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ABSTRACT
Background. Hepatocellular carcinoma (HCC) with high heterogeneity is one of the
most frequent malignant tumors throughout the world. However, there is no research
to establish a ferroptosis-related lncRNAs (FRlncRNAs) signature for the patients with
HCC. Therefore, this study was designed to establish a novel FRlncRNAs signature to
predict the survival of patients with HCC.
Method. The expression profiles of lncRNAs were acquired from The Cancer Genome
Atlas (TCGA) and Gene Expression Omnibus (GEO) database. FRlncRNAs co-
expressed with ferroptosis-related genes were utilized to establish a signature. Cox
regression was used to construct a novel three FRlncRNAs signature in the TCGA
cohort, which was verified in the GEO validation cohort.
Results. Three differently expressed FRlncRNAs significantly associated with prognosis
of HCC were identified, which composed a novel FRlncRNAs signature. According
to the FRlncRNAs signature, the patients with HCC could be divided into low- and
high-risk groups. Patients with HCC in the high-risk group displayed shorter overall
survival (OS) contrasted with those in the low-risk group (P < 0.001 in TCGA cohort
and P = 0.045 in GEO cohort). This signature could serve as a significantly independent
predictor in Cox regression (multivariate HR > 1, P < 0.001), which was verified to a
certain extent in the GEO cohort (univariate HR > 1, P < 0.05). Meanwhile, it was
also a useful tool in predicting survival among each stratum of gender, age, grade,
stage, and etiology,etc. This signature was connected with immune cell infiltration (i.e.,
Macrophage, Myeloid dendritic cell, and Neutrophil cell, etc.) and immune checkpoint
blockade targets (PD-1, CTLA-4, and TIM-3).
Conclusion. The three FRlncRNAs might be potential therapeutic targets for patients,
and their signature could be utilized for prognostic prediction in HCC.
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INTRODUCTION
Hepatocellular carcinoma (HCC), which is the second frequent cause of death in human
cancers throughout the world, is one of the most common malignant tumors (Llovet et
al., 2016). It was estimated that approximately 841,000 new cases of HCC are diagnosed
annually and approximately 781,631 patients would die of HCC in 2018 (Bray et al.,
2018). For early-stage patients, radiofrequency local ablation, partial hepatectomy and
liver transplantation are the major therapies and about 70% of patients will relapse within
five years after operation (European Association for the Study of the Liver, 2018). Immune
checkpoint inhibitors have been proven to be effective strategies for the treatment of
advanced HCC, but their effectiveness still need to be further improved (Yang et al., 2019).
Despite the advances in early detection, and drug development, the clinical outcomes of
advanced cases remain unsatisfactory. The 5-year survival rate of local HCC is 30.5%,
and that of distant metastasis was less than 5% (Oweira et al., 2017). To improve clinical
outcomes and reduce the burden of cases, it is urgent to identify novel effective molecular
markers and ameliorate prediction of HCC prognosis.

Ferroptosis is an iron-dependent modality of regulated cell death driven by the
malignant accumulation of lipid peroxidation (Dixon et al., 2012; Stockwell et al., 2017).
Recently, the induction of ferroptosis has been listed as a promising therapeutic strategy,
especially suitable for malignant tumors that respond to resistance in traditional treatments
(Hassannia, Vandenabeele & Vanden Berghe, 2019; Liang et al., 2019). A large number of
experimental studies had indicated that ferroptosis-related genes played a vital role in
HCC (Jennis et al., 2016; Louandre et al., 2015; Sun et al., 2016a; Sun et al., 2016b; Yuan et
al., 2016).

