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Abstract

Numerous studies have provided single-cell transcriptome profiles of host responses to SARS-
CoV-2 infection. Critically lacking however is a reusable datamine to allow users to compare and
explore these data for insight, inference, and hypothesis generation. To accomplish this, we
harmonized datasets from blood, bronchoalveolar lavage and tissue samples from COVID-19 and
other control conditions and derived a compendium of gene signature modules per cell type,
subtype, clinical condition and compartment. We demonstrate approaches for exploring and
evaluating their significance via a new interactive web portal (ToppCell). As examples, we
develop three hypotheses: (1) a multicellular signaling cascade among alternatively differentiated
monocyte-derived macrophages whose tasks include T cell recruitment and activation; (2) novel
platelet subtypes with drastically modulated expression of genes responsible for adhesion,
coagulation and thrombosis; (3) a multilineage cell activator network able to drive extrafollicular
B maturation via an ensemble of genes extensively associated with risk for developing

autoimmunity.

Teaser

Implicating COVID-19 Gene and Cell Networks Responsible for Inflammation,

Thromboembolism and Autoimmune Pathobiology.

Short title
Data mining COVID-19 Gene and Cell Networks
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Introduction

COVID-19 clinical outcomes are variable. The poorer outcomes due to this infection are highly
associated with immunological and inflammatory responses to SARS-Cov-2 infection (7, 2) and
many recent single cell expression profiling studies have characterized patterns of
immunoinflammatory responses among individuals, mostly during acute infection phases.
Different studies have revealed a spectrum of responses that range from lymphopenia (3, 4),
cytokine storms (3, 6), differential interferon responses (7, §) and emergency myelopoiesis (9,
10). However, a variety of obstacles limit the ability of the research and medical communities to
explore and compare these studies to pursue additional questions and gain additional insights that
could improve our understanding of cell type specific responses to SARS-CoV-2 infection and
their impact on clinical outcome.

Whereas many studies have focused on the peripheral blood mononuclear cells (PBMC) (9, 11—
14) due to ease of procurement, other studies have profiled airway locations via bronchoalveolar
lavage (BAL) (15, 16), nasopharyngeal swabs, and bronchial brushes (/7). Additional sampling
sites that could also be infected or affected have also been approached in autopsy-derived
materials from the central nervous system (/8, /9), and other sites (20). Moreover, as major
COVID-19 consortiums working on the collection and integration of each of their individual
studies and interpreting important features of these individual datasets as downloadable datasets
or browsable versions, such as single cell portal
(https://singlecell.broadinstitute.org/single cell/covid19) and COVID-19 Cell Atlas
(https://www.covid19cellatlas.org/), using these data beyond markers, cell types, and individual
signatures is either not possible or not accomplishable across-datasets. Thus, a well-organized and
systematic study of immune cells across tissues for in-depth biological explorations is an unmet
need for a deeper understanding of the underlying basis of the breadth of COVID-19 host defense
and pathobiology.

Here we harmonized and analyzed eight high quality publicly available single-cell RNA-seq
datasets from COVID-19 and immunologically-related studies that in total covered more than
480,000 cells isolated from peripheral blood, bronchial alveolar lavage and lung parenchyma
samples, and assembled an integrated COVID-19 atlas (https://toppcell.cchmc.org/). We
established a framework for deriving, characterizing, and establishing reference gene expression
signatures from these harmonized datasets using modular and hierarchical approaches based on

signatures per class, subclass, and signaling/activation and clinical status per each sample group.
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Leveraging these gene expression signature modules, we demonstrate datamining approaches that
allow for the identification of a series of fundamental disease processes: (1) an intercellular
monocytic activation cascade capable of mediating the emergence of hyperinflammatory
monocyte-derived alveolar macrophages in severe COVID-19 patients; (2) the generation of
several alternatively differentiated platelet subtypes with dramatically different expression of sets
of genes associated with critical platelet tasks capable of altering vascular and tissue responses to
infectious agents; and (3) a multilineage and multi cell type cooperative signaling network with
the potential to drive extrafollicular B maturation at a lesion site, but do so with high risk for the
development of B cell-associated immunity. Additionally, immune hallmarks of COVID-19
patients were compared with other immune-mediated diseases using single-cell data from patients
with influenza, sepsis, or multiple sclerosis. Consistent and varied compositional and gene

patterns were identified across these implicating striking COVID-19 effects in some individuals.

