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Abstract 
Emergence of SARS-CoV-2 variants, including the globally successful B.1.1.7 lineage, suggests 
viral adaptations to host selective pressures resulting in more efficient transmission. Although 
much effort has focused on Spike adaptation for viral entry and adaptive immune escape, B.1.1.7 
mutations outside Spike likely contribute to enhance transmission. Here we used unbiased 
abundance proteomics, phosphoproteomics, mRNA sequencing and viral replication assays to 
show that B.1.1.7 isolates more effectively suppress host innate immune responses in airway 
epithelial cells. We found that B.1.1.7 isolates have dramatically increased subgenomic RNA and 
protein levels of Orf9b and Orf6, both known innate immune antagonists. Expression of Orf9b 
alone suppressed the innate immune response through interaction with TOM70, a mitochondrial 
protein required for RNA sensing adaptor MAVS activation, and Orf9b binding and activity was 
regulated via phosphorylation. We conclude that B.1.1.7 has evolved beyond the Spike coding 
region to more effectively antagonise host innate immune responses through upregulation of 
specific subgenomic RNA synthesis and increased protein expression of key innate immune 
antagonists. We propose that more effective innate immune antagonism increases the likelihood 
of successful B.1.1.7 transmission, and may increase in vivo replication and duration of infection.  
 
Main 
The SARS-CoV-2 B.1.1.7 lineage was detected in the United Kingdom in September 2020 and 
quickly became the dominant variant worldwide1. Epidemiologically, B.1.1.7 human-to-human 
transmission is superior to other SARS-CoV-2 lineages2,3, making it a variant of concern (VOC), 
threatening public health containment measures4. B.1.1.7 infection has been associated with 
enhanced clinical severity in the community in the UK, although a clear association with increased 
mortality has not yet emerged 2,3,5,6. 
 
B.1.1.7 is defined by a constellation of 23 mutations7: 17 that alter protein sequence (14 non-
synonymous mutations and 3 deletions) and 6 synonymous mutations (Fig. 1a). Protein coding 
changes concentrate in Spike, which facilitates viral entry through interaction with the human 
receptor ACE28. This has led the field to focus on understanding viral escape from wave one 
(early-lineage) driven adaptive immunity and its implications for infection control and vaccine 
development. Fortunately, despite adaptation of Spike, B.1.1.7 remains sensitive to vaccine- and 
infection-induced neutralising antibodies9–11. B.1.1.7 variant of concern (VOC)-defining mutations 
outside Spike suggest that Spike-independent adaptation to host may contribute to the B.1.1.7 
transmission advantage. Most B.1.1.7 coding changes map to non-structural proteins Nsp3, 
Nsp6, accessory protein Orf8 and nucleocapsid protein (N), all of which have been shown to 
modulate the innate immune response12–16. Furthermore, it is unclear whether any of the B.1.1.7-
specific mutations impact the expression levels of viral proteins. In sum, the impact of these 
additional mutations on viral replication, transmission and pathogenesis has not been 
characterised.   
 
Innate immune responses can exert strong selective pressure during viral transmission 17–19 and 
play an important role in determining clinical outcomes to SARS-CoV-2 infection20–22. We 
therefore reasoned that B.1.1.7 may have evolved to enhance innate immune escape. We and 
others have recently shown that infection of naturally permissive Calu-3 human lung epithelial 
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cells with a wave one SARS-CoV-2 lineage B isolate (BetaCoV/Australia/VIC01/2020, VIC) 
induces a robust but delayed innate response, driven by activation of RNA sensors RIG-I and 
MDA5 23. A delayed response, compared to rapid viral RNA replication, suggests effective innate 
immune antagonism and evasion by SARS-CoV-2 early in infection13,24. Furthermore, the gene 
expression changes observed during late innate responses in infected Calu-3 cells reflect the 
overarching inflammatory signatures observed at the site of infection and those associated with 
severe COVID-19 25–28. Here, we used the Calu-3 cell model to evaluate differences between 
B.1.1.7 and wave one SARS-CoV-2 viruses. 
  
Comparative analysis of virus replication kinetics and interferon induction 
We compared replication and innate immune activation for B.1.1.7 and two first wave (early 
lineage) isolates, B lineage isolate BetaCoV/Australia/VIC01/2020 (VIC) and B.1.13 lineage 
isolate hCoV-19/England/IC19/2020 (IC19) (Fig. 1a) in Calu-3 lung epithelial cells. Input dose was 
normalised using viral genome copies measured by RT-qPCR for the envelope (E) coding region. 
We found that B.1.1.7 replication was comparable to both wave one isolates at high and low 
multiplicity of infection (MOI), measuring intracellular E copies, positivity for nucleocapsid protein 
and infectious virion production by TCID50 on Hela-ACE2 cells (Fig. 1b, 1c). We observed a small 
but significant increase in N positivity for B.1.1.7 (Fig. 1b, 1c), which we explain later in the context 
of differences in viral protein expression. 
  
Identical replication of all three isolates enabled direct comparison of the innate immune response 
without differences in the amount of viral RNA produced, the principal pathogen associated 
molecular pattern (PAMP)23, being a confounding factor. We found that B.1.1.7 infection led to 
lower levels of IFNβ expression and secretion, at both high and low MOI (Fig. 1d, 1e). Similar 
replication, but reduced IFNβ induction by B.1.1.7 was confirmed with two additional independent 
B.1.1.7 isolates (Fig. 1f), suggesting consistent enhancement of innate immune antagonism, or 
evasion, for B.1.1.7 lineage isolates.  
  
As IFN resistance correlates with enhanced transmission of other pandemic viruses17,18, we 
compared sensitivity to IFNβ inhibition of B.1.1.7 and first wave isolates. B.1.1.7 was consistently 
less sensitive to IFNβ pre-treatment over a wide dose range, compared to first wave isolate VIC 
(lineage B) (Fig. 1g), suggesting that B.1.1.7 infection not only induces less IFNβ (Fig. 1d, 1e) but 
that it is also less sensitive to its effects. Interestingly, wave one IC19 (B.1.13) showed a similar 
reduction in IFNβ sensitivity as B.1.1.7. This may be due to the shared Spike mutation D614G in 
IC19 and B.1.1.7, but not VIC, which is associated with enhanced transmissibility and increased 
entry efficiency29–31. Indeed, D614G has been associated with resistance to a range of Type I and 
III IFNs across several SARS-CoV-2 lineages, and contributes to the enhanced IFN-evasion of 
B.1.1.732. Type I IFN restriction of SARS-CoV-2 is mediated in part by interferon induced 
membrane protein 2 (IFITM2) suppression of viral entry, and IFITM2 sensitivity is influenced by 
the Spike sequence33,34. We therefore focused on characterising the mechanism of enhanced 
antagonism of the innate response which was unique to the B.1.1.7 lineage.  
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Figure 1. SARS-CoV-2 B.1.1.7 antagonises innate immune activation more efficiently than early-
lineage isolates. a. SARS-CoV-2 viruses compared in this study. Protein coding changes in B.1.1.7 
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(red), IC19 (grey) and VIC (blue) are indicated in comparison to the Wuhan-Hu-1 reference genome 
(MN908947). B.1.1.7 changes include 23 lineage defining mutations, plus additional changes compared 
to Wuhan-Hu-1, totalling 29. b and c. Calu-3 cells were infected with either (b) 5000 E copies/cell or (c) 
5 E copies/cell of B.1.1.7, VIC and IC19. Measurements of replication of SARS-CoV-2 genomic and 
subgenomic E RNAs (RT-qPCR) (left), % infection by intracellular nucleocapsid positivity (centre) or 
infectious virion production by TCID50/ml (right) over time are shown. d and e. Fold induction of IFNβ 
gene expression and protein secretion over time from cells in (b) and (c) respectively. f. Replication 
(24hpi), IFNβ induction (24hpi) and IFNβ secretion (48hpi) by multiple independent B.1.1.7 isolates 
compared to IC19 and VIC at 250 E copies/cell. g. SARS-CoV-2 infection at 2000 E copies/cell after 8h 
pre-treatment with IFNβ at the indicated concentrations. Infection is shown as intracellular N levels 
normalised to untreated controls at 24hpi. Data shown are mean +/- SEM of one of three representative 
experiments performed in triplicate. Statistical comparisons are performed by Two Way ANOVA 
(a,b,c,d,g) or One Way ANOVA with a Tukey post-comparison test (f).  Blue stars indicate comparison 
between B.1.1.7 and VIC (blue lines and symbols), grey stars indicate comparison between B.1.1.7 and 
IC19 (grey lines and symbols). * (p<0.05), ** (p<0.01), *** (p<0.001), **** (p<0.0001). ns: non-significant. 
E: viral envelope gene. Hpi: hours post infection. 