Long non-coding RNA (lncRNA) with a minimum length of about 200 nucleotides are
autonomous transcriptional RNA which does not encode proteins (Cech & Steitz, 2014).
LncRNAs have been proven to be abnormally expressed in multiple cancers, and aberrant
lncRNAs have been reported to serve as prognostic indicators in various cancers including
HCC (Ai et al., 2020;He et al., 2019; Li et al., 2019;Wang et al., 2018; Ye et al., 2019; Zeng et
al., 2020;Zhao, Liu & Yu, 2017).One recent study revealed that ferroptosis-related lncRNAs
signature was associated with the prognosis of patients with head and neck squamous cell
carcinoma (Tang et al., 2021). However, there is little research on ferroptosis-related
lncRNAs correlated with HCC patient prognosis. Therefore, this study aims to establish
a novel ferroptosis-related lncRNAs (FRlncRNAs) signature in predicting the prognosis
of patients with HCC, hoping to improve current diagnosis, treatment, follow-up and
prevention strategies of HCC.
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MATERIALS AND METHODS
Data source and clinical information
The RNA sequencing (RNA-seq) data together with relevant clinical data were accessed
from The Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/). An
overview of the clinical information and source file of the patients with HCC can be
found in Table 1 and Table S1. Notably, those patients with follow-up time greater
than one month were used for the study. Totally, 374 Hepatocellular carcinoma (HCC)
patients were available for further analysis. The GSE14520 dataset was acquired from GEO
database (http://www.ncbi.nlm.nih.gov/geo/), containing 488 patients with HCC. A total
of 259 ferroptosis-related genes (Marker: 111; Driver: 108; Suppressor: 69) were identified
from FerrDb Database (Zhou & Bao, 2020) (FerrDb, http://www.zhounan.org/ferrdb/;
Table S2). The TCGA dataset was utilized for training cohort while the GSE14520 dataset
was validation cohort.

LncRNAs and ferroptosis-related genes data processing
The ‘‘limma’’ package was employed to select differentially expressed ferroptosis-related
genes, which were visualized through the volcano and heatmaps. Then, we carried out
functional enrichment analysis (Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG)) to determine the major biological attributes. The ‘‘GOplot’’
package was utilized to visualize enrichment terms.

To calculate the correlation between candidate ferroptosis-related lncRNAs
(FRlncRNAs) and differentially expressed ferroptosis-related genes utilizing Pearson
correlation. The coefficient P < 0.001 and |R2|> 0.3 were regarded to be FRlncRNAs.
Finally, Cytoscape software was utilized to draw co-expression network of prognostic
FRlncRNAs and ferroptosis-related genes.

Construction of prognostic FRlncRNAs signature
First, the FRlncRNAs associated with prognosis were assessed using univariate Cox
regression in training cohort. Then, FRlncRNAs with P ≤ 0.05 were included into
multivariate Cox regression for the construction of FRlncRNAs signature. The formula
utilized was as follows: risk score of FRlncRNAs signature =

∑
iCoefficient (FRlncRNAsi)∗

Expression(FRlncRNAsi). To stratify patients into low- or high-risk groups, the best cut-off
of the FRlncRNAs signature was identified applying receiver operating characteristic (ROC)
curve at 1 year for overall survival (OS). Survival analysis between the two risk groups were
assessed by Kaplan–Meier (KM) and compared using log-rank statistical methods.

Nomogram was utilized to predict 1, 3 years, and 5 years survival for the patients
with HCC. ROC curves and Calibration curves were utilized to explore the accuracy of
model based on training cohort. Then, we adjusted other clinical features in independent
prognostic analysis in order to confirm whether the FRlncRNAs signature was an
independent indicator to predict the prognosis of patient with HCC.

Validation of the FRlncRNAs signature
The GEO cohort was enrolled to verify the robustness of model established from training
cohort. The FRlncRNAs signature was calculated based on validation cohort. Then, survival
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Table 1 Clinical characteristics of the patients with HCC from the TCGA cohort in this study.

Variables Number of patients Percent (%)

Age
<65 224 59.42
≥65 152 40.32
NA 1 0.27
Gender
Male 255 67.64
Female 122 32.36
Grade
G1 55 14.59
G2 180 47.75
G3 124 32.89
G4 13 3.45
NA 5 1.33
Stage
stage I 175 46.42
stage II 88 23.34
stage III 86 22.81
stage IV 6 1.59
NA 22 5.84
Etiology
Alcohol Liver Disease 118 31.30
NAFLD 12 3.18
HBV/HCV 118 31.30
Hemochromatosis 5 1.33
NA 124 32.89
Radiotherapy
YES 8 2.12
NO 338 89.66
NA 31 8.22
Family history
YES 114 30.24
NO 212 56.23
NA 51 13.53

Notes.
NAFLD, nonalcoholic fatty liver disease; HBV, hepatitis B virus; HCV, hepatitis C virus.

analysis and Cox regression were utilized to evaluate whether the FRlncRNAs signature
was significantly connected with OS in validation cohort. The ROC curves were established
to assess whether the novel model could accurately predict patient survival.

Gene set enrichment analysis
Gene set enrichment analysis (GSEA, http://www.broadinstitute.org/gsea/index.jsp) was
utilized to investigate functional phenotypes differences between the two risk groups (high-
and low-risk groups). In this research, we carried out functional enrichment of FRlncRNAs
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signature, and visualized the pathway closely related to immune and tumorigenesis
development. The reference gene sets contained ‘‘c7.all.v7.2.symbols.gmt [Immunologic
signatures] and h.all.v7.2.symbols.gmt [cancer hallmarks]’’.

Immune correlation analysis
The CIBERSORT (Charoentong et al., 2017; Newman et al., 2015), EPIC (Racle et al.,
2017), ESTIMATE (Yoshihara et al., 2013), MCP counter (Shi et al., 2020), QUANTISEQ
(Finotello et al., 2019), TIMER (Li et al., 2017), and single-sample gene set enrichment
analysis (ssGSEA) (Yi et al., 2020) algorithms were used to infer the relative content of
tumor-infiltrating immune cells (TIICs) between two risk group based on FRlncRNAs
signature. The heatmap was utilized to visualize the differences of TIICs abundance under
different algorithms. Besides, the correlation analysis between the abundance of TIICs and
FRlncRNAs signature was utilized to reveal the potential role of FRlncRNAs signature on
the immunologic features based on TIMER results.

The expression of immune checkpoint gene might be related to treatment responses
of immune checkpoint inhibitors (ICIs) (Goodman, Patel & Kurzrock, 2017). Thus, we
investigated six ICIs: programmed death 1 (PD-1) and its ligand 1 (PD-L1), ligand 2
(PD-L2), indoleamine 2,3-dioxygenase 1 (IDO1), cytotoxic T-lymphocyte antigen 4
(CTLA-4), and T cell immunoglobulin and mucin domain-containing protein-3 (TIM-3)
in HCC (Kim et al., 2017;Nishino et al., 2017; Zhai et al., 2018). We analyzed the Spearman
correlation between the ICIs and the signature, which aimed to investigate the potential
role of FRlncRNAs signature in immune checkpoint blockade therapy.

Statistical analysis
All the statistical analyses were conducted using R language (version 4.0). KM analysis
with log-rank test from ‘‘survival’’ package was applied to compare the survival difference
among two risk groups. In order to evaluate the prognostic value of the novel FRlncRNAs
signature, univariate and multivariate analyses were conducted through Cox proportional
hazards regression model. Stratification analysis was implemented based on age (≥65 and
<65 years), gender (male and female), stage (stage 1–2 and stage 3–4), grade (grade 1–2 and
grade 3–4), etiology (Alcoholic liver disease and nonalcoholic fatty liver disease; HBV/HCV
and non-HBV/HCV), Radiotherapy (receive radiotherapy and no receive radiotherapy),
and family history (have family history of cancer and no family history). GSEA was applied
to differentiate between two risk groups of functional annotations. Statistical tests were
bilateral, with P value ≤ 0.05 indicated statistically significant differences.

RESULTS
Differentially expressed ferroptosis-related genes
After extracting the expression values of 259 ferroptosis-related genes in the patient with
HCC, 69 up-regulated genes and 13 down-regulated genes were authenticated (FDR
<0.05, log2FC >1; Table S3). The differentially expressed ferroptosis-related genes were
visualized by volcano and heatmaps (Figs. 1A–1C). The GO enrichment revealed that
these differentially expressed ferroptosis-related genes mainly participated in cellular
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Figure 1 The differentially expressed ferroptosis-related genes. (A) The Volcano plot of the
differentially expressed ferroptosis-related genes. The red dots indicated up-regulated and blue for
down-regulated. The top 20 gene symbols with high variation were displayed in the plot. (B) The
heatmap of 20 ferroptosis-related genes with high variation in training cohort. (C) The heatmap of
20 ferroptosis-related genes with high variation (except for TUBE1, and FANCD2) between tumor
and normal samples in validation cohort. (D) The GO circle plot of functional enrichment. The red
dots indicated up-regulation, while the blue indicated down-regulation. (E) The KEGG circle plot of
enrichment analysis. The Z-score was directly proportional to the level of enrichment.

Full-size DOI: 10.7717/peerj.11627/fig-1

response to chemical stress, response to oxidative stress, and carboxylic acid transport
among others (Fig. 1D). The major KEGG pathways included Ferroptosis, VEGF signaling
pathway, Arachidonic acid metabolism and some cancer-related signaling pathways
(Fig. 1E; Table S4).

Identification of prognostic FRlncRNAs and an FRlncRNAs signature
A total of 1,184 FRlncRNAs were identified in the training cohort through the correlation
analysis between differentially expressed ferroptosis-related genes and lncRNAs (|R2|>0.3
and P < 0.001; Table S5). Among them, 32 FRlncRNAs co-existed in training cohort and
validation cohort were used for subsequent model construction and validation. The batch
effects from different cohorts were corrected by combat function in ‘‘sva’’ package. Cox
regression were applied to screen prognostic FRlncRNAs. In accordance with univariate
cox results, eight FRlncRNAs had potential prognostic value for the patients with HCC
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Full-size DOI: 10.7717/peerj.11627/fig-2

(P < 0.05, Fig. 2A, Table S6). As shown in Table S6, eight FRlncRNAs (RHPN1 −AS1,
SNHG17, DGCR11, MAPKAPK5 −AS1, PVT1, PART1, LINC00339 and HCG18) were
discovered to be harmful prognostic indicators.

Subsequently, multivariate Cox regression found that three FRlncRNAs were associated
with prognostic for the patients withHCC (Table S6). The three FRlncRNAswere utilized to
establish a FRlncRNAs signature. The risk score was estimated using the following formula:
risk score of FRlncRNAs signature = (0.89773*RHPN1-AS1) + (0.48558* MAPKAPK5-
AS1) + (0.55674*PART1). The optimal cut-off point of risk score was considered to
be 1.038 through ROC curve. Based on this cut-off point, the patients with HCC were
classified into high- or low-risk group (Fig. 2B). The relationship between the three
prognostic FRlncRNAs and co-expressed mRNA was shown in Fig. 2C and Fig. 2D. The
risk score was significantly relevant toOS of patients, whereOS in high-risk group possessed
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Figure 3 The FRlncRNAs signature based on training cohort. (A) Kaplan–Meier (KM) curve for overall
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Full-size DOI: 10.7717/peerj.11627/fig-3

shorter than those in low-risk group (P < 0.001, Fig. 3A). Concurrently, the AUC of the
FRlncRNAs signature was 0.719, showing great performance in contrast to other traditional
clinical pathological features in predicting the prognosis of patients with HCC (Fig. 3B).
The survival status plot showed that risk score of patients was inversely proportional to
their survival rate. Besides, the risk heatmap demonstrated that the expression of three
FRlncRNAs had positive correlation with the risk levels (Fig. 3C). The areas under the ROC
(AUC) values corresponding to 1, 3, and 5 years were 0.711, 0.649 and 0.632, respectively
(Fig. 3D).
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Table 2 Univariate andmultivariate independent prognostic analysis of FRlncRNAs signature in pre-
dicting patient survival.

Univariate Coxmodel Multivariate Coxmodel

Variables HR(95% Cl) p value HR(95% Cl) p value

Training cohort
Age 1.014(0.997–1.032) 0.104 1.012(0.994–1.031) 0.181
Gender 0.701(0.457–1.075) 0.103 0.912(0.555–1.500) 0.718
Grade 1.035(0.778–1.376) 0.815 0.971(0.707–1.333) 0.856
Stage 1.853(1.464–2.345) <0.001 1.807(1.412–2.313) <0.001
Etiology 1.135(0.952–1.352) 0.158 1.041(0.856–1.265) 0.688
Radiotherapy 1.147(0.362–3.636) 0.815 1.060(0.327–3.440) 0.922
Family history 1.117(0.728–1.713) 0.613 0.960(0.602–1.531) 0.863
Risk Score 1.732(1.324–2.267) <0.001 1.721(1.280–2.314) <0.001
Validation cohort
Gender 1.689(0.816–3.497) 0.158 1.381(0.659–2.891) 0.392
Age 0.991(0.972–1.010) 0.343 1.000(0.980–1.021) 0.964
TNM stage 2.340(1.771–3.091) <0.001 1.763(1.268–2.451) <0.001
CLIP stage 1.921(1.554–2.375) <0.001 1.493(1.155–1.930) 0.002
Risk Score 1.410(1.054–1.887) 0.021 1.049(0.764–1.439) 0.769

The FRlncRNAs signature was an independent prognostic indicator
Univariate independent prognostic analysis revealed that risk score was a prognostic factor
and significantly associated with worse survival (HR = 1.732, 95% CI [1.324–2.267]; P
< 0.001) (Table 2, Fig. 4A). Moreover, after adjusting other available clinical parameters
such as age, gender, stage, grade, etiology, radiotherapy, and family history, our signature
still maintained an independent prognostic factor in multivariate independent analysis
(HR = 1.721, 95% CI [1.280–2.314]; P < 0.001) (Table 2, Fig. 4B). As indicated in the
nomogram, three-FRlncRNA-based signature was the largest contribution to OS of each
period in HCC (Fig. 4C). The calibration displayed that the FRlncRNAs signature possessed
high accuracy (Figs. 4D–4F).

Stratification analyses
In the training cohort, stratification analysis was conducted based on the clinicopathological
features of HCC (e.g., gender, age, grade, stage, etiology, radiotherapy, and family history).
As a result, the FRlncRNAs signature was still closely associated with worse survival in
male, older (≥65 years) or younger (<65 years), advanced grade (Grade 3–4) or early
grade (Grade 1–2) and advanced stage (Stage 3–4) or early stage (Stage 1–2) patients (all
P < 0.05; Figs. 5A–5F), which indicated that FRlncRNAs signature based on risk grouping
could serve as a useful tool for predicting HCC survival among each stratum of gender, age,
grade, and stage. Meanwhile, this signature can also be utilized as a potential prognostic
tool for HCC patients with alcoholic or non-alcoholic liver disease, no family history of
cancer, HBV-positive, HBV- and HCV- negative, and no radiotherapy (Figs. 5G–5M).
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Figure 4 The FRlncRNAs signature was an independent prognostic indicator and possessed potential
clinical value in the training cohort.Univariate (A) and multivariate (B) Cox regression analysis of the
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Figure 5 The survival curves of the FRlncRNAs signature stratified by age, grade, stage, gender, etiol-
ogy, radiotherapy, and family history. (A) ≥ 65 years, (B) <65 years, (C) grade 1–2, (D) grade 3–4, (E)
stage 1–2, (F) stage 3–4, (G) Alcoholic liver disease, (H) NAFLD, (I) no family history, (J) male, (K) HBV
positive, (L) HBV and HCV negative, (M) no radiotherapy patients.

Full-size DOI: 10.7717/peerj.11627/fig-5

Validation of the FRlncRNAs signature
In validation cohort, the risk score of FRlncRNAs signature was estimated refer to the
previous formula. The cut-off point of the risk score of the validation cohort was consistent
with that of the training cohort (Cutoff = 1.038). The signature was also statistically
associated with OS of patients withHCC (P = 4.504e−02, Fig. 6A). Univariate independent
prognostic analysis revealed that FRlncRNAs signature acted as an independent prognostic
factor (HR of risk score= 1.410, 95%CI [1.054–1.887], P < 0.05, Table 2, Fig. 6B). Notably,
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Figure 6 The verification of prognostic FRlncRNAs signature in validation cohort. (A) The KM curves
of validation cohort revealed that the high-risk group had statistical differences on OS period compared
with the low-risk group (P < 0.05). Univariate (B) and multivariate (C) COX regression for the FRlncR-
NAs signature established by training cohort. (D) AUC of ROC curves validated the predicted perfor-
mance of signature in the validation cohort.

Full-size DOI: 10.7717/peerj.11627/fig-6

after controlling gender, age, TNM stage, and CLIP stage, FRlncRNAs signature was no
longer a prognostic factor in multivariate analysis (HR = 1.049, 95% CI [0.764–1.439],
P > 0.05), which indicated that more independent cohorts needed to be included for
validation (Table 2, Fig. 6C). The AUC values were more than 0.65 at 1 year, 2 years and
3 years, which showed that the FRlncRNAs signature established from training cohort had
powerful accuracy and robustness (Fig. 6D).

The FRlncRNAs signature mediated DNA repair, glycolysis, MYC
targets, P53 pathway and PI3K AKT mTOR signaling
GSEA was utilized to explore the potential biological mechanisms of the FRlncRNAs
signature involved in HCC progression. The results of cancer hallmarks indicated that
DNA repair, glycolysis, MYC targets, P53 pathway and PI3K AKT mTOR signaling were

Liang et al. (2021), PeerJ, DOI 10.7717/peerj.11627 12/25

https://peerj.com
https://doi.org/10.7717/peerj.11627/fig-6
http://dx.doi.org/10.7717/peerj.11627


−0.50

−0.25

0.00

0.25

0.50

En
ric

hm
en

t S
co

re

HALLMARK_ADIPOGENESIS_low
HALLMARK_BILE_ACID_METABOLISM_low
HALLMARK_COAGULATION_low

HALLMARK_DNA_REPAIR_high

HALLMARK_FATTY_ACID_METABOLISM_low

HALLMARK_GLYCOLYSIS_high
HALLMARK_MYC_TARGETS_V1_high
HALLMARK_P53_PATHWAY_high
HALLMARK_PI3K_AKT_MTOR_SIGNALING_highHALLMARK_XENOBIOTIC_METABOLISM_low

High risk<−−−−−−−−−−−>Low risk

0.0

0.2

0.4

0.6

En
ric

hm
en

t S
co

re

GSE24574_BCL6_HIGH_VS_LOW_TFH_CD4_TCELL_DN_high
GSE3982_CENT_MEMORY_CD4_TCELL_VS_TH2_DN_high
GSE3982_MEMORY_CD4_TCELL_VS_TH2_DN_high
GSE8921_UNSTIM_0H_VS_TLR1_2_STIM_MONOCYTE_12H_UP_high
GSE8921_UNSTIM_VS_TLR1_2_STIM_MONOCYTE_3H_UP_high

High risk<−−−−−−−−−−−>Low risk

A B
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activated by the high-risk group of the FRlncRNAs signature. While adipogenesis, bile acid
metabolism, coagulation, fatty acid metabolism and xenobiotic metabolism were activated
by the low-risk group (Fig. 7A). Moreover, the signature also regulated many immunologic
features within immune system, such as BCL6 high versus low TFH CD4 T cell down, cent
memory CD4 T cell versus TH2 down etc., which indicated that the FRlncRNAs signature
was implicated in immunity-related regulation (Fig. 7B).

Correlation of FRlncRNAs signature with TICIs and immune
checkpoint blockade (ICB) molecule
Many immunologic features were found to be regulated by FRlncRNAs signature according
to the above results. Therefore, the signature was further explored whether it was associated
with TIICs based on TIMER results. The results indicated that this signature was most
significantly positive correlation with immune infiltration of Neutrophil cells (COR =
0.312, P < 0.001), Myeloid cells (COR = 0.268, P < 0.001), CD4+ T cells (COR = 0.203,
P < 0.001), B cells (COR = 0.130, P = 0.016), and Macrophage cells (COR = 0.124, P
= 0.021; Figs. 8A–8F). The heatmap of immune responses based on CIBERSORT, EPIC,
ESTIMATE, MCP counter, QUANTISEQ, TIMER and ssGSEA algorithms was displayed
in Fig. 9. These findings powerfully indicated that this FRlncRNAs signature was related to
immune cell infiltration in HCC.

Tumor immunotherapy utilizing ICB had gradually become a promising strategy for
therapy of advanced HCC (Sangro et al., 2021; Wing-Sum Cheu & Chak-Lui Wong, 2021;
Zongyi & Xiaowu, 2020). In training cohort, we carried out the association between the
FRlncRNAs signature and six common ICB therapy-related targets (PD-1, PD-L1, PD-L2,
TIM-3, IDO1, and CTLA-4) to explore the potential role of FRlncRNAs signature in the
immunotherapy of ICB in the patients with HCC. The results showed that the FRlncRNAs
signature was positively related to PD −1 (R = 0.17, P = 0.0019), CTLA-4 (R = 0.19,
P = <0.001), and TIM-3 (R = 0.16, P < 0.001; except for IDO1, PD-L1, and PD-L2),
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Figure 8 The relationship between FRlncRNAs signature and TIICs, ICBmolecules based on TIMER
results. (A) Spearman correlation between the signature and B cell; (B) Spearman correlation between the
signature and Macrophage cell. (C) Spearman correlation between the signature and Myeloid dendritic
cell. (D) Spearman correlation between the signature and Neutrophil cell. (E) Spearman correlation be-
tween the signature and CD4+ T cell. (F) Spearman correlation between the signature and CD8+ T cell.
(G–I) Significant positive association between our FRlncRNAs signature and ICB receptors PD-1 (R =
0.17; P= 0.0019), CTLA-4 (R= 0.19; P <0.001), and TIM-3 (R= 0.16; P < 0.001). (J–L) The comparison
of the expression levels of PD-1, CTLA-4, and TIM-3 between high-risk and low- groups.
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revealing that the FRlncRNAs signature might play vital roles in assessment of response to
ICB immunotherapy in the patients with HCC (Figs. 8G–8I and Fig. S1). Meanwhile, the
expression levels of PD-1, CTLA-4 and TIM-3 were significantly higher in high-risk group
contrasted with those in low- group (Figs. 8J–8L).

DISCUSSION
Due to the unique molecular features such as genomic and genetic diversities, HCC was
considered as a highly heterogeneous malignant tumor (Cancer Genome Atlas Research
Network. Electronic address wbe, and Cancer Genome Atlas Research N, 2017; (Schulze,
Nault & Villanueva, 2016). Studies found that lncRNAs play important roles in the
prognosis of HCC, which could become potential and effective molecular targets in the
treatment of HCC (DiStefano, 2017;Wei et al., 2019). It could be seen from previous studies
that lncRNAs participate inmany biological processes such as immune response, autophagy,
inflammation, and metabolism, etc (Carpenter & Fitzgerald, 2018; Frankel, Lubas & Lund,
2017; Majidinia & Yousefi, 2016; Mathy & Chen, 2017). At present, emerging studies
revealed that some lncRNAs could play significant roles in regulating occurrence and
development of disease by promoting ferroptosis (Lu, Xu & Lu, 2020; Wang et al., 2021b;
Yang et al., 2020b). That indicated that ferroptosis-related lncRNAs might serve as novel
disease molecular biomarkers and therapeutic targets for the treatment of cancer. However,
the possible role of the ferroptosis-related lncRNA signature as a potentially useful tactics
of treatment have not been reported in HCC. Therefore, we developed a FRlncRNAs
signature with great prognosis and predictive value. Meanwhile, we also explored its effect
in the response to ICB therapy for the patients with HCC.

Currently, the ferroptosis-related lncRNA signature has only been explored in head
and neck squamous cell carcinoma (Tang et al., 2021). However, that study had several
limitations, such as: small clinical sample sizes and lack of independent external validation
datasets, which might lead to unreliable results. Furthermore, other confounding factors
like comorbidities or alcohol consumption may also affect the robustness and accuracy
of signature, which contained hemochromatosis, alcoholic liver disease, and nonalcoholic
fatty liver disease, etc (Mao et al., 2020). Considering the above problems, the training
cohort and independent validation cohort were utilized to develop a novel FRlncRNAs
signature, which could predict the survival of patients with HCC. The results showed
that the FRlncRNAs signature mainly involved DNA repair, glycolysis, MYC targets, and
tumor-related signaling pathways. Those patients in the high-risk group were associated
with worse OS. In addition, this FRlncRNAs signature was credible for predicting the
prognosis of patients with HCC, with a high AUC value (average AUC >0.65), and might
serve as an indicator tomeasure the response of patients with HCC to ICB immunotherapy.

With the development of immune checkpoint inhibitors, ICB immunotherapy, as
emerging strategies, has revealed treatment effects in HCC (Llovet et al., 2018; Pitt et al.,
2016). Currently, immunotherapy has provided a novel promising treatment strategy for
HCC (Sim & Knox, 2018). Unfortunately, more than two-third of patients did not respond
to ICB treatment (Mushtaq et al., 2018). A new research demonstrated that ferroptosis
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combined with ICIs could synergistically enhance anti-tumor activity, even in ICI-
resistant tumors (Tang et al., 2020). Thus, a novel FRlncRNAs signature was established to
investigate the relationship between ICIs and ferroptosis, and predict ICB immunotherapy
responses. In our study, the FRncRNAs signature was discovered to be associated with
ICIs (i.e., PD-1, CTLA-4, and TIM-3), which indicated that the FRlncRNAs signature
have potential to be used to measure the response to ICB therapy. At the same time, the
expression levels of these ICIs in high-risk group were higher compared with low- group.
That indicated that the FRlncRNAs signature could be applied to predict the expression
level of ICIs and have the potential to guide ICB immunotherapy strategies. Moreover, the
FRlncRNAs signature was connected with TICIs (B cell, Macrophage, Myeloid dendritic
cell, Neutrophil, and CD4+ T cell) in HCC, which implies that this signature may play
an important role in immune infiltration. Notably, these findings were consistent with
previous studies manifesting that several lncRNAs served as regulators in tumor immunity,
for instance immune cell infiltration and antigen release (Carpenter & Fitzgerald, 2018;
Denaro, Merlano & Lo Nigro, 2019).

Previous studies have revealed that lncRNAs participated in different biological processes
such as immune regulation (Denaro, Merlano & Lo Nigro, 2019), DNA repair and cell
cycle (Hu et al., 2018; Majidinia & Yousefi, 2016), and metabolism (Denaro, Merlano &
Lo Nigro, 2019), etc. Among this FRlncRNAs signature (RHPN1-AS1, MAPKAPK5-AS1,
and PART1) of our study, RHPN1-AS1 could facilitate cell proliferation, and invasion via
activating PI3K/AKT/mTOR pathway in HCC (Song et al., 2020). Another study revealed
that RHPN1-AS1 promoted the progression of HCC through regulating miR-596/IGF2BP2
axis (Fen et al., 2020). MAPKAPK5-AS1/PLAGL2/HIF-1 α signaling pathway was found to
drive the progression of HCC and MAPKAPK5-AS1 might be a novel therapeutic target
(Wang et al., 2021a). Furthermore, MAPKAPK5-AS1 has been discovered to promote
the progression of colorectal cancer and thyroid cancer (Ji et al., 2019; Yang et al., 2020a;
Zhou et al., 2020b). PART1 was involved in cell migration and invasion, and it could
facilitate progression of HCC (Pu et al., 2020; Zhou et al., 2020a). PART1 also played a
vital role in the occurrence and development of other cancers. Downregulated PART1
could suppress proliferation and accelerate apoptosis in bladder cancer (Hu et al., 2019).
PART1 was regarded as a novel target in the treatment of prostate cancer (Sun et al.,
2018). A study found that PART1 could promote cell proliferation in non-small-cell lung
cancer cells by targeting miR-17-5p (Chen et al., 2021). Above evidences revealed that
these three FRlncRNAs played important roles in development and prognosis of HCC.
However, there is no research on their role in the prognosis of HCC via ferroptosis-related
mechanism. Our findings may provide a new perspective for the treatment of HCC through
ferroptosis-induction in the future.

Additionally, our results showed that the new FRlncRNAs signature possessed a highly
predictive ability for OS prediction in the patients with HCC. Stratification analysis
indicated that the FRlncRNAs signature based on risk grouping still possessed great
predictive ability for survival prediction in each stratum of age (<65 or≥65 patients), stage
(Stage 1–2 or Stage 3–4 patients), grade (Grade 1–2 or Grade 3–4), and male patients, etc.
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Several issues remained in the current study. First, the clinical sample size was not
large. Second, the prognostic model was demanded to be validated in other enormous
datasets to guarantee its robustness. Third, study has shown that HCC could be resistant to
conventional chemotherapeutic, which might be associated with induction of ferroptosis-
resistance (Galmiche, 2019). However, due to the lack of patients of chemotherapy or
radiotherapy in this study, it is impossible to confirmwhether the signature can be applied to
predict resistance to classical chemotherapy or radiotherapy through ferroptosis-induction.
Fourth, the functional experiments should be implemented to reveal the potential biological
mechanisms for predicting the influence of FRlncRNAs.

CONCLUSIONS
In conclusion, we identified a novel FRncRNAs signature related to prognosis of the
patients with HCC, which could be utilized as a powerful tool in predicting the prognosis of
patients withHCC. The FRlncRNAs signature could divide clinical characteristic subgroups
according to survival. In addition, the signature was connected with ICB targets and TICIs.
Hence, our study afforded a possible strategy for individualized risk stratification of the
patients with HCC and evaluation response to ICB immunotherapy. The three FRncRNAs
might be potential therapeutic targets of HCC.
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