Results

Creating the First COVID-19 Signature Atlas Using ToppCell Portal

To have a comprehensive coverage of cells, we collated single-cell data of COVID-19 patients
from eight public datasets, which in total contains 231,800 PBMCs, 101,800 BAL cells and
146,361 lung parenchyma cells from donors: 43 healthy; 22 mild; 42 severe; and 2 convalescent

patients (Fig. 1A, table S1).

To assemble an integrated atlas of human cell responses to COVID-19, we sought to harmonize
metadata encompassing clinical information, sampling compartments, and cell and gene
expression module designations. Doing so provides a rich framework for detecting perturbations
of cell repertoire and differentiative state adaptations. We first integrated single cell RNA-seq
data in Seurat (2/) and annotated cell types using canonical markers (table S2). Further
annotations of B cell and T cell subtypes were completed using the reference-based labeling tool
Azimuth (22). Sub-clustering was applied for some cell types, such as neutrophils and platelets, to
interrogate finer resolutions of disease-specific sub-populations (Fig. 1B). Using the ToppCell
toolkit (https://toppcell.cchmc.org/), we created over 3,000 hierarchical gene modules of the most
significant differentially expressed genes (DEGs) for all cell classes and sub-clusters across
compartments and disease severity (table S1). These modules were then used to infer cell-cell
interactions as well as upregulated pathways, which were further combined for functional

comparative analysis in a specific cell manner in ToppCluster (23) (Fig. 1B), such as sub-clusters
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of platelets. Integration of ToppCluster output of cells from multiple compartments and disease
conditions built pathogenic maps, highlighted by the coagulation map of COVID-19 (fig. S12). In
addition, perturbation of cell abundance was evaluated either in one cell population, or in multiple
populations across diseases. Taken together, we investigated cell abundance changes, severity-

associated signatures, mechanisms of COVID-19 specific symptoms and unique features of

COVID-19 as an immune-mediated disease (Fig. 1B).

Dynamic Changes and Balance of COVID-19 Immune Repository in Blood and Lung

After the aforementioned cell annotation procedure, we identified 28 and 24 distinct cell types in
PBMC and BAL respectively (Fig. 2, A and C, table S2). Shifts of Uniform Manifold
Approximation and Projection (UMAP) of cell type distributions were observed in both
compartments of mild and severe patients (Fig. 2, A and C, fig. S1A and fig. S3A). In PBMC,
conventional dendritic cells (cDC), plasmacytoid dendritic cells (pDC) and non-classical
monocytes displayed a prominent reduction in severe patients (Fig. 2B and fig. S1C), consistent
with prior reports (17, 24, 25). In contrast, severe patients demonstrated dramatic expansion of
neutrophils, especially immature stages (fig. SIC and fig. S2). Integration with evoked pathways
in the following analysis implicated that neutrophil expansion was likely the consequence of
emergency myelopoiesis (26). Additionally, a general down-regulation of T cell and NK cell was
observed, consistent with lymphopenia reported in clinical practices (5, 27) (fig. S1C and fig. S2).
However, the trend of T cell subtypes varies across studies and individuals, apart from
proliferative T cells which have a dramatic increase in mild and severe patients (fig. S2). Notably,
plasmablasts substantially increased in COVID-19 patients, and especially so in severe patients,
suggesting upregulated antibody production (28) (Fig. 2B and fig. S1C). Expansion of platelets is
another significant change observed in severe patients, possibly leading to immunothrombosis in
the lung, which could be closely associated with the severity of the disease (29, 30) (Fig. 2B and
fig. S1C).

In samples obtained from patients’ lungs, we observed the depletion of FABP4"eh tissue-resident
alveolar macrophages (TRAM) and dramatic expansion of FCN1"€" monocyte-derived alveolar
macrophages (MoAM) in severe patients (Fig. 2, C and D and fig. S3D). Mild patients exhibited a
moderate reduction of tissue-resident macrophages, but no evidence of aggregation of monocyte-
derived macrophages (Fig. 2, C and D, fig. S3, A and D). Dynamic changes of these two subtypes