 
Global proteomic and genomic analyses reveal enhanced innate immune suppression by 
B.1.1.7  
To compare cellular host responses to SARS-CoV-2 variants, we performed global mass 
spectrometry-based protein abundance and phosphorylation profiling (i.e. phosphoproteomics) 
as well as total RNAseq on infected Calu-3 cells at 10 and 24 hours post infection (hpi) (Fig. 2a, 
Table S1). The proteomic analysis was performed using a data-independent acquisition (DIA) 
approach, which decreases sample-to-sample and time point variability in peptide detection over 
the traditional data-dependent acquisition (DDA) mode, strengthening the comparative potential 
of these datasets (see Methods). Compared to mock infection, we observed robust changes in 
RNA abundance and protein phosphorylation after infection, with fewer changes at the level of 
protein abundance (Fig. S1a). After quality control data filtering was performed (see Methods), 
principal components analysis (PCA; Fig. S1b) and Pearson’s correlation (Fig. S1c) confirmed 
strong correlation between biological replicates, time points, and conditions. On average, we 
quantified 15,000-16,000 mRNA transcripts above background levels (Fig. S1d), 33,000-40,000 
peptides mapping to 3,600-4,000 proteins for protein abundance (Fig. S1e), and 22,000-30,000 
phosphorylated peptides mapping to 3,200-3,800 proteins for phosphoproteomics (Fig. S1f).  
 
Gene set pathway enrichment35 analysis comparing B.1.1.7 to wave one isolates VIC and IC19 
highlighted innate immune system-related pathways among the top 5 terms for all three data types 
(RNA, protein abundance, and phosphorylation) (Fig. 2b, S1g-i, Table S2). Top scoring terms 
were related to interferon alpha beta signalling and cytokine/chemokine signalling, and most 
predominantly enriched for the RNA and protein phosphorylation datasets (Fig. 2b). Concordantly, 
in addition to the reduction of IFNβ production (Fig 1d, 1e, 1f), B.1.1.7 infection resulted in reduced 
induction of interferon-stimulated genes (ISGs) measured in the RNAseq and protein abundance 
datasets using a predefined set of ISGs36 (detailed in the Methods, Table S3). This was evident 
at 10 and 24hpi at the RNA level (Fig. 2c-d, S2a, S2c) and at 24hpi for protein (Fig. 2d, S2b). For 
a subset of genes (CXCL10, IFIT2, MX1, IFIT1, and RSAD2), we confirmed reduced ISG 
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induction by multiple B.1.1.7 isolates, compared to VIC and IC19 at 24hpi, using RT-qPCR (Fig. 
2e).  
 
Consistent with reduced innate immune activation by B.1.1.7, we observed lower overall changes 
in protein phosphorylation early in infection (10hpi) for B.1.1.7 compared to wave one isolates 
(Fig. 2f). Accordingly, gene set enrichment analysis revealed that the pathways highlighted by 
reduced phosphorylation at 10hpi are related to the innate immune response. These observations 
are indicative of enhanced innate immune antagonism by this variant. Strikingly, this was reversed 
at 24hpi as B.1.1.7 caused enhanced phosphorylation later in infection (Fig. S1i).  
 
This notion of enhanced evasion at early time points, but increased activation at later time points 
by B.1.1.7 led us to investigate the differential regulation of kinase signalling cascades between 
B.1.1.7 and wave one viruses, especially in relation to innate immune signaling. We used the 
phosphoproteomics data to estimate kinase activities for 191 kinases based on regulation of their 
known substrates37,38 (Table S4), and grouped kinases according to their temporal dynamics (Fig. 
S2e). In a targeted approach, we compiled a list of kinases from the top enriched term (“Reactome 
innate immune system”; Fig. 2b) that were previously implicated in innate immune regulation and 
significantly dysregulated during infection. This identified 24 kinases, which we clustered by 
similar pathway membership (Fig. 2g and Methods). At 10hpi, we observed decreased activity of 
TBK1, a central kinase in nucleic acid sensing, as well as decreased activity in protein kinase A, 
PRKDC, RET, AKT/mTOR, ERK, and JNK pathways. Intriguingly, at 24hpi, TBK1, PRKDC, JNK, 
ERK, and PKA kinase activity was increased for B.1.1.7 compared to VIC (Fig. 2g), consistent 
with the increased phosphorylation in innate immune system enriched pathway terms (Fig. S1i). 
Thus, B.1.1.7 enhanced innate immune antagonism at the level of protein phosphorylation is only 
observed at early time points after infection suggesting a delay in the activation of the signalling 
pathways involved in viral recognition compared to early lineage viruses. However, later during 
infection as viral replication ramps up, it triggers the phosphorylation cascades leading to the 
activation of these pathways (Fig. 2f and Fig. S1i).  
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Figure 2. Global RNAseq and proteomics reveal innate immune suppression by B.1.1.7.  
a. Calu-3 cells were infected with SARS-CoV-2 B.1.1.7 (red) or early lineages VIC (blue) and IC19 (grey) 
at 5000 E copies/cell or mock-infected. At 10 and 24hpi, samples were harvested for phosphoproteomics 
and abundance proteomics analysis using a data-independent acquisition (DIA) approach. Separate 
wells were harvested for total RNA-sequencing. b. Unbiased pathway enrichment analysis was 
performed to compare B.1.1.7 to VIC and IC19 (see Methods). The -log10(p-values) were averaged for 
enrichments using B.1.1.7/VIC and B.1.1.7 /IC19 at 10 and 24hpi (4 data points total) and used to rank 
terms. The top 5 terms for each data type are displayed. Terms associated with the innate immune 
system are bolded. c. Heatmap depicting log2 fold change (color) of interferon-stimulated genes (ISGs)36 
comparing B.1.1.7 to VIC or IC19 at 10 and 24hpi (see Methods[RAK1] ). Squares outlined in black indicate 
a statistically significant fold change (p-value < 0.01). d. Box plots show log2 fold change of interferon 
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stimulated genes (ISG) between B.1.1.7/VIC (blue), B.1.1.7/IC19 (blue) or IC19/VIC (black) in RNAseq 
and abundance proteomics dataset at 10 and 24hpi. Two-tailed student’s t-tests were performed for each 
comparison and p-values are displayed. e. Confirmatory RT-qPCR analysis of bolded ISGs from (a) 
expressed in Calu-3 cells infected with multiple B.1.1.7 isolates, VIC or IC19 at 2000 genomes/cell. f. 
The number of phosphorylation sites significantly dysregulated for B.1.1.7, VIC, or IC19 versus mock at 
10 or 24hpi. Statistical significance was determined as absolute log2 FC > 1 and adjusted p-value < 0.05. 
g. Kinase activities for members of the top enriched terms for the phosphoproteomics dataset “Reactome 
innate immune system” (b, right), for each time point. Kinase activities were estimated from 
phosphoproteomics data using prior knowledge of kinase-substrate relationships. Kinases were clustered 
along the rows based on frequency of co-membership in pathway terms and manually annotated (see 
Methods). Data shown are mean +/- SEM (e). Statistical comparisons are performed by Two-tailed 
student’s t-tests (d) or Two Way ANOVA with a Tukey’s multiple comparisons post-test (e).  Blue stars 
indicate comparison between B.1.1.7 and VIC (blue bars), grey stars indicate comparison between 
B.1.1.7 and IC19 (grey bars). * (p<0.05), ** (p<0.01), *** (p<0.001), **** (p<0.0001), or exact p-value are 
shown (d). ns: non-significant. 
 

B.1.1.7 has enhanced expression of subgenomic RNA and protein for key innate immune 
antagonists 
We next examined the RNAseq and protein abundance mass spectrometry data of the viral genes 
and proteins seeking to further understand the differences between B.1.1.7 and wave one isolates 
that underlie the contrasting host responses (Fig. 3a, S3a, Table S6, Table S7). As RNA 
replication, measured by genomic and subgenomic E levels, was similar between variants (Fig. 
1b, 1c), we determined the levels of each subgenomic RNA by selecting transcripts with a 5’ 
leader sequence, i.e. the segment derived from the 5’ genomic RNA during sgRNA transcription 
(Fig. 3a, S4). Importantly, we observed similar levels of viral Nsp1/2/3 protein translated from 
genomic RNA (Fig. 3a), which was again consistent with comparable levels of infection, enabling 
effective comparisons of transcription and protein expression between variants.  
 
Strikingly, we found a large (over 80-fold) increase in innate immune antagonist Orf9b sgRNA 
levels39, leading to a 6.5-fold increase in Orf9b protein levels for B.1.1.7 compared to VIC (Fig. 
3a, 3b). Similarly, a 6.7-fold increase in protein and 64.5-fold increase in RNA was observed at 
24hpi for B.1.1.7 compared to IC19 (Fig. S3a). Differential ORF9b expression was evident by 
10hpi at the RNA and protein levels (Fig. 3a, 3b). The increase in B.1.1.7 Orf9b transcription might 
be attributable to the D3L mutation in N, which introduces an enhanced transcriptional regulator 
sequence (TRS) upstream of Orf9b, expressed as an alternative reading frame within N40. 
Alternatively, the D3L mutation close to the ATG of Orf9b might enhance its translation from the 
N sgRNA. In addition, when comparing B.1.1.7 to VIC, we found a significant but modest 1.5-fold 
increase in sgRNA levels for a second innate immune regulator, Orf613,24 (2.1-fold compared to 
IC19). This corresponded to a 3.9-fold increase in Orf6 protein levels (4.6-fold compared to IC19) 
at 24hpi (Fig. 3a, 3c, Table S6).  
 
Additionally, we detected elevated sgRNA levels in B.1.1.7 of a third innate immune regulator, 
nucleocapsid (N)16. B.1.1.7 N RNA was increased 1.7-fold and 2.3-fold compared to VIC and 
IC19, respectively, corresponding to a 2.4-fold and 2.3-fold increase in N protein levels (Fig. 3a, 
3d). This increase in N might also be a contributor to the enhanced expression of Orf9b, as much 
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of Orf9b is thought to be expressed from the same subgenomic RNA as the N protein.  These 
results are consistent with the increase in N+ cells measured during Calu-3 infection (Fig. 1b,1c). 
We also observed enhancement of Orf3a, M, and Orf7b proteins at 24hpi for B.1.1.7, with only 
very modest changes observed at the RNA level (Fig. S3c,d). We confirmed upregulation of 
B.1.1.7 Orf9b, Orf6, N and Orf3a sgRNA using RT-qPCR (Fig. 3e, S3b) and confirmed heightened 
expression of B.1.1.7 Orf6 and N proteins by western blot (Fig. 3f). Unfortunately, we do not have 
a suitable ORF9b antibody for western blot. These findings are in line with the reported enhanced 
expression of B.1.1.7 sgRNA encoding Orf9b, Orf6, and N in clinical samples40. The proportion of 
each sgRNA of the total sgRNA reads are summarised for B.1.1.7 and wave one VIC in Fig. 3g 
and S3e. Intriguingly, we observed an additional sgRNA, N* 40, with an in-frame start codon at 
M210 encoding the C-terminal portion of N (Fig. 3h, Table S7), amounting for 0.9% of the total 
sgRNA for B.1.1.7 (Fig. 3g). We did not detect N* sgRNA in VIC or IC19 above background levels 
suggesting that the B.1.1.7 N R203K and R204K mutations, just upstream of the new N* start 
codon, may create a novel transcriptional regulatory sequence (TRS) permitting N* transcription, 
as previously hypothesised40. Indeed, sgRNA abundance measurements were consistent with 
Orf9b and N* being the most differentially expressed sgRNA between B.1.1.7 and VIC at 24hpi 
(Fig. 3i). 
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Figure 3. SARS-CoV-2 B.1.1.7 variant upregulates innate immune antagonists at the subgenomic 
RNA and protein level. 
a. Log2 ratio of B.1.1.7 to VIC subgenomic RNA (sgRNA) containing a leader sequence normalised to 
total genomic RNA per time point and virus (top). Log2 ratio of B.1.1.7 to VIC viral proteins quantified as 
determined from the abundance proteomics dataset (bottom). Peptide intensities are summed per viral 
protein. Only peptides detected in both B.1.1.7 and VIC are used for quantification. Bars depict the mean 
of three biological replicates. ND: not detected. b. c. and d. Quantification of Orf9b (b), Orf6 (c) and N (d) 
sgRNA from RNAseq dataset. Counts are normalised to genomic RNA abundance at each time point 
and virus (top). Bottom panels show summed peptides per viral protein from proteomics dataset (no 
normalisation). e. Quantification of Orf9b & N (left) or Orf6 (right) sgRNA abundance via RT-qPCR in 
independent B.1.1.7 isolates, VIC, or IC19. f. Western blot of Orf6, N and S expression in Calu-3 cells 
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infected with B.1.1.7, VIC, or IC19 at 24hpi. g. Pie chart depicting proportion of total sgRNA mapping to 
each viral sgRNA (containing leader sequence) for B.1.1.7. VIC percentages in parentheses. h. sgRNA 
log2 normalised counts (dot height) at 24hpi for B.1.1.7 (top) or VIC (bottom) projected onto their 
identified start sites on the SARS-CoV-2 genome. Only canonical and two non-canonical sgRNAs (Orf9b 
and N*) are depicted. All other non-canonical sgRNAs were excluded. i. Scatter plot of sgRNA abundance 
in B.1.1.7 or VIC at 24hpi. Grey dots indicated other non-canonical sgRNAs containing a leader sequence 
but no clear start codon. For (a-e), mean +/- SEM are shown. Statistical comparisons for (c-e) were 
performed by Two Way ANOVA with Tukey’s multiple comparisons post-test. * (p<0.05), ** (p<0.01), *** 
(p<0.001), **** (p<0.0001). ns: non-significant. 

 
Orf9b antagonises innate immune activation by interacting with human TOM70  
To further understand the transcription pathways differentially activated by B.1.1.7, we used the 
RNAseq dataset to estimate transcription factor activities by mapping target genes to 
corresponding transcriptional regulators (Fig. S2d, Table S5). We extracted significantly regulated 
transcription factors within the top 5 most enriched terms from the unbiased RNAseq pathway 
enrichment analysis (Fig 2a, left). This revealed that IRF and STAT transcription factor families 
are significantly less activated by B.1.1.7  compared to wave one viruses (Fig. 4a). Consistently, 
measuring IRF3 nuclear translocation by single-cell immunofluorescence demonstrated reduced 
IRF3 activation after B.1.1.7 infection compared to VIC (Fig. 4b). STAT1/STAT2/IRF9 lie 
downstream of the Type I IFN receptor, and potent inhibition by B.1.1.7 is consistent with 
increased Orf6 levels, known to inhibit STAT1, and IRF3, nuclear translocation13,24.   
 
Decreased TBK1 activity in B.1.1.7 infection (Fig. 2g) also suggests potent antagonism upstream 
of IRF3 by additional mechanisms. We have previously reported that SARS-CoV-2 Orf9b, which 
is expressed to significantly higher levels by B.1.1.7 (Fig. 3), interacts with human TOM7041, a 
mitochondrial import receptor required for MAVS activation of TBK1 and IRF3 and subsequent 
Type I interferon production42 downstream of RNA sensors. A recent study has corroborated this 
interaction and demonstrated inhibition of Type I interferon production by Orf9b through TOM70 
interaction39. We previously found that two serine residues buried within the Orf9b-TOM70 binding 
pocket, Orf9b S50 and S53, are phosphorylated during SARS-CoV-2 infection43–45 (Fig. 4c). Here 
we discovered that mutating Orf9b S53 or S50/S53 to the phosphomimetic glutamic acid, and to 
a lesser extent alanine, disrupted co-immunoprecipitation of Orf9b and TOM70 (Fig 4d). 
Accordingly, the phosphomimetic mutations S50/53E abolished Orf9b antagonism of ISG56-
luciferase reporter gene activation induced by poly I:C transfection that mimics RNA sensing (Fig. 
4e), presumably by preventing interaction with TOM70. This suggests that Orf9b suppresses 
signalling downstream of MAVS by targeting TOM70 and that this process is regulated by 
phosphorylation (Fig. 4f). Intriguingly, we detected lower levels of B.1.1.7 Orf9b S53 
phosphorylation at 10hpi compared to VIC (Fig. 4g), an effect weakened at 24hpi, in line with 
suppression of host kinase activity in the early stages of B.1.1.7 infection (Fig. 2f, 2g). This 
suggests that not only does B.1.1.7 express more Orf9b early in infection, lower kinase activation 
ensures maximal Orf9b innate antagonism. At later time points (24hpi), this difference in Orf9b 
phosphorylation is less pronounced, consistent with a modest increase in kinase activity at 24hpi 
for B.1.1.7 compared to first wave isolates (Fig. 2g).  
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SARS-CoV-2 N has also been shown to inhibit activation of RNA sensing16. B.1.1.7 has a modest 
increase in N expression (Fig. 3a, 3d), and has acquired 4 N coding changes (Fig. 1a). We 
therefore tested whether B.1.1.7 N displays enhanced innate immune antagonism. In fact, B.1.1.7 
N antagonism of poly I:C activation of a ISG56-luciferase reporter was comparable to antagonism 
by VIC N, suggesting the coding changes do not enhance B.1.1.7 N potency (Fig. 4h).  
 

 

 
Figure 4. Orf9b binds TOM70 and antagonises innate immune activation downstream of RNA 
sensing. 
a. Transcription factor (TF) activities in the 5 top enriched terms for the RNAseq dataset (Fig. 2b, left), for each 
time point. TFs are clustered hierarchically along rows based on activity magnitude. Squares outlined in black 
depict activities > 1.5 or < -1.5. b. IRF3 nuclear to cytoplasmic log2 ratio in cells infected with either B.1.1.7 of 
VIC at an MOI of 2000 E copies/cell at 24hpi measured by single cell immunofluorescence analysis. Shown 
are 1000 randomly sampled cells for each condition with a cut-off of 0.1>=<5. c. Cryogenic electron microscopy 
(Cryo-EM) of SARS-CoV-2 Orf9b (yellow) in complex with TOM70 (blue) from Gordon et al. (2020b). 
Highlighted in red are serines (S50 and S53) in Orf9b in the TOM70 binding site. d. Co-immunoprecipitation 
of streptavidin-tagged wild-type (WT) Orf9b, and various Orf9b point mutants expressed in HEK293T cells with 
Flag-TOM70. Forward slash indicates the presence of both mutations. e. ISG56-reporter activation by poly:IC 
in the presence of Orf9b WT, Orf9b S50/53E or empty vector (EV) expression in HEK293T cells. f. Model 
schematic depicting proposed mechanism of innate immune antagonism by Orf9b. (i) When S53 is 
unphosphorylated, Orf9b binds to TOM70 and inhibits its activity in innate immune signaling. Conversely, (ii) 
when Orf9b is phosphorylated on S53, it can no longer interact with TOM70 and is unable to antagonise innate 
immune activation. g. Ratio between the intensity of Orf9b peptide phosphorylated on S53 and total Orf9b (as 
calculated in Fig. 3b, bottom) from phospho- and abundance proteomics of Calu-3 cells infected with indicated 
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viruses for either 10 or 24 hpi (as depicted in Fig. 2a). h. ISG56-reporter activation by poly:IC in the presence 
of N (VIC), N (B.1.1.7) or empty vector (EV) expression in HEK293T cells. Statistical comparisons are 
performed by Mann-Whitney Test comparison (b), Two Way ANOVA with Tukey’s multiple comparison post 
test (e,g,h). For (e) black stars indicate the comparison between ORF9b WT and ORF9b S50/53E, For (g), 
blue stars indicate comparison between B.1.1.7 and VIC (blue bars). For (h), blue stars indicate comparison 
between VIC and EV and red stars indicate comparison between B.1.1.7 and EV. * (p<0.05), ** (p<0.01), *** 
(p<0.001), **** (p<0.0001). 

 
 

 

Figure 5. Model schematic depicting how B.1.1.7 antagonises innate immune activation.  
Highly transmissible SARS-CoV-2 B.1.1.7 has evolved to more effectively antagonise the innate immune 
response. SARS-CoV-2 wave one isolates activate a delayed innate response in airway epithelial cells relative 
to rapid viral replication, indicative of viral antagonism of innate immune responses early in infection. It is known 
that Orf9b, Orf6 and N are innate immune antagonists, acting at different levels to inhibit RNA sensing. Orf6  
inhibits IRF3 and STAT1 nuclear translocation13,24, N prevents activation of RNA sensor RIG-I16 and here we 
show that Orf9b inhibits RNA sensing through interaction with TOM70 regulated by phosphorylation. We find 
that B.1.1.7 has evolved to produce more sgRNA for these key innate immune antagonists leading to increased 
protein levels and enhanced innate immune antagonism as compared to first wave isolates. 
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Discussion 
Our data reveal how the SARS-CoV-2 B.1.1.7 lineage has adapted to the host by enhancing 
antagonism of the innate immune response. Strikingly, we find that B.1.1.7 has specifically 
increased subgenomic RNA synthesis and expression of key viral innate antagonists, Orf9b as 
well as Orf6 and nucleocapsid (N) protein (Fig. 5). This remarkable and novel observation 
suggests evolution of B.1.1.7 nucleotide sequences that modulate specific sgRNA production, 
and selection for increased sgRNA synthesis and protein expression, rather than selection of 
protein coding changes to alter or enhance viral antagonist function. Accordingly, we found that 
B.1.1.7 nucleocapsid protein coding changes did not enhance inhibition of RNA sensing. 
However, given SARS-CoV-2 encodes multiple, functionally overlapping innate immune 
antagonists12–14, it is possible that B.1.1.7 protein variation, for example in Nsp3 or Nsp6, could 
also contribute to enhanced immune antagonism. Importantly, increased detection and 
expression of Orf9b, Orf6 and N sgRNA has been reported in B.1.1.7 patient samples40, 
supporting the in vivo relevance of our findings.  
 
Coronavirus sgRNAs are produced by discontinuous transcription during negative-strand RNA 
synthesis, regulated by RNA elements called transcriptional regulatory sequences (TRS)46. 
Complementarity between the TRS upstream of each Orf and the TRS near the leader sequence 
at the 5’ end of the genome (TRS-L) mediates production of nascent sgRNAs with a 5’ leader 
derived from genomic RNA. Orf9b is an alternative reading frame in N, expressed from its own 
sgRNA. In wave one isolates, the Orf9b TRS has weak complementarity with TRS-L, consistent 
with low levels of Orf9b protein and sgRNA. However enhanced B.1.1.7 Orf9b sgRNA synthesis 
is likely mediated by changes in N (28,880 GAT>CAT, D3L) that enhance complementarity 
between the Orf9b TRS and TRS-L surrounding sequences40. At this moment, we cannot exclude 
whether the increase in Orf9b protein expression detected by proteomics is due to increased 
levels of Orf9b subgenomic RNA or to its increased translation from the N sgRNA, or to both. It is 
striking that Orf9b is not only enhanced in expression in B.1.1.7 but appears to be regulated by 
phosphorylation which is in turn particularly repressed during B.1.1.7 infection. This suggests that 
Orf9b inhibition of innate immunity is regulated by the host innate response itself. In this model, 
unphosphorylated Orf9b is maximally active early after infection to permit effective innate 
antagonism and viral production, but as host activation begins, Orf9b becomes phosphorylated 
and switched off, enabling subsequent innate immune activation. Such an inflammatory switch 
may have evolved by coronaviruses to enhance transmission by increasing inflammation at the 
site of infection once virus production is high, leading to symptoms that promote transmission 
such as mucosal secretions and coughing.   
 
Detection of the N* sgRNA in B.1.1.7 infected cells can be explained by a triple nucleotide change 
spanning amino acids R203K/G204R (28881 GGG>AAC), which creates a novel TRS, near a 
downstream start codon, predicted to generate a short C-terminal form of N called N*40,47, which 
may have innate immune antagonist activity. Orf6 is known to antagonise the innate response 
through inhibition of transcription factor STAT1 and IRF3 nuclear entry13,24. Intriguingly, the 
increase in Orf6 sgRNA expression cannot be explained by any changes around its TRS, which 
has weak complementarity to the TRS-L, suggesting evolution of a different regulatory 
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mechanism in B.1.1.7 to increase Orf6 expression. Future studies will be important to understand 
which genotypic adaptations confer this phenotype.  
 
We propose that enhanced innate immune antagonism by the B.1.1.7 lineage contributes to its 
transmission advantage, as has been observed for HIV, another emergent pandemic virus17,18. 
We hypothesise that more effective innate immune antagonism permits enhanced transmission 
through reduced and delayed host responses which otherwise protect cells from infection. We 
propose that our model captures the earliest interactions between the virus and airway epithelial 
cells, in which the virus outpaces the innate response through a combination of antagonism and 
evasion. In the Calu-3 system, differences in innate immune antagonism between variants do not 
translate to differences in viral replication kinetics. We have previously shown that even for wave 
one isolates, the innate response occurs too late to restrict replication in Calu-3 cells23. We 
hypothesise that in vivo, enhanced innate antagonism could promote B.1.1.7 replication to higher 
levels and permit in vivo dissemination, in line with observations of delayed symptom onset for 
B.1.1.7 infections, and enhanced inflammatory disease 5,6. This is also consistent with reports of 
prolonged viral shedding of B.1.1.748,49, suggesting less effective control of B.1.1.7 replication, 
both of which may enhance transmission.  
 
Our data highlight that changes in protein expression levels may have significant impact on the 
virus-host interaction. This has important implications for management of the ongoing pandemic. 
It is expected that expanding ongoing sequencing efforts to monitor subgenomic RNA levels40 will 
be critical in identification of future SARS-CoV-2 variants of concern. Other reports suggest 
increased affinity of the B.1.1.7 spike protein for human ACE250, which may enhance viral entry 
efficiency and therefore transmission, and is in line with B.1.1.7 adaptation to its new human host. 
Our findings highlight the importance of studying changes outside Spike to understand the 
phenotype of B.1.1.7, other current variants, and future variants, and to emphasise the importance 
of innate immune evasion in the ongoing process of adaptation of SARS-CoV-2 to a new host. 
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Supplemental Tables 
Table S1. Fold changes and p-values for RNAseq, abundance proteomics, and 
phosphoproteomics datasets. 
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Table S2. Full pathway enrichment results of RNAseq, abundance proteomics, and 
phosphoproteomics datasets (i.e. Figures 2b and S1g-i). 
 
Table S3. Fold changes and p-values for interferon stimulated genes from RNAseq and 
abundance proteomics datasets (i.e. Figures 2c-d). 
 
Table S4. Full table of calculated kinase activities for comparisons between B.1.1.7, VIC, and 
IC19. 
 
Table S5. Full table of calculated transcription factor activities for comparisons between B.1.1.7, 
VIC, and IC19. 
 
Table S6. Viral RNA and protein quantities and ratios for B.1.1.7 to VIC and IC19 (i.e. Figure 3 
and S3). 
 
Table S7. Read counts of subgenomic RNA mapped to SARS-CoV-2 genome (i.e. Figure 3i). 
 
Data availability 
Abundance proteomics and phosphoproteomics datasets have been deposited to the 
ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier 
PXD026302. Reviewers may access the raw data with the username 
“reviewer_pxd026302@ebi.ac.uk” and password “KBANyPDu”. Raw RNAseq data files are 
available from the corresponding authors upon request. 
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Supplemental Figures 
 

 

Figure S1. Omics data quality control and pathway enrichments.  
a. Significantly changing genes for RNA, proteins for protein abundance, and phosphorylation sites for 
phosphoproteomics data. Significance was defined as abs(log2FC)>1 and adjusted p-value<0.05. Red 
depicts positive log2 fold changes whereas blue depicts negative log2 fold changes. 
b. Principal components analysis (PCA) on normalised RNA transcripts per million (TPM), protein 
intensities, or phosphorylation site intensities. Non-finite values were removed and detections 
(transcripts, proteins, or phosphorylation sites) not shared (non-finite) between all conditions were 
discarded prior to analysis. 
c. Pairwise Pearson’s correlation between RNA, protein, or phosphorylation site abundance among 
replicates within the same condition (red) or between distinct conditions (black).  
d. Number of genes expressed above baseline in RNAseq dataset per replicate. 
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e. Number of peptides and proteins detected per replicate in the abundance proteomics dataset. 
f. Number of phosphorylated peptides and corresponding proteins from phosphoproteomics dataset. 
g. Gene set enrichment analysis based on log2FC method using RNA dataset (as in Fig. 2b, see 
Methods). Ranking is based on the average of the absolute value z-scores across the indicated 
contrasts involving B.1.1.7 (per row). Enrichments with an adjusted p-value<0.05 are indicated with a 
black border. 
h. Same as in g, but for abundance proteomics dataset. 
i. Same as in g, but for phosphoproteomics dataset. If a protein possessed multiple phosphorylation 
sites, the maximum absolute value log2FC was used as the representative value for the protein. Finite 
values (non-infinite) were prioritised over quantitative values. 
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Figure S2. Omics data highlights recruitment of innate immune signaling. 
a. Expression of interferon-stimulated genes from Lui et al (2018)36 (see Methods) using the RNAseq 
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dataset. Significant fold changes with an adjusted p-value<0.05 are indicated with black borders. 
b. Same as in (a) using the abundance proteomics dataset. N.D. indicates proteins either not detected 
in one condition (thus, Inf or -Inf) or not detected in both conditions. 
c. RNA expression per biological replicate of interferon-stimulated genes (ISGs) for each virus versus 
mock. 
d. Full kinase activity analysis of indicated contrasts. Only kinases with an absolute value z-score>2 were 
kept. Kinases were separated into four distinct clusters using k-means clustering, which naturally reveals 
groups depicting kinases downregulated for the entire time course (“Down”), downregulated early and 
upregulated late (“Down-Up”), upregulated early and downregulated late (“Up-Down”), or upregulated or 
constant throughout the time course (“Up”). Panel on right depicts the average Z-score for each distinct 
cluster per time point, collapsing across B.1.1.7/VIC and B.1.1.7/IC19 comparisons.  
e. Transcription factor (TF) activities were estimated from the RNAseq dataset using known TF-target 
gene interactions (see Methods). Only transcription factors with an absolute value NES>2.5 were kept. 
TF are clustered using ward hierarchical clustering based on similar activity patterns across time.  
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Figure S3. Expression of viral RNA and protein for SARS-CoV-2 variants.  
a. Log2 ratio of B.1.1.7 to IC19 subgenomic RNA (sgRNA) abundance as determined from the RNAseq 
dataset. sgRNA reads are counted only if they possess a leader sequence and normalised to total 
genomic RNA per time point and virus (see Methods). 
b. Log2 ratio of B.1.1.7 to IC19 viral proteins quantified as determined from the abundance proteomics 
dataset. Peptide intensities are summed per viral protein. Only peptides detected in both B.1.1.7 and 
IC19 are used for quantification. Bars depict the mean of three biological replicates. Error bars depict the 
standard error. 
c. Quantification of sgRNAs for M, S, Orf8, Orf7a, Orf3a, E and N* from the RNAseq dataset. Counts are 
normalised to genomic RNA abundance at each time point and virus. 
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d. Quantification of Orf3a (left) or S (right) sgRNA abundance via RT-qPCR in distinct B.1.1.7 isolates, 
VIC, or IC19. 
e. Summed peptides per viral protein for M, S, Nsp1, Orf7b, and Orf3b from the abundance proteomics 
dataset. 
f. Quantification of Orf6 and N protein from western blot in Figure 3f for B.1.1.7, VIC, and IC19. 
g. Pie chart depicting proportion of total sgRNA mapping to each viral sgRNA (containing leader 
sequence) for IC19. 
h. Comparison of percentages of total sgRNA mapping to each viral sgRNA across B.1.1.7, VIC, and 
IC19. 
* (p<0.05), ** (p<0.01), *** (p<0.001), **** (p<0.0001). ns: non-significant. 

 
 
 

 

Figure S4. Examples of leader-containing reads for Orf9b and N from RNAseq dataset. 
a. Representative sequence for Orf9b (top) and N (bottom) sgRNA from B.1.1.7. Leader sequences used 
in this analysis to identify sgRNAs are highlighted in yellow. The sequence following the leader sequence 
is used to differentiate Orf9b versus N sgRNAs. Orf9b and N start codons are indicated in maroon. The 
site of the N-protein D3L mutation is indicated in green, which results in increased similarity to the 
transcriptional regulatory sequence (TRS) for B.1.1.7. Read counts of Orf9b and N are indicated to the 
right. Counts are normalized to mean genomic reads per replicate. 
b. Same as in a but for VIC. 
c. Same as in a but for IC19. 
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Methods 
 
Cell culture  
Calu-3 cells were purchased from ATCC (HTB-55) and Caco-2 cells were a kind gift from Dr. 
Dalan Bailey (Pirbright Institute, USA). Hela-ACE2 cells were a kind gift from Dr. James E Voss 
(TSRI, USA)51. HEK293T cells were a kind gift from Jeremy Luban. Cells were cultured in 
Dulbecco’s modified Eagle Medium (DMEM) supplemented with 10% heat-inactivated FBS 
(Labtech), 100U/ml penicillin/streptomycin, with the addition of 1% Sodium Pyruvate (Gibco) and 
1% Glutamax. All cells were passaged at 80% confluence. For infections, adherent cells were 
trypsinised, washed once in fresh medium and passed through a 70 µm cell strainer before 
seeding at 0.2x106 cells/ml into tissue-culture plates. Calu-3 cells were grown to 60-80% 
confluence prior to infection as described previously23.  
  
Viruses 
SARS-CoV-2 isolate VIC was provided by NISBC, and IC19, B.1.1.7, B.1.1.7 (B) and B.1.1.7 (C) 
are reported in 11 , full isolate names and GISAID references are listed below. Viruses were 
propagated by infecting Caco-2 cells at MOI 0.01 TCID50/cell, in culture medium at 37°C. Virus 
was harvested at 72 hours post infection (hpi) and clarified by centrifugation at 4000 rpm for 15 
min at 4°C to remove any cellular debris. We have previously shown that infection of Caco-2 cells 
in these conditions does not result in activation of the innate response or cytokine carryover 23. 
Virus stocks were aliquoted and stored at -80°C. Virus stocks were quantified by extracting RNA 
from 100µl of supernatant with 1µg carrier RNA using Qiagen RNeasy clean up RNA protocol, 
before measuring viral E RNA copies per ml by RT-qCPR as described below.  
 

Virus ID in manuscript Isolate name PANGO  lineage GISAID Accession ID 

VIC BetaCoV/Australia/VIC01/2020 B - 

IC19 hCoV-19/England/IC19/2020 B.1.13 EPI_ISL_475572 

B.1.1.7 hCoV-19/England/204690005/2020 B.1.1.7 EPI_ISL_693401 

B.1.1.7 (B) hCoV-19/England/205090256/2020 B.1.1.7 EPI_ISL_747517 

B.1.1.7 (C) hCoV-19/England/205080610/2020 B.1.1.7 EPI_ISL_723001 

 
Viral sequencing and assembly  
Viral stocks were sequenced to confirm each stock was the same at consensus level to the 
original isolate. Sequencing was performed using a multiplex PCR-based approach using the 
ARTIC LoCost protocol and v3 primer set as described52,53. Amplicon libraries were sequenced 
using MinION flow cells v9.4.1 (Oxford Nanopore Technologies, Oxford, UK). Genomes were 
assembled using reference-based assembly to the MN908947.3 sequence and the ARTIC 
bioinformatic pipeline using 20x minimum coverage cut-off for any region of the genome and 
50.1% cut-off for calling single nucleotide polymorphisms. 
 
Infection of human cells 
For infections, multiplicities of infection (MOI) were calculated using E copies/cell quantified by 
RT-qPCR. Cells were inoculated with diluted virus stocks for 2h at 37°C, subsequently washed 
once with PBS and fresh culture medium was added. At indicated time points, cells were 
harvested for analysis. 
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Virus quantification by TCID50 
Virus titres were determined by 50% tissue culture infectious dose (TCID50) on Hela-ACE2 cells. 
In brief, 96 well plates were seeded at 5x103 cells/well in 100 µl. Eight ten-fold serial dilutions of 
each virus stock or supernatant were prepared and 50 µl added to 4 replicate wells. Cytopathic 
effect (CPE) was scored at 2-3 days post infection. TCID50/ml was calculated using the Reed & 
Muench method, and an Excel spreadsheet created by Dr. Brett D. Lindenbach was used for 
calculating TCID50/mL values54. 
 
RT-qPCR of viral proteins in infected cells 
RNA was extracted using RNeasy Micro Kits (Qiagen) and residual genomic DNA was removed 
from RNA samples by on-column DNAse I treatment (Qiagen). Both steps were performed 
according to the manufacturer’s instructions. cDNA was synthesised using SuperScript III with 
random hexamer primers (Invitrogen). RT-qPCR was performed using Fast SYBR Green Master 
Mix (Thermo Fisher) for host gene expression and subgenomic RNA expression or TaqMan 
Master mix (Thermo Fisher) for viral RNA quantification, and reactions performed on the 
QuantStudio 5 Real-Time PCR systems (Thermo Fisher). Viral E RNA copies were determined 
by a standard curve, using primers and a Taqman probe specific for E, as described elsewhere 
55 and below.  The primers used for quantification of viral subgenomic RNA are listed below, the 
same forward primer against the leader sequence was used for all reactions, and is as described 
by the Artic Network40,52. Using the 2-ΔΔCt method, sgRNA levels were normalised to GAPDH to 
account for differences in RNA loading and then normalised to the level of ORF1a gRNA 
quantified in the same way for each variant to account for differences in the level of infection. Host 
gene expression was determined using the 2-ΔΔCt method and normalised to GAPDH expression 
using primers listed below. 
 
