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Some bacteria are symbiotic in tumor tissues, and metabolites of several bacterial species have been
found to cause DNA damage. However, to date, the association between bacteria and host genetic alter-
ations in colorectal cancer (CRC) has not been fully investigated. We evaluated the association between
the intra-tumor microbiome and host genetic alterations in 29 Japanese CRC patients. The tumor and
non-tumor tissues were extracted from the patients, and 16S rRNA genes were sequenced for each sam-
ple. We identified enriched bacteria in tumor and non-tumor tissues. Some bacteria, such as
Fusobacterium, which is already known to be enriched in CRC, were found to be enriched in tumor tissues.
Interestingly, Bacteroides, which is also known to be enriched in CRC, was enriched in non-tumor tissues.
Furthermore, it was shown that certain bacteria that often coexist within tumor tissue were enriched in
the presence of a mutated gene or signal pathway with mutated genes in the host cells. Fusobacterium
was associated with many mutated genes, as well as cell cycle-related pathways including mutated
genes. In addition, the patients with a high abundance of Campylobacter were suggested to be associated
with mutational signature 3 indicating failure of double-strand DNA break repairs. These results suggest
that CRC development may be partly caused by DNA damage caused by substances released by bacterial
infection. Taken together, the identification of distinct gut microbiome patterns and their host specific
genetic alterations might facilitate targeted interventions, such as modulation of the microbiome in addi-
tion to anticancer agents or immunotherapy.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Colorectal cancer (CRC) is one of the most common cancers
worldwide [1], and it is a heterogeneous disease with varying mor-
phological features, clinical outcomes, and responses to anticancer
agents and immunotherapy [2-4]. Colorectal carcinogenesis repre-
sents a heterogeneous process associated with various sets of
molecular alterations that are influenced by the gut microbiome,
diet, and environment [5]. The human intestinal microbiome
regulates various aspects of health, and alterations in it can con-
tribute to disease [6]. Advances in metagenomic analyses have
revealed that changes in the intestinal microbiome, which can
affect metabolism and immune function [7–9], may initiate and
promote CRC [10,11].

Recently, it has been found that certain bacteria are symbiotic
in tumor tissues [12], and have the potential to affect the efficacy
of anticancer agents [13] and immunotherapy [14,15] in CRC. Mod-
ification of the gut microbiome is regarded as a therapeutic strat-
egy for cancer treatment, and efforts are currently underway to
enhance therapeutic responses or abrogate treatment-associated
toxicity via modulation of the gut microbiome [16]. For example,
dietary interventions can be used to modulate the gut microbiome
of patients receiving cancer therapy [5].
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Various bacteria have been associated with the development of
CRC, including Bacteroides, Fusobacterium, Salmonella, Escheri-
chia, and Campylobacter, and the mechanisms involved in carcino-
genesis have been elucidated in some bacteria. Fusobacterium
nucleatum is known to be symbiotic in the tumor tissue, and it
has been suggested that F. nucleatum increases the proliferation
of cancer cells by promoting the activation of the b-catenin and
Wnt pathways via E-cadherin [17]. Metabolites of several bacterial
species have been found to cause DNA damage. Campylobacter
jujuni produces cytolethal distending toxin (CDT), a genotoxin that
has DNAse activity and causes DNA double-strand breaks [18].
Enterotoxigenic Bacteroides fragilis (ETBF) and genotoxic
pks + Escherichia coli, which produce a cyclomodulin toxin called
colibactin, were also associated with DNA damage in CRC [19,20].
We now have strong evidence that the presence of specific
microorganisms in the microbiota is associated with various stages
of CRC development, and that these microorganisms can initiate
tumor formation and contribute to tumor growth [21].

In context of the clinical implications of the composition of
microbiome, we hypothesize that the study of gut microbiome-
induced genetic alterations may guide the development of novel
treatment strategies for CRC. Burns et al. demonstrated statistically
significant association between loss-of-function mutations in CRC
tumor genes, and sifts in the abundances of specific sets of bacte-
rial taxa in the gut microbiome, using microbiome profiling and
whole-exome sequencing in 44 pairs of tumors and matched nor-
mal tissues [22]. However, it is unclear whether changes in the
composition of microbiota can cause specific and actionable
genetic alterations, and the clinical implications of these changes
for treatment strategies for CRC remains to be elucidated.