suggest increased tissue chemoattraction (37) and potential damage of patients' lungs (32). In
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addition, neutrophils were only identified in severe patients in the integrated BAL data (Fig. 2C
and fig. S3A), which might be related with neutrophil extracellular traps (NETs) in the lung (33).
However, more samples are required to draw a solid conclusion. We also noted conventional
dendritic cells decreased in the severe patients, which is consistent with the trend of the
counterpart in PBMC data. Opposite to the change in PBMC, an expansion of plasmacytoid
dendritic cells is observed in both mild and severe patients (Fig. 2D). Other cell types, including T
cell and NK cell in the BAL, also have converse changes of their counterparts in PBMC, which
could be attracted by lung macrophages or epithelial cells after infection or damages (/7) (Fig. 2D
and fig. S3D). These changes were consistently observed in lung parenchyma samples from
severe COVID-19 patients (fig. S4). With cells well-annotated in the integrated COVID-19 atlas,
we drew a global heatmap for cells in both blood and lung using ToppCell gene modules (top 50
DEG in each module) of all identified cell classes. While there was conservation of gene patterns
involved in healthy donors and severe COVID-19 patients, there were substantial differences
most notably in myeloid cells (Fig. 2E). Such hierarchically ordered ToppCell gene modules were
broadly used in visualization, large-scale comparisons and fine-resolution investigations in the

following analyses.

Myeloid Cell Atlas: Functionally Distinct Neutrophils at Different Levels of Maturation and
Derailed Macrophages in the Lung

Dysregulated myeloid cells have been reported as an important marker of severe COVID-19
patients (9, 10). In order to gain a deeper and comprehensive understanding of these cells, we
applied the sub-clustering strategy on the integrated data of key cell types, such as neutrophils and
macrophages, and then generated gene modules for comparative functional analysis and
interactome inference. We successfully identified 5 neutrophil sub-clusters after the integration of
PBMC and BAL data, including 3 FCGR3B+ mature sub-clusters and 2 FCGR3B- immature sub-
clusters (Fig. 3A and fig. S5B, table S3). They’re mainly from severe patients and their gene
modules were generated and subjected to comparative functional enrichment using ToppCell and
ToppCluster (Fig. 3, C and D, fig. S5A). We identified proliferative neutrophils (referred to as
pro-neutrophils and Neu4) and MMP8"gh precursor immature neutrophils (referred to as pre-
neutrophils and Neu2) (Fig. 3A and fig. S5B) consistent with prior studies (9). While immune
response genes and pathways were barely activated in the immature neutrophils, they displayed
upregulation of granule formation pathways and NETosis-associated proteins, including ELANE,

DEFA4 and MPO, especially in Neu4 (9, 26) (Fig. 3C, fig. S5, B and C). Upregulated myeloid
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leukocyte mediated immunity in Neu2 suggests involvement of this cell type in anti-viral function
(Fig. S5D). Yet, the absence of cytokine and interferon response pathways suggests the lack of
mature immune responses (Fig. 3D). Notably, compared to mature neutrophils (Neu0O and Neul)
in the blood, the extravasated hyperinflammatory sub-cluster (Neu3) from BAL of severe patients
shows extraordinarily high expression of interferon-stimulated genes, as well as prominent

upregulation of productions and responses to cytokines and interferons (Fig. 3, C and D, fig S5, B

and D).

MoAM and TRAM were two main macrophage types in the BAL (Fig. 2C); both are known to
have distinct roles in immune responses in the lung (/5). As described above, five sub-clusters
among the expanded COVID-19 patient-specific MoAM (Fig. 3B, table S3) were found, where
the loss of HLA class II genes and elevation of interferon-stimulated genes (ISGs) were
consistently observed (Fig. 3F and fig. S6A). Relative to MoAM3,4, MoAM1,2,5 displayed an
upregulation of interferon responses and cytokine production (Fig. 3D, fig. S6B and table S3),
indicating their pro-inflammatory characteristics. Notably, MoAMS shows dramatic upregulation
of IL-6 secretion and cytokine receptor binding activities (Fig. S7, A to D). However, cells in this
sub-cluster were mainly from one severe patient (fig. S3C). We still need more data to fully
understand such dramatic upregulation of IL-6 secretion in some severe patients. Similar to
MoAM, we also identified two distinct groups of TRAM in BAL (Fig. 3B and fig. S6B),
including quiescent TRAM (TRAMI1 and TRAM?2) and activated TRAM (TRAM3). The
quiescent group was mainly from healthy donors with enriched pathways of ATP metabolism
(Fig. 3D), while the activated group from mild and severe patients displays upregulation of ISGs
and cytokine signaling pathways (fig. S6B and table S3). However, the magnitude of activation
and inflammatory responses in TRAM3 is smaller than MoAM1,2,5. Not surprisingly, stronger
antigen processing and presentation activities were observed in TRAM3 relative to MoAM1,2,5
(Fig. 3D, fig. S6B and table S3). Collectively, we concluded that tissue-resident macrophages
were greatly depleted in severe patients as the front-line innate immune responders in the lung.
Pro-inflammatory monocyte-derived macrophages infiltrate into the lung, leading to the cytokine
storm and damage of the lung. Large amounts of infiltration of MoAM were not observed in mild
COVID-19 patients, probably due to the controlled infection, which could explain milder lung