The following primers and probes were used: 
  

SARS-CoV-2 
E_Sarbeco_F 

5’-ACAGGTACGTTAATAGTTAATAGCGT-3’ 

SARS-CoV-2 
E_Sarbeco_Probe1 

5’-FAM-ACACTAGCCATCCTTACTGCGCTTCG-TAMRA-3’ 

SARS-CoV-2 
E_Sarbeco_R 

5’-ATATTGCAGCAGTACGCACACA-3’ 

5’_Leader_F 
 

ACCAACCAACTTTCGATCTCTTGT 

Orf1a_R CCTCCACGGAGTCTCCAAAG 
 

Orf6_sg_R GAGGTTTATGATGTAATCAAGATTC 
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Orf9b_N_sgRNA_R CACTGCGTTCTCCATTCTGG 

S_sgRNA_R GTCAGGGTAATAAACACCACGTG 
 

Orf3a_sgRNA_R GCAGTAGCGCGAACAAAATCTG 
 

CXCL10 Fwd 5’-TGGCATTCAAGGAGTACCTC-3’ 
Rev 5’-TTGTAGCAATGATCTCAACACG-3’ 

GAPDH Fwd 5’-GGGAAACTGTGGCGTGAT-3’ 
Rev 5’-GGAGGAGTGGGTGTCGCTGTT-3’ 

IFIT1 Fwd 5’-CCTCCTTGGGTTCGTCTACA-3’ 
Rev 5’-GGCTGATATCTGGGTGCCTA-3’ 

IFIT2 Fwd 5’-CAGCTGAGAATTGCACTGCAA-3’ 
Rev 5’-CGTAGGCTGCTCTCCAAGGA-3’ 

IFNB1 Fwd 5’-AGGACAGGATGAACTTTGAC-3’ 
Rev 5’-TGATAGACATTAGCCAGGAG-3’ 

MX1 Fwd 5’-ATCCTGGGATTTTGGGGCTT-3’ 
Rev 5’-CCGCTTGTCGCTGGTGTCG-3’ 

RSAD2 Fwd 5’ -CTGTCCGCTGGAAAGTG-3’ 
Rev 5’-GCTTCTTCTACACCAACATCC-3’ 

  
Western blot for viral proteins in infected cells 
For detection of N, Orf6, spike and tubulin expression, whole cell protein lysates were extracted 
with RIPA buffer, and then separated by SDS-PAGE, transferred onto nitrocellulose and blocked 
in PBS with 0.05% Tween 20 and 5% skimmed milk. Membranes were probed with rabbit-anti-
SARS spike (Invitrogen, PA1-411-1165, 0.5ug/ml), rabbit-anti-Orf6 (Abnova, PAB31757, 4ug/ml), 
Cr3009 SARS-CoV-2 cross-reactive human-anti-N antibody (1ug/ml) (a kind gift from Dr. Laura 
McCoy, UCL) , mouse-anti-alpha-tubulin  (SIGMA, clone DM1A) followed by IRDye 800CW or 
680RD secondary antibodies (Abcam, goat anti-rabbit, goat anti-mouse or goat anti-human). Blots 
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were Imaged using an Odyssey Infrared Imager (LI-COR Biosciences) and analysed with Image 
Studio Lite software. 
 
Flow cytometry of infected cells 
For flow cytometry analysis, adherent cells were recovered by trypsinisation and washed in PBS 
with 2mM EDTA (PBS/EDTA). Cells were stained with fixable Zombie UV Live/Dead dye 
(Biolegend) for 6 min at room temperature. Excess stain was quenched with FBS-complemented 
DMEM. Unbound antibody was washed off thoroughly and cells were fixed in 4% PFA prior to 
intracellular staining. For intracellular detection of SARS-CoV-2 nucleoprotein, cells were 
permeabilised for 15 min with Intracellular Staining Perm Wash Buffer (BioLegend). Cells were 
then incubated with 1μg/ml CR3009 SARS-CoV-2 cross-reactive antibody (a kind gift from Dr. 
Laura McCoy, UCL) in permeabilization buffer for 30 min at room temperature, washed once and 
incubated with secondary Alexa Fluor 488-Donkey-anti-Human IgG (Jackson Labs). All samples 
were acquired on a BD Fortessa X20 using BD FACSDiva software. Data was analysed using 
FlowJo v10 (Tree Star). 
  
Innate immune sensing assay 
HEK293T cells were seeded in 48-well plates (5x104 cells/well) the day before transfection. For 
viral protein expression, cells were transfected with 100ng of empty vector or vector encoding 
either ORF9b, ORF9bS50/53E, VIC N or B.1.1.7 N (pLVX-EF1alpha-IRES-Puro backbone), 
alongside 10ng of ISG56-firefly luciferase reporter plasmid (kindly provided by Andrew Bowie, 
Trinity College Dublin), and 2.5ng of a Renilla luciferase under control of thymidine kinase 
promoter (Promega), as a control for transfection. Transfections were performed with 0.75μL 
fugene (Promega) and 25μl Optimem (Gibco) per well. Cells were stimulated 24 hours post 
plasmid transfection with poly I:C (Invivogen), concentrations stated in figures (final 250μl volume 
per well), using Lipofectamine 2000 (Invitrogen) at a 3:1 ratio and 25μl optimem. Cells were lysed 
with 100 μl passive lysis buffer (Promega) 24 h after stimulation, 30 μl of cell lysis was transferred 
to a white 96-well assay plate and firefly and renilla activities were measured using the Dual-Glo® 
Luciferase Assay System (Promega), reading luminescence on a GloMax ®-Multi Detection 
System (Promega). For each condition, data were normalized by dividing the firefly luciferase 
activity by renilla luciferase activity and then compared to the empty-vector transfected mock-
treated control to generate a fold induction. 
 
Immunofluorescence staining and microscopy imaging 
Cells were fixed using 4% PFA-PBS for 1h and subsequently washed with PBS. A blocking step 
was carried out for 1h at room temperature with 10% goat serum/1%BSA in PBS. Nucleocapsid 
(N) protein detection was performed by primary incubation with human anti-N antibody (Cr3009, 
1ug/ml) for 18h, and washed thoroughly in PBS. Where appropriate, N-protein staining was 
followed by incubation with mouse anti-IRF3 (sc-33641, Santa Cruz) for 1h. Primary antibodies 
were detected by labelling with secondary anti-human AlexaFluor-568 and anti-mouse AlexaFluor 
488 conjugates (Jackson Immuno Research) for 1h. All cells were then labelled with HCS 
CellMask DeepRed (H32721, Thermo Fisher) and Hoechst33342 (H3570, Thermo Fisher). 
Images were acquired using the WiScan® Hermes High-Content Imaging System (IDEA Bio-
Medical, Rehovot, Israel) at magnification 10X/0.4NA or 40X/0.75NA. Four channel automated 
acquisition was carried out sequentially (DAPI/TRITC, GFP/Cy5). Images were acquired at 40X 
magnification, 35%  density/ 30% well area resulting in 102 FOV/well. 
 
Image analysis of immunofluorescence experiments 
IRF3 raw image channels were pre-processed using a batch rolling ball background correction in 
FIJI imagej software package56 prior to 514 quantification. Automated image analysis was carried 
out using CellProfiler57. Firstly, Nuclei were identified as primary objects by segmentation of the 
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Hoechst33342 channel. Cells were identified as secondary objects by nucleus-dependent 
segmentation of the CellMask channel. Cell cytoplasm was segmented by subtracting the nuclear 
objects mask from the cell masks. Nucleocapsid positive cells were identified by identifying 
nucleocapsid signal as primary objects followed by generation of a nucleocapsid mask which was 
then applied to filter the segmented cell population. Intensity properties were calculated for the 
nuclei, cytoplasm and cell object populations. Nuclear:cytoplasmic ratio was calculated as part of 
the pipeline by dividing the Integrated Intensity of the nuclei object by the integrated intensity of 
corresponding cytoplasm object. Plotted are 1000 randomly sampled cells selected for each 
condition using the 'Pandas' data processing package in Python 3  with a filter of 0.1>=<5. 
 
Coimmunoprecipitation of Tom70 with Orf9b 
HEK293T were transfected with the indicated mammalian expression plasmids using 
Lipofectamine 2000 (Invitrogen). Twenty-four hours post-transfection, cells were harvested and 
lysed in NP-40 lysis buffer [0.5% Nonidet P 40 Substitute (NP-40; Fluka Analytical), 50 mM Tris-
HCl, pH 7.4 at 4°C, 150 mM NaCl, 1 mM EDTA] supplemented with cOmplete mini EDTA-free 
protease and PhosSTOP phosphatase inhibitor cocktails (Roche). Clarified cell lysates were 
incubated with Streptactin Sepharose beads (IBA) for 2 hours at 4°C, followed by five washes 
with NP-40 lysis buffer. Protein complexes were eluted in the SDS loading buffer and were 
analyzed by western blotting with the indicated antibodies. Antibodies: Rabbit anti–Strep-tag II 
(Abcam #ab232586); Rabbit anti-beta-actin (Cell Signaling Technology #4967); Monoclonal 
mouse anti-FLAG M2 antibody (Sigma Aldrich, F1804), Polyclonal rabbit anti-FLAG antibody 
(Sigma Aldrich, F7425) 
 
Cell lysis and digestion for proteomics 
Following the infection time course, cells in 6-well plates were washed quickly three times in ice 
cold 1x PBS. Next, cells were lysed in 250uL/well of 6M guanidine hydrochloride (Sigma) in 
100mM Tris-HCl (pH 8.0) and scraped with a cell spatula for complete collection of the sample. 
Samples were then boiled for 5 minutes at 95C to inactivate proteases, phosphatases, and virus. 
Samples were frozen at -80C and shipped to UCSF on dry ice. Upon arrival, samples were 
thawed, an additional 250uL/sample of 6M guanidine hydrochloride buffer was added, and 
samples were sonicated for 3x for 10 seconds at 20% amplitude. Insoluble material was pelleted 
by spinning samples at max speed for 10 minutes. Supernatant was transferred to a new protein 
lo-bind tube and protein was quantified using a Bradford assay. The entire sample (approximately 
600ug of total protein) was subsequently processed for reduction and alkylation using a 1:10 
sample volume of tris-(2-carboxyethyl) (TCEP) (10mM final) and 2-chloroacetamide (4.4mM final) 
for 5 minutes at 45°C with shaking. Prior to protein digestion, the 6M guanidine hydrochloride was 
diluted 1:6 with 100mM Tris-HCl pH8 to enable the activity of trypsin and LysC proteolytic 
enzymes, which were subsequently added at a 1:75 (wt/wt) enzyme-substrate ratio and placed in 
a 37°C water bath for 16-20 hours. Following digestion, 10% trifluoroacetic acid (TFA) was added 
to each sample to a final pH ∼2. Samples were desalted under vacuum using 50mg Sep Pak 
tC18 cartridges (Waters). Each cartridge was activated with 1 mL 80% acetonitrile (ACN)/0.1% 
TFA, then equilibrated with 3 × 1 mL of 0.1% TFA. Following sample loading, cartridges were 
washed with 4 × 1 mL of 0.1% TFA, and samples were eluted with 2 × 0.4 mL 50% ACN/0.25% 
formic acid (FA). 60μg of each sample was kept for protein abundance measurements, and the 
remainder was used for phosphopeptide enrichment. Samples were dried by vacuum 
centrifugation. 
  
Phosphopeptide enrichment for proteomics 
IMAC beads (Ni-NTA from Qiagen) were prepared by washing 3x with HPLC water, incubating 
for 30 minutes with 50mM EDTA pH 8.0 to strip the Ni, washing 3x with HPLC water, incubating 
with 50mM FeCl3 dissolved in 10% TFA for 30 minutes at room temperature with shaking, 
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washing 3x with and resuspending in 0.1% TFA in 80% acetonitrile. Peptides were enriched for 
phosphorylated peptides using a King Flisher Flex. For a detailed protocol, please contact the 
authors. Phosphorylated peptides were found to make up more than 90% of every sample, 
indicating high quality enrichment. 
 
Mass spectrometry data acquisition for proteomics 
Digested samples were analysed on an Orbitrap Exploris 480 mass spectrometry system (Thermo 
Fisher Scientific) equipped with an Easy nLC 1200 ultra-high pressure liquid chromatography 
system (Thermo Fisher Scientific) interfaced via a Nanospray Flex nanoelectrospray source. For 
all analyses, samples were injected on a C18 reverse phase column (25 cm x 75 μm packed with 
ReprosilPur 1.9 μm particles). Mobile phase A consisted of 0.1% FA, and mobile phase B 
consisted of 0.1% FA/80% ACN. Peptides were separated by an organic gradient from 5% to 30% 
mobile phase B over 112 minutes followed by an increase to 58% B over 12 minutes, then held 
at 90% B for 16 minutes at a flow rate of 350 nL/minute. Analytical columns were equilibrated with 
6 μL of mobile phase A. To build a spectral library, one sample from each set of biological 
replicates was acquired in a data dependent manner. Data dependent analysis (DDA) was 
performed by acquiring a full scan over a m/z range of 400-1000 in the Orbitrap at 60,000 
resolving power (@200 m/z) with a normalised AGC target of 300%, an RF lens setting of 40%, 
and a maximum ion injection time of 60 ms. Dynamic exclusion was set to 60 seconds, with a 10 
ppm exclusion width setting. Peptides with charge states 2-6 were selected for MS/MS 
interrogation using higher energy collisional dissociation (HCD), with 20 MS/MS scans per cycle. 
For phosphopeptide enriched samples, MS/MS scans were analysed in the Orbitrap using 
isolation width of 1.3 m/z, normalised HCD collision energy of 30%, normalised AGC of 200% at 
a resolving power of 30,000 with a 54 ms maximum ion injection time. Similar settings were used 
for data dependent analysis of samples used to determine protein abundance, with an MS/MS 
resolving power of 15,000 and a 22 ms maximum ion injection time. Data-independent analysis 
(DIA) was performed on all samples. An MS scan at 60,000 resolving power over a scan range 
of 390-1010 m/z, a normalised AGC target of 300%, an RF lens setting of 40%, and a maximum 
injection time of 60 ms was acquired, followed by DIA scans using 8 m/z isolation windows over 
400-1000 m/z at a normalised HCD collision energy of 27%. Loop control was set to All. For 
phosphopeptide enriched samples, data were collected using a resolving power of 30,000 and a 
maximum ion injection time of 54 ms. Protein abundance samples were collected using a 
resolving power of 15,000 and a maximum ion injection time of 22 ms. 
 
Spectral library generation and raw data processing for proteomics 
Raw mass spectrometry data from each DDA dataset were used to build separate libraries for 
DIA searches using the Pulsar search engine integrated into Spectronaut version 
14.10.201222.47784 by searching against a database of Uniprot Homo sapiens sequences 
(downloaded February 28, 2020) and 29 SARS-CoV-2 protein sequences translated from 
genomic sequence downloaded from GISAID (accession EPI_ISL_406596, downloaded March 
5, 2020) including mutated tryptic peptides corresponding to the variants assessed in this study. 
For protein abundance samples, data were searched using the default BGS settings, variable 
modification of methionine oxidation, static modification of carbamidomethyl cysteine, and filtering 
to a final 1% false discovery rate (FDR) at the peptide, peptide spectrum match (PSM), and protein 
level. For phosphopeptide enriched samples, BGS settings were modified to include 
phosphorylation of S, T, and Y as a variable modification. The generated search libraries were 
used to search the DIA data. For protein abundance samples, default BGS settings were used, 
with no data normalisation performed. For phosphopeptide enriched samples, the Significant PTM 
default settings were used, with no data normalisation performed, and the DIA-specific PTM site 
localization score in Spectronaut was applied. 
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Mass spectrometry data pre-processing 
Quantitative analysis was performed in the R statistical programming language (version 3.6.1, 
2019-07-05). Initial quality control analyses, including inter-run clusterings, correlations, principal 
components analysis, peptide and protein counts and intensities were completed with the R 
package artMS (version 1.8.1). Based on obvious outliers in intensities, correlations, and 
clusterings in PCA analysis, 1 run was discarded from the protein phosphorylation dataset (IC19 
24h replicate 2). Statistical analysis of phosphorylation and protein abundance changes between 
mock and infected runs, as well as between infected runs from different variants (e.g. Kent versus 
VIC) were computed using peptide ion fragment data output from Spectronaut and processed 
using artMS. Specifically, quantification of phosphorylation based on peptide ions were processed 
using artMS as a wrapper around MSstats, via functions artMS::doSiteConversion and 
artMS::artmsQuantification with default settings. All peptides containing the same set of 
phosphorylated sites were grouped and quantified together into phosphorylation site groups. For 
both phosphopeptide and protein abundance MSstats pipelines, MSstats performs normalisation 
by median equalization, imputation of missing values and median smoothing to combine 
intensities for multiple peptide ions or fragments into a single intensity for their protein or 
phosphorylation site group, and statistical tests of differences in intensity between infected and 
control time points. When not explicitly indicated, we used defaults for MSstats for adjusted p-
values, even in cases of N = 2. By default, MSstats uses Student’s t-test for p-value calculation 
and Benjamini-Hochberg method of FDR estimation to adjust p-values.  
 
Refining and filtering phosphorylation and abundance data 
MSstats phosphorylation results had to be further simplified to effects at single sites. The results 
of artMS/MSstats are fold changes of specific phosphorylation site groups detected within 
peptides, so one phosphorylation site can have multiple measurements if it occurs in different 
phosphorylation site groups. This complex dataset was reduced to a single fold change per site 
by choosing the fold change with the lowest p-value, favoring those detected in both conditions 
being compared (i.e. non-infinite log2 fold change values). This single-site dataset was used as 
the input for kinase activity analysis and enrichment analysis. Protein abundance data was 
similarly simplified when a single peptide was mapped to multiple proteins; that is, by choosing 
the fold change with the lowest p-value, favoring those detected in both conditions being 
compared (see Table S1 for final refined data). 
 
RNA quality control 
Thirty total RNA samples were submitted for RNA quality control. Total RNA samples were run 
on the Agilent Bioanalyzer, using the Agilent RNA 6000 Nano Kit. Three samples were excluded 
from library preparation due to severe degradation and/or low amounts of RNA present. 
 
Library preparation for RNAseq 
Twenty-seven total RNA samples were processed using the Illumina Stranded Total RNA w/Ribo-
Zero Plus assay. One-hundred nanograms of each total RNA sample (quantitated on the 
Invitrogen Qubit 2.0 Fluorometer using the Qubit RNA HS Assay Kit) was subjected to ribosomal 
RNA (rRNA) depletion through an enzymatic process, which includes reduction of human 
mitochondrial and cytoplasmic rRNAs. Following rRNA depletion and purification, RNA was 
primed with random hexamers for first-strand cDNA synthesis, then second-strand cDNA 
synthesis. During second-strand cDNA synthesis, deoxyuridine triphosphate (dUTP) was 
incorporated in place of deoxythymidine triphosphate (dTTP) to achieve strand specificity in a 
subsequent amplification step. Next, adenine (A) nucleotide was added to the 3’ ends of the blunt 
fragments to prevent ends from ligating to each other. The A-tail also provides a complementary 
overhang to the thymine (T) nucleotide on the 3’ end of the adapter. During adapter ligation and 
amplification, indexes and adapters were added to both ends of the fragments, resulting in 10bp, 
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dual-indexed libraries, ready for cluster generation and sequencing. The second-strand was 
quenched during amplification due to the incorporation of dUTP during second-strand cDNA 
synthesis, allowing for only the antisense strand to be sequenced in Read 1. Thirteen cycles of 
amplification were performed. 
 
Library quality control and quantification for RNAseq 
Each library was run on the Agilent Bioanalyzer, using the Agilent High Sensitivity DNA Kit, to 
assess the size distribution of the libraries. They were quantitated by quantitative polymerase 
chain reaction (qPCR) using a Roche KAPA Library Quantification Complete Kit (ABI Prism), and 
run on the Applied Biosystems QuantStudio 5 Real-Time PCR System. 
 
Sequencing for RNAseq 
Each library was normalised to 10nM, then pooled equimolarly for a final concentration of 10nM. 
Pooled libraries were submitted to the University of California San Francisco Center for Advanced 
Technology (UCSF CAT) for one lane of sequencing on the Illumina NovaSeq 6000 S4 flow cell. 
The run parameter was 100x10x10x100bp. 
 
Viral RNA quantification from RNASeq Dataset 
Viral RNA were characterised by the junction of the leader with the downstream subgenomic 
sequence. Reads containing possible junctions were extracted by filtering for exact matches to 
the 3’ end of the leader sequence “CTTTCGATCTCTTGTAGATCTGTTCTC” using the bbduk 
program in the BBTools package (BBTools - Bushnell B. - sourceforge.net/projects/bbmap/). This 
subset of leader-containing reads were left-trimmed to remove the leader, also using bbduk. The 
filtered and trimmed reads were matched against SARS2 genomic sequence with the bbmap 
program from BBtools with settings (maxindel=100, strictmaxindel=t, local=t). The left-most 
mapped position in the reference was used as the junction site.  All strains were mapped against 
a reference SARS-Cov-2 sequence (accession NC_045512.2), except  B.1.1.7 was mapped 
against a B.1.1.7-specific sequence (GISAID: EPI_ISL_693401) and the resultant positions 
adjusted to the reference based on a global alignment.  Junction sites were labeled based on 
locations of TRS sequences, or other known site with a +/- 5 base pair window as follows (genomic 
= 67, S = 21553, orf3 = 25382, E = 26237, M = 26470, orf6 = 27041, orf7 = 27385, orf8 = 27885, 
N = 28257, orf9b = 28280, N* = 28878). Junction reads were counted per position, a pseudocount 
of 0.5 was added at all positions, counts between replicates and strains were normalised to have 
equal “genomic” reads, and counts were averaged across replicate samples. Means and standard 
errors of counts averaged across replicates were subsequently calculated. To calculate the ratios 
between B.1.1.7 and VIC, counts averaged across replicates from B.1.1.7 were divided in a 
condition and time point matched fashion by values from VIC or IC19. The standard error (se) of 
the ratios was calculated as (A/B) * sqrt( (se.A/A)² + (se.B/B)² ). 
 
Host RNA analysis 
All reads were mapped to the human host genome (ensembl 101) using HISAT2 aligner58. Host 
transcript abundances were estimated using human annotations (ensembl 101) using StringTie59. 
Differential gene expression were done on read counts extracted for each protein coding gene 
using featureCount and significance was determined by the DESeq2 R package60.  
 
Viral protein quantification 
Median normalized peptide feature (peptides with unique charge states and elution times) 
intensities (on a linear scale) were refined to the subset that mapped to SARS-CoV-2 protein 
sequences using Spectronaut (see Methods). Peptide features found in the same biological 
replicate (i.e. due to different elution times, for example) were averaged. Next, for each timepoint 
separately, we selected the subset of peptides that were consistently detected in all biological 
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replicates across all conditions (no missing values), isolating the set of peptides with the best 
comparative potential. We then summed all peptides mapping to each viral protein for each time 
point separately which resulted in our final protein intensity per viral protein per time point per 
biological replicate. Resulting protein intensities were averaged across biological replicates and 
standard errors were calculated for each condition. To calculate the ratios between B.1.1.7 and 
VIC, averaged intensities for B.1.1.7 were divided in a condition and time point matched fashion 
by values from VIC or IC19. The standard error (se) of the ratios was calculated as (A/B) * sqrt( 
(se.A/A)² + (se.B/B)² ). 
 
Kinase activity analysis of phosphoproteomics data 
Kinase activities were estimated using known kinase-substrate relationships in literature61. The 
resource comprises of a comprehensive collection of phosphosite annotations of direct substrates 
of kinases obtained from six databases, PhosphoSitePlus, SIGNOR, HPRD, NCI-PID, Reactome, 
and the BEL Large Corpus, and using three text-mining tools, REACH, Sparser, and RLIMS-P. 
Kinase activities were inferred as a Z-score calculated using the mean log2FC of phosphorylated 
substrates for each kinase in terms of standard error (Z = [M - u] / SE), comparing fold changes 
in phosphosite measurements of the known substrates against the overall distribution of fold 
changes across the sample. A p-value was also calculated using this approach using a two-tailed 
Z-test method. This statistical approach has been previously shown to perform well at estimating 
kinase activities38,62. We collected substrate annotations for 400 kinases with available data. 
Kinase activities for kinases with 3 or more measured substrates were considered, leaving us with 
191 kinases with activity estimates in at least one or more infection time points. Kinases were 
clustered based on pathway similarity by constructing a kinase tree based on co-membership in 
pathway terms (from CP “Canonical Pathways” MSigDBv7.1). 
 
Pathway enrichment analysis 
The pathway gene sets were obtained from the CP (i.e. “Canonical Pathways”) category of 
Molecular Signature Database (MSigDBv7.1)35. We used the same approach for this pathway 
enrichment analysis as we used for the kinase activity analysis. Namely, we inferred pathway 
regulation as Z-score and an FDR-corrected (0.05) p-value calculated from a Z-test (two-tailed) 
comparing fold changes in phosphosite, protein abundance, or RNA abundance measurements 
of genes designated for a particular pathway against the overall distribution of fold changes in the 
sample. All resulting terms were further refined to select non-redundant terms by first constructing 
a pathway term tree based on distances (1-Jaccard Similarity Coefficients of shared genes in 
MSigDB) between the terms. The pathway term tree was cut at a specific level (h = 0.8) to identify 
clusters of non-redundant gene sets. For results with multiple significant terms belonging to the 
same cluster, we selected the most significant term (i.e. lowest adjusted p-value). Next, we filtered 
out terms that were not signifƒicant (FDR corrected p-value < 0.05) for at least one contrast. 
Terms were ranked according to either the absolute value z-score across contrasts that included 
B.1.1.7 (see Fig. S1g-i) or by averaged -log10(p-values) across time-matched contrasts involving 
B.1.1.7 (see Fig. S2b). 
 
Transcription factor activity analysis  
Transcription factor activities were estimated from RNAseq data using DoRothEA63 which 
provides a comprehensive resource of TF-target gene interactions and annotations indicating 
confidence level for each interaction based on the number of supporting evidence. We restricted 
our analysis to A, B, and C levels which comprise of the most reliable interactions. For the TF 
activity enrichment analysis, VIPER64 was executed with the t-statistic derived from the differential 
gene expression analysis between variant infected and controls (wild-type) infected cells. 
Transcription factor activity is defined as the normalised enrichment scores (NES) derived from 
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the VIPER algorithm. VIPER algorithm was run with default parameters except for the eset.filter 
parameter which was set to FALSE and consider regulons with at least five targets. 
 
Selection of interferon stimulated genes (ISGs) 
Interferon stimulated genes (ISGs) were taken from a prior experimental study36 and annotated 
as ISGs. To this list of 38 genes, we added the following based on manual curation from the 
literature: IFI16, IFI35, IFIT5, LGALS9, OASL, CCL2, CCL7, IL6, IFNB1, CXCL10, and ADAR. 
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