We hypothesized that distinct gut microbiome patterns are
associated with specific genetic mutations in CRC. Identification
of distinct gut microbiomes and their specific genetic alterations
in tumor tissue could facilitate targeted interventions, such as
modulation of the microbiome, in addition to anticancer agents
or immunotherapy. Hence, we investigated genetic alterations in
tumor tissue using a 415-gene panel for testing designed for tumor
agnostic treatment. We aimed to evaluate the association between
intra-tumor microbiota and host genetic alterations detected by
gene panel testing in CRC.
2. Methods

2.1. Patients

This retrospective analysis was performed in accordance with
the Declaration of Helsinki and other relevant guidelines and reg-
ulations. The Ethics Committee of the School of Medicine, Niigata
University, approved the study protocol (G2015-0816), and written
informed consent was obtained from all patients. We enrolled 29
Japanese patients with stage I–IV CRC according to the American
Joint Committee on Cancer guidelines, 8th edition [2-4], who
agreed with the study protocol and had received primary tumor
resection between 2015 and 2016 at Niigata University Medical
and Dental Hospital. We included 6 patients with MSI-H and 23
patients with MSS in this analysis. Patients with CRC with familial
adenomatous polyposis or inflammatory bowel disease were
excluded. This retrospective cohort study did not include any dif-
ferences in nutrition. The patient information is shown in Supple-
mentary Table 1.
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2.2. Next-generation sequencing (NGS) for detecting genetic
alterations in CRC

As previously described [23-27], formalin-fixed, paraffin-
embedded (FFPE) samples were used for NGS, and genetic alter-
ations in the tumor tissue were evaluated in 29 patients with stage
I–IV CRC. We did not analyze non-tumor tissues for genetic alter-
ations in this study. All sample preparations, NGS, and bioinfor-
matics analyses were performed in a CLIA/CAP-accredited
laboratory (KEW, Cambridge, MA, USA) [28]. Briefly, hematoxylin
and eosin-stained sections were used to assess tumor content,
ensuring > 50% tumor content in the tissue samples. The unstained
sections were macroscopically dissected for tumor content enrich-
ment. DNA was extracted using a BioStic FFPE Tissue DNA Isolation
Kit (Mo Bio Laboratories, Inc., Carlsbad, CA, USA). First, 50–150 ng
DNA fragment libraries were prepared and enriched with a panel of
415 genes (CANCERPLEX version 3.0). Library construction was
performed according to the manufacturer’s instructions. Illumina
MiSeq and NextSeq (San Diego, CA, USA) platforms were used to
achieve an average sequencing depth of 500 � . A proprietary
bioinformatics platform based on GATK Best Practices [29] and
MuTect tool kit [30], and knowledge database, were used to pro-
cess genomic data and identify genomic abnormalities, including
single nucleotide variants (SNVs), small insertions/deletions (in-
dels), copy number variations (CNVs), and translocations [23,30].
To assess the somatic state of the mutations in a tumor-only envi-
ronment, we adopted a filtering strategy similar to one previously
published [31], with some modifications. In other words, muta-
tions present in the dbSNP, 1000 Genomes, and ExAC databases
were lowered in priority (AF > 1%). The model was then fitted using
the frequency of the alleles of each mutation, to determine
whether the mutation was likely to be germline cell heterozygous
or somatic. A 10% allelic fraction threshold for SNVs and indels, as
well as thresholds of > 2.5-fold and < 0.5-fold for gain and loss,
respectively, were used.
2.3. 16S rRNA gene sequencing

We extracted the tumor and non-tumor regions from fresh tis-
sue samples from all 29 CRC cases. We took the non-tumor tissue,
which was macroscopically diagnosed as ‘‘non-tumor,” from
within 3 cm of the tumor. Generally, the lesion located adjacent
to the tumor is possibly affected by ischemia and/or inflammation
induced by the tumor, so we defined the lesion as ‘‘non-tumor”, not
‘‘healthy”. After the fixation of the resected specimen, we con-
firmed the area of ‘‘non-tumor” tissue to be microscopically non-
tumor tissue. DNA was extracted from fecal samples using an auto-
mated DNA extraction machine (GENE PREP STAR PI-480, Kurabo
Industries Ltd., Osaka, Japan) according to the manufacturer’s
instructions. 16S rRNA gene sequencing was performed for each
sample using the Mykinso� technology developed by Cykinso
Inc., (Tokyo, Japan), which included DNA extraction and subse-
quent 16S rRNA paired-end sequencing using the Illumina MiSeq
platform [32]. The FASTQ file thus obtained was processed to join
the forward and reverse reads to a single read per sample using
fastq-join [33] with default settings. Next, low quality sequences
were excluded using QIIME version 1.9 [34], and chimera
sequences were removed using USEARCH [35]. Relative abundance
was calculated after detecting OTUs at 97% identity for the filtered
sequence data using QIIME’s pick_open_reference_otus command.
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The number of reads in each step is listed in Supplementary
Table 2.

2.4. Contaminant filtering and re-calculation of relative abundance

Recent advances have shown that bacteria exist in a variety of
tumor tissues, and these studies have suggested that contamina-
tion may occur during the process of tissue sampling and subse-
quent processing. We removed the contaminants from the
species obtained in this study, based on species identified in a pre-
vious study reported by Neijman et al. [12]. The species name that
matched to the contaminant species name were filtered out, after
which we re-calculated the relative abundance of the remaining
species to be normalized to 1.0. The relative abundance at the
upstream taxonomy levels was re-estimated based on the re-
calculated relative abundance at the species level.

2.5. Enrichment analysis

To identify the bacteria enriched in the tumor area, the relative
abundance of each taxon in tumor and non-tumor tissues was
tested using a one-sided Wilcoxon rank sum test. Taxa with
P < 0.05 were extracted for further analysis. Supplementary Table 3
includes the list of taxa filtered out in the contaminant filtering
step related to this statistical test. In addition, to explore the asso-
ciation of bacterial taxa with gene alterations or signal pathways
with altered genes, we performed another enrichment analysis.
We calculated the differences by subtracting the relative abun-
dance of the bacterial taxa in non-tumor tissue from that in tumor
tissue, in order to take into account the cases of zero values. To
confirm whether a bacterium was enriched in the presence or
absence of a gene alteration, patients were divided into groups
based on the presence or absence of a gene alteration on the host
side. The differences in their relative abundances were tested using
a one-sided Wilcoxon rank-sum test. Similarly, patients were
divided into groups based on the presence or absence of a gene
alteration in the set of genes involved in a signal pathway on the
host side, and the differences in their relative abundances were
tested using a one-sided Wilcoxon rank sum test. R (https://
www.r-project.org) was used for the calculations, along with the
exactRankTests library.

2.6. Regression analysis

In order to test the association between clinical data and each
bacterial genus, we conducted multivariate generalized linear
regression using the differences in the abundance of each genus
in tumor and non-tumor tissues as response variables and clinical
data extracted from Supplementary Table 1 as covariates.

To identify significantly related altered genes or signal path-
ways with altered genes that coexist in bacterial species, tests of
associations were conducted between mutated status and the dif-
ference in the relative abundance of bacterial taxa in tumor and
non-tumor tissues of the 29 samples, which were fitted by non-
parametric linear regression models based on Siegel median esti-
mators, because the method could effectively avoid the influence
of outliers [36]. This regression was performed using the difference
values of each taxon in patient populations with or without gene
alterations. Furthermore, patients were divided according to the
presence or absence of alterations in genes participating in signal
transduction pathways defined in the KEGG Network database,
[37] and the same statistical test was performed. FDR-adjusted P-
values (Q-values) were calculated for each taxon [38]. Alteration
frequencies of less than 15% and less than five patients with altered
genes were filtered out in the enrichment analysis.
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2.7. Mutational signatures

Mutational signatures of 29 CRC tumor tissues were analyzed as
follows: each SNV was classified in a matrix of the 96 possible sub-
stitutions, based on the sequence context comprising the nucleo-
tides 5 and 3 to the position of the single nucleotide mutation
[39]. Mutational signatures were extracted using non-negative
matrix factorization analysis with the ‘Somatic Signatures’ library,

and plotted with the ‘ggplots’ library (http://ggplot2.org/) in R.
2.8. Hierarchical clustering analysis

To compare patterns of the relative abundances or P-values of
enriched taxa and altered genes obtained from the enrichment
analysis, hierarchical clustering was performed using the Euclidean
distance and Ward’s method in R.
3. Results

3.1. Comparison of microbiomes in tumor and non-tumor tissues

16S rRNA gene sequencing was performed on the tumor and
non-tumor tissue samples, to determine the relative abundance
of each taxon for each sample at the genus level. Subsequently, a
taxonomy enrichment analysis was performed to compare tumor
and non-tumor tissues (Fig. 1 and Supplementary Table 3). Twelve
genera, including Fusobacterium (P < 0.001), Peptostreptococcus
(P < 0.01), and Campylobacter (P < 0.05), were found to be positively
enriched in tumor tissue. In contrast, 11 genera, including Bac-
teroides (P < 0.001) and Clostridium (P < 0.05), were found to have
a lower relative presence in tumor tissues compared to non-tumor
tissues. Genera of phylum Firmicutes, including Fusobacterium,
were enriched in tumor tissue (Fig. 1B), and genera of phylum Bac-
teroidetes, including Bacteroides, were enriched in non-tumor tissue
(Fig. 1C). In addition, we performed statistical tests to study the
associations between the clinical information and each genus (Sup-
plementary Table 4). Treponema was found to be associated with
tumor mutation burden (TMB) with high abundance in tumor tis-
sue (P < 0.0003), but the association of others was not significant.
3.2. Gene alteration and tumor-enriched microbiome

We investigated how bacterial genera that were enriched and
depleted in the tumor tissue were associated with the presence
or absence of host gene alterations. After dividing patients accord-
ing to the presence or absence of host gene alterations, we con-
ducted enrichment analysis for each taxon in the patient groups.
The differences between relative abundances of bacterial genera
in tumor and non-tumor tissues were calculated and used for
enrichment analysis. Hierarchical clustering analysis of the taxa
and altered genes was performed based on the enrichment results
at the genus level (Fig. 2 and Supplementary Table 5). Fusobac-
terium was associated with the most number of altered genes
(11 genes with P < 0.001, Q < 0.01), including ATM (P < 0.001,
Q < 0.001) and PIK3CA (P < 0.001, Q < 0.001). Streptococcus showed
the most significant association with alteration in ATM (P < 0.0001,
Q < 0.0001), Treponema was significantly associated with alter-
ations in SPEN (P < 0.001, Q < 0.001) and IGF2R (P < 0.001,
Q < 0.001), and Peptostreptococcuswas significantly associated with
alterations in MEN1 (P < 0.001, Q < 0.001) and AKT1 (P < 0.001,
Q < 0.001), Campylobacter was associated with alterations in
TNK2 (P < 0.001, Q < 0.001) and GATA2 (P < 0.001, Q < 0.001),
and Selenomonas was associated with alterations in MEN1
(P < 0.001, Q < 0.001) and PIK3CD (P < 0.001, Q < 0.01).

https://www.r-project.org
https://www.r-project.org
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Fig. 1. Differences between tumor and non-tumor-enriched taxa. (A) Heatmap shows difference between the relative abundance of each genus in tumor and non-tumor
tissues. When the relative abundance in tumors is greater or lesser than in non-tumor samples, the cells are shown in red or blue, respectively. Genera positively enriched in
tumor tissue and non-tumor tissue (P < 0.05, Wilcoxon rank sum test, one-sided) were extracted. The averages of the relative abundances are shown as a bar chart in the right
of the figure. The green bars indicate the abundance in tumor tissue, and the rig green bars indicate the abundance in non-tumor tissue. The p-values are also indicated as
circles in the chart. Distributions for the taxa are shown in (A) enriched in tumor tissue (Fusobacterium(g) – Enterococcus(g)), and (B) enriched in non-tumor tissue
(Bacteroides(g) – Prevotella(g)). The same are shown in (C) as a pie chart. Outer circle indicates phylum level and inner circle indicates class level distributions. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3.3. Signal transduction pathways and tumor-enriched microbiome

To study the relationship between the host signal transduction
system abnormalities and symbiotic bacteria that are positively
enriched in the tumor tissue, enrichment analysis was performed
after dividing the patients into groups based on the presence of
at least one gene alteration, such as SNVs, indels, CNVs, or translo-
cations, in a set of genes involved in a signaling pathway defined in
the KEGG Network database. The differences in relative abun-
dances of bacterial genera between tumor and non-tumor tissues
in the patients divided in the above way were then used for enrich-
ment analysis. As a result, some genera were found to be positively
3333
enriched in patients with alterations in genes involved in specific
signal transduction pathways (Fig. 3 and Supplementary Table 6).
Campylobacter and Selenomonas were associated with gene alter-
ations in the PI3K signaling (virus) (nt06114) (P < 0.001,
Q < 0.01) and complement activation (virus) (nt06136)
(P < 0.001, Q < 0.01) signal transduction pathways. Fusobacterium
and Streptococcus were associated with gene alterations in the cell
cycle systems (nt06230: cell cycle G1/S and nt06130: cell cycle
(virus)) (P < 0.001, Q < 0.001). Fusobacterium was also significantly
associated with other signaling pathways, including NOTCH signal-
ing (nt06216) (P < 0.001, Q < 0.001) and AHR � cell cycle regulation
(nt06319) (P < 0.001, Q < 0.01). Peptostreptococcuswas significantly



Fig. 2. Enrichment analysis of taxonomy with host gene alterations. Heatmap shows P-values of enrichment analysis between genus-level taxonomy and gene alterations. For
the taxa found in the enrichment analysis comparing tumor and non-tumor samples, further enrichment analysis for the presence or absence of gene alterations, including
nonsynonymous SNVs, Indels, CNVs, and translocations, was performed in patients. Alteration frequencies of > 15% and > 5 patients with altered genes were filtered out, and
the hierarchical clustering was then performed. The heatmap is colored according to significance (negative log P-value) of the enrichment, where yellow indicates a higher
degree of enrichment. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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associated with TNF signaling (virus) (nt06123) (P < 0.001,
Q < 0.001) and Ruminococcus was associated with apoptosis
(nt06231) (P < 0.001, Q < 0.001).

3.4. Mutational signatures of host genomes with presence or absence
of Campylobacter

Different mutational processes generate different combinations
of mutation types, termed ‘‘Mutational Signatures” [40,41]. If the
host DNA damage is caused by a bacterial infection, it may leave
a mutational signature. Campylobacter has recently been shown
to produce cytolethal distending toxins that cause DNA double-
strand breaks in the host DNA [18]. We performed mutational sig-
nature analysis by classifying patients into two groups, in which
the relative abundance of Campylobacter was higher or lower in
tumor tissues than in non-tumor tissues. As a result, signatures
1, 3, 6, and 22 were detected. Signature 1 is associated with the
age of cancer diagnosis, Signature 3 is a mutational signature asso-
ciated with the failure of DNA double-strand break repair by
homologous recombination, Signature 6 is associated with defects
in DNAmismatch repair, and Signature 22 is related to cancer sam-
ples exposed to aristolochic acid in the COSMIC database [40,41].
We found that the Campylobacter-high group had a much higher
percentage of Signature 3 than the Campylobacter-low group
(Fig. 4). These findings indicate the possibility of gene mutations
by a DNA lesion toxin synthesized by Campylobacter.

4. Discussion

In this study, we report the relationship between host cancer
cell genetic abnormalities and the composition of the microbiome
present in the tumor tissue in 29 cases of CRC, based on paired data
analysis of the cancer genome and microbiome. We made three
main observations in this analysis. First observation was that 12
genera, including Fusobacterium, Peptostreptococcus, and Campy-
lobacter, were found to be positively enriched in the tumor tissue,
while 11 genera, including Bacteroides and Clostridium, were found
to be depleted in the tumor tissue. Fusobacterium and Bacteroides
have already been reported to be positive markers and enriched
in CRC gut microbiome [42]. Our results also showed that the
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relative abundance of both these genera was high. Interestingly,
Fusobacterium was enriched in tumor tissue, whereas Bacteroides
were enriched in non-tumor tissue. This suggests that different
mechanisms of invasion into tumor tissue may be involved, and
that Fusobacterium was more strongly associated with the tumors
in this study. In addition, Zeller et al. reported that Fusobacterium
and Peptostreptococcuswere biomarkers of early-stage CRC as com-
pared with the healthy controls [43], and our findings suggested
that these two bacteria could also be used as biomarkers distin-
guishing tumor tissue from non-tumor tissue. Second observation
was that Fusobacterium was associated with alterations in genes
such as ATM and PIK3CA, and was also associated with gene alter-
ations in the cell cycle system. Third observation was that the
Campylobacter-high group had a much higher percentage of Signa-
ture 3 than the Campylobacter-low group, suggesting that the
Campylobacter-high group had undergone genetic alterations by a
DNA lesion toxin synthesized by Campylobacter.

Fusobacteria are gram-negative anaerobic bacilli with species-
specific reservoirs in the human mouth, gastrointestinal tract,
and elsewhere [44-50]. Previous reports have identified associa-
tions between composition of the gut microbiome and the risk of
CRC, and F. nucleatum has emerged as an important player in car-
cinogenesis in CRC. To date, numerous studies of multiple cohorts
of patients with CRC have found that F. nucleatum DNA and RNA
sequences were more abundant in tumor specimens than in non-
tumor specimens [44]. Evidence suggests that F. nucleatum may
contribute to disease progression and is associated with specific
molecular features. Mima et al. reported that a high prevalence
of F. nucleatum was associated with poor differentiation, advanced
disease stage, and cancer-specific survival [45], suggesting a speci-
fic colorectal carcinogenic effect of F. nucleatum. Ito et al. reported
that a high prevalence of F. nucleatum was associated with MLH1
methylation, CpG island methylator phenotype (CIMP), and
microsatellite instability-high (MSI-H) in CRC [51], suggesting that
F. nucleatum is associated with specific molecular features in CRC.

ATM encoded by this gene belongs to the PI3/PI4-kinase family.
ATM is an important cell cycle checkpoint kinase, which regulates
a wide variety of downstream proteins, including tumor suppres-
sor proteins p53 and BRCA1, checkpoint kinase CHK2, checkpoint
proteins RAD17 and RAD9, and DNA repair protein NBS1. ATM



Fig. 3. Enrichment analysis of associations of taxa with alterations in genes involved in signal transduction pathways. Heatmap shows P-values for enrichment analysis of
genus-level taxonomy and signal transduction pathways. For the taxa found in the enrichment analysis of comparison of tumor and non-tumor samples, further enrichment
analysis for the presence or absence of gene alterations in signal transduction pathways defined in the KEGG Network was performed. The pathways with fewer than two
genes and fewer than five patients with altered genes were filtered out, and hierarchical clustering was then performed. The heatmap is colored according to significance
(negative log P-value) of the enrichment, where yellow indicates a higher degree of enrichment. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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and ATR are closely related, and control cell cycle checkpoint sig-
naling pathways, which are required for cell response to DNA dam-
age and genome stability. In this study, we found that
Fusobacterium was significantly associated with genetic alterations
in ATM and PIK3CA in CRC. Lee et al. evaluated the relationship
between F. nucleatum and genetic alterations in the tumor tissue
of CRC, and reported that the alteration rate of ATM was higher
in F. nucleatum-high patients [52,53]. Moreover, we found that
Fusobacterium was associated with gene alterations in the CRC cell
cycle system in CRC. The genes involved in cell cycle system that
were associated with Fusobacterium were ‘‘ATM”, ‘‘ATR”, ‘‘CCNE100,
”EP30000, ‘‘TP5300, ”RB100, ‘‘CDKN1B”, and ‘‘CDKN2B”. Taken together,
these findings indicate that F. nucleatummay lead to tumorigenesis
by causing genomic instability, which results from abnormalities
in the cell cycle system. However, to the best of our knowledge,
there are no reports regarding the association between F. nuclea-
tum and PIK3CA alterations in CRC. We believe that further analysis
of the relationship between the microbiome and tumorigenesis of
CRC is necessary.

Various intestinal microbiomes have been associated with the
development of CRC; however, the direct role of bacteria in onco-
genic mutations has not been demonstrated so far. Mutational
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signatures are characteristic combinations of mutation types aris-
ing from specific mutagenic processes. >50 mutational signatures
have been defined using mutational signature analysis that
includes the bases immediately 50 and 30 to a single-base substitu-
tion [19]. Although the underlying causes of some mutational sig-
natures are known (e.g., tobacco smoke, UV light, and DNA repair
deficiency), those of many mutational signatures are still
unknown. To date, there is no evidence that specific bacteria are
associated with specific mutational signatures, such as smoking
and COSMIC mutational signature 4. However, interestingly,
Pleguezuelos-Manzano et al. demonstrated that the distinct muta-
tional signature in CRC was caused by genotoxic pks + E. coli, imply-
ing that the underlying mutational process results directly from
past exposure to bacteria carrying the colibactin-producing pks
pathogenicity islands [54].

Campylobacter is widespread in developed countries, and
human infections can result in an asymptomatic carrier state
[55,56]. Interestingly, co-occurrence of Fusobacterium and Campy-
lobacter has been observed in patients with CRC, as has been an
increased prevalence of Escherichia and Campylobacter in tumor tis-
sue compared with adjacent non-tumor tissue [18]. He et al.
reported that C. jejuni promotes CRC through the genotoxic action



Fig. 4. Mutational signatures with Campylobacter infection. (A) Mutational spectra in Campylobacter-high and Campylobacter-low patients based on the differences of relative
abundances of Campylobacter in tumor and non-tumor tissues. Note that samples without Campylobacter were classified as low. (B) Mutational signature distributions of
Campylobacter-high and Campylobacter-low patients. Patients with hypermutation were removed from the mutational signature analysis to avoid bias for the number of gene
mutations.
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of cdtB, which has DNAse activity and causes DNA double-strand
breaks. Moreover, pharmacological inhibition of mammalian tar-
gets of rapamycin signaling attenuates C. jejuni-induced carcino-
genesis [18]. In this study, we found that Campylobacter was
associated with genetic alterations such as TSC2, AR, HRAS, FGFR3,
and AKT1, and patients with a high abundance of Campylobacter
showed Signature 3. Signature 3 is associated with the failure of
DNA double-strand breaks by homologous recombination. We
demonstrated that the Campylobacter-high group was associated
with a much higher percentage of Signature 3, suggesting that
Campylobacter may promote CRC by causing DNA double-strand
breaks.

This study has several limitations. Firstly, it included a small
number of patients. Secondly, we performed NGS to detect genetic
alterations in tumor tissue using FFPE samples, while 16S rRNA
gene sequencing was performed using fresh frozen samples. The
difference in sampling sites between NGS and 16S rRNA can affect
3336
the results because of tumor heterogeneity. Thirdly, although we
demonstrated the association between intra-tumor microbiomes
and genetic alterations in this analysis, it is unclear whether the
changes in the gut microbiome cause or result from sporadic
CRC. In the future, we need to uncover the specific mechanisms
involved in the modulation of the gut microbiome by integrated
large-scale prospective studies.
5. Conclusions

Some bacteria, including Fusobacterium, which is already known
to be enriched in CRC, were found to be enriched in symbiosis with
tumor tissue compared to non-tumor tissue. Furthermore, it was
shown that the microbiota often coexisting within tumor tissue
was enriched in the presence of an altered gene or an abnormal
signaling pathway in the host cells. These results indicate that



S. Okuda, Y. Shimada, Y. Tajima et al. Computational and Structural Biotechnology Journal 19 (2021) 3330–3338
CRC development may be partially caused by DNA damage or
abnormal signaling pathways, caused by substances released by
bacteria in the microbiota. Taken together, the identification of dis-
tinct gut microbiome patterns and their specific genetic alterations
might facilitate targeted interventions, such as modulation of the
microbiome in addition to anticancer agents and/or
immunotherapy.
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