damages in those patients.
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To develop an understanding of the interaction network in the lung microenvironment of severe
COVID-19 patients, we focused on signaling ligands, receptors and pathways using ToppCell and
CellChat (Fig. 3E and fig. S8, A and B). Notably, basal cells, MoAMs, neutrophils and T cells all
contributed to the cytokine, chemokine and interleukin signaling networks. Strikingly, severe
patient specific MOAM?2 shows the broadest upregulation of signaling ligands, including CCL2,
CCL3, CCL7, CCL8, CXCL9, CXCL9, CXCL10, CXCL11, IL6, IL15 and IL27, suggesting its
role as a signaling network hub that is distinct from the other major signaling ligand-expressing
cells of BAL such as epithelial and other myeloid cell types such as TRAM3 and proliferating
myeloid cells (fig. S8A). Among the MoAM?2 top signaling molecules, attractants CXCLS,
CXCL9 and CXCL10 are known to target CXCR3 on T cells, suggesting their role is to stimulate
migration of T cells to the epithelial interface and into BAL fluid (Fig. 3E) (/5). In addition,
many of MoAM2’s ligands have the potential to cause autocrine signaling activation via IL6-
IL6R, IL1RN-ILR2, CCL7-CCR1, CCL2-CCR1 and CCL4-CCR1, indicating its active roles in
self-stimulation and development, which further amplify the attraction and migration of T cells
and other immune cells. Notably, CCR1 was also expressed in activated TRAM3, but with a
lower level. Although IL6 expression level is relatively low compared to other ligands in BAL
data, substantial expression of IL6R was observed in MoAMs. The CCL and CXCL signaling
pathways of neutrophils are less strong than MoAMs (fig. S8B), but they displayed high
expression levels of CXCR1 and CXCR2, which binds with a large number of the chemokines
from MoAM and epithelial cells (Fig. 3E). In addition, neutrophils exhibit an extraordinarily high
level of IL1B, which could potentially in turn activate macrophages (fig. S8, A and B). TRAM3
also displayed a unique pattern of signaling molecules, with a substantial level of CCL23 which
could potentially attract MoAM by the interaction with CCR1. Secretion of CXCL3 and CXCL5
in TRAM3 towards CXCR2 could be a potential chemoattraction pathway for neutrophils. In turn,
neutrophils could activate TRAM3 by secreting IL1B, which binds with ILIRAP. Additionally,
CD4+ T cells could also activate TRAM3 by IL10-IL10RB interaction (Fig. 3E and fig. S8, A and
B).

In addition to neutrophils and macrophages, the upregulation of ISGs was observed in classical
monocytes of both mild and severe patients (cMono3, cMono4), while the reduction of the MHC
class II cell surface receptor HLA-DR genes was only observed in severe patients (cMono4) (fig.
S9). In c¢DCs, polarization of interleukin secretion was observed in mild-patient and severe-

patient specific clusters (fig. SI0F). Collectively, dynamic changes of marker genes,
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transcriptional profiles, signaling molecules and biological activities reveal the heterogeneity of
myeloid cell sub-clusters across disease severity (fig. S11C). Pro-inflammatory gene expression
was found in all major myeloid cell types, including cMono4, DC1, DC9 in PBMC and Neu3,
DC10, MoAM1, MoAM2, MoAMS in BAL of COVID-19 patients. The reduction of MHC class
IT (HLA-II) genes is a common feature of classical monocytes and macrophages in COVID-19

patients and implies impaired capacity to activate T cell adaptive immunity.

COVID-19 Coagulation and Immunothrombosis Map

Individuals severely affected during acute phase COVID-19 infection, and in particular those with
significantly elevated risk of death, frequently demonstrate striking dysregulation of coagulation
and thrombosis characterized by hypercoagulability and microvascular thromboses (endothelial
aggregations of platelets and fibrin) and highly elevated D-dimer levels. Yet, COVID-19 does not
lead to wide scale consumption of fibrinogen and clotting factors (29, 30, 34—36). At present, we
lack a molecular or cellular explanation of the underlying basis of this pathobiology (29, 37). To
evaluate candidate effectors of this pathobiology, we used a list of genes associated with
abnormal thrombosis from mouse and human gene mutation phenotypes and identified
parenchymal lung sample endothelial cells and platelets in PBMC as cell types highly enriched
with respect to genes responsible for the regulation of hemostasis (fig. S12). Because platelet
counts were greatly elevated in severe versus mild individuals, we further examined platelet gene
expression signatures and cell type differentiation and identified six distinct platelet sub-clusters
shared across all datasets after data integration (Fig. 4, A and B). Severe-patient-specific PLTO is
an interesting sub-cluster with elevated integrin genes, including ITGA2B, ITGBI1, ITGB3,
ITGBS, as well as thrombosis-related genes, such as SELP, HPSE, ANOG6 and PF4V1. Antibodies
against the latter are associated with thrombosis including adverse reactions to recent COVID-19
vaccine ChAdOx1 nCoV-19 (38). In addition, upregulated pathways of hemostasis, wound
healing and blood coagulation were also observed in PLTO (Fig. S13A and table S4). Importantly,
PLT?2 is an inflammatory sub-cluster with an upregulation of ISGs and interferon signaling
pathways, while PLT4 is highlighted by upregulated post-transcriptional RNA splicing activities
(Fig. S13, A and C).

Severity-associated gene patterns were also identified by selecting coagulation-associated genes
modules (Fig. 4C and table S4), indicating distinct coagulation activities across platelets. Apart

from pan-platelet genes, we found dramatic upregulation of genes involved in platelet activation,
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fibrinogen binding and blood coagulation in platelets of severe COVID-19, including
procoagulant heparanase (HPSE) (39), Anoctamin-6 (ANOG6) (40), and selectin P (SELP) (41)
(Fig. 4, C and D). Heparanase is an endoglycosidase that cleaves heparan sulfate constituents, a
major component of anti-coagulation glycocalyx on the surface of vascular endothelium (42, 43).
Upregulated heparanase was related to upregulation of cell-matrix adhesion and coagulation (Fig.
4D). Thrombotic vascular damages could be caused by the degradation function of heparinase
enriched in platelets of severe patients. Elevation of ANOG is known to trigger phospholipid
scrambling in platelets, resulting in phosphatidylserine exposure which is essential for activation
of the clotting system (44). In addition, other upregulated genes involved in coagulation-
associated activities were also observed, including wound healing, fibrinolysis, platelet
aggregation and activation (Fig. 4D), which likely collectively contribute to the clotting issue of

severe COVID-19 patients.

Emergence of Developing Plasmablasts and B Cell Association with Autoimmunity
Autoimmune disorders in COVID-19 patients such as immune thrombocytopaenic purpura (ITP)
is now recognized as a known disease complication (45—-49). However, little is known about the
molecular and cellular mechanism behind it. To examine this further, we integrated B cells and
plasmablasts from both PBMC and BAL and conducted systematic analysis (Fig. 5, A and B and
fig. S14, A and B). Several COVID-19 specific sub-clusters were identified in B cells, such as
ISGMie" activated B cells (cluster 7) (Fig. 5A). Importantly, activated B cells showed dramatic
upregulation of interferon signaling pathways and cytokine productions (fig. S15A), indicating its
anti-virus characteristics. Notably, plasmablasts were mainly observed in severe COVID-19
patients, where a group of proliferative cells was identified and labeled as developing
plasmablasts (Fig. 5B). In contrast, non-dividing plasmablasts displayed upregulation of
immunoglobulin genes (IGHA1, IGHA2, IGKC), B cell markers (CD79A) (50), interleukin
receptors (IL2RG) and type I1 HLA complex (HLA-DOB) (Fig. 5C and table S5). In addition,
non-dividing plasmablasts showed unique isotypes of immunoglobulin (Ig) in sub-regions of
UMAP, whereas developing plasmablasts displayed obscure Ig types (fig. S14, E and F).
Antibody production activities were upregulated in non-dividing plasmablasts based on gene
enrichment analysis (Fig. S15A and table S5). Collectively, we inferred that non-dividing
plasmablasts had definite immunoglobulin isotypes and were actively involved in immune
responses towards COVID infection, while developing plