Fieremans E. Rotationally-in-

variant mapping of scalar and orientational metrics of neuronal

microstructure with diffusion MRI. Neuroimage. 2018;174:

518-538.

22. Zhang YZ, Chang C, Wei XE, Fu JL, Li WB. Comparison of diffu-

sion tensor image study in association fiber tracts among normal,

amnestic mild cognitive impairment, and Alzheimer’s patients.

Neurology India. 2011;59(2):168-173.

23. Rocca WA, Yawn BP, St Sauver JL, Grossardt BR, Melton LJ 3rd.

History of the Rochester Epidemiology Project: Half a century of

medical records linkage in a US population. Mayo Clinic Proc.

2012;87(12):1202-1213.

24. St Sauver JL, Grossardt BR, Yawn BP, et al. Data resource profile:

The Rochester Epidemiology Project (REP) medical records-linkage

system. Int J Epidemiol. 2012;41(6):1614-1624.
25. Petersen RC, Roberts RO, Knopman DS, et al. Prevalence of mild

cognitive impairment is higher in men. The Mayo Clinic Study of

Aging. Neurology. 2010;75(10):889-897.

26. Caruyer E, Lenglet C, Sapiro G, Deriche R. Design of multishell

sampling schemes with uniform coverage in diffusion MRI. Magn

Reson Med. 2013;69(6):1534-1540.
27. Reid RI, Nedelska Z, Schwarz CG, et al. Diffusion specific seg-

mentation: Skull stripping with diffusion MRI data alone.

Computational diffusion MRI mathematics and visualization.

Cham: Springer; 2018.
28. Veraart J, Novikov DS, Christiaens D, Ades-Aron B, Sijbers J,

Fieremans E. Denoising of diffusion MRI using random matrix

theory. Neuroimage. 2016;142:394-406.

29. Andersson JLR, Sotiropoulos SN. An integrated approach to cor-

rection for off-resonance effects and subject movement in diffusion

MR imaging. Neuroimage. 2016;125:1063-1078.
30. Kellner E, Dhital B, Kiselev VG, Reisert M. Gibbs-ringing artifact

removal based on local subvoxel-shifts. Magn Reson Med. 2016;

76(5):1574-1581.

31. Koay CG, Ozarslan E, Basser PJ. A signal transformational frame-

work for breaking the noise floor and its applications in MRI. J

Magn Reson (San Diego, Calif: 1997). 2009;197(2):108-119.
32. Garyfallidis E, Brett M, Amirbekian B, et al.; Dipy Contributors.

Dipy, a library for the analysis of diffusion MRI data. Front

Neuroinform. 2014;8:8.

33. Daducci A, Canales-Rodrı́guez EJ, Zhang H, Dyrby TB,

Alexander DC, Thiran JP. Accelerated Microstructure Imaging via

Convex Optimization (AMICO) from diffusion MRI data.

Neuroimage. 2015;105:32-44.

34. Jack CR Jr., Wiste HJ, Weigand SD, et al. Defining imaging bio-

marker cut points for brain aging and Alzheimer’s disease.

Alzheimers Dement. 2017;13(3):205-216.
35. Graff-Radford J, Arenaza-Urquijo EM, Knopman DS, et al. White

matter hyperintensities: Relationship to amyloid and tau burden.

Brain. 2019;142(8):2483-2491.

36. Zhang Y, Brady M, Smith S. Segmentation of brain MR images

through a hidden Markov random field model and the expect-

ation-maximization algorithm. IEEE Trans Med Imaging. 2001;

20(1):45-57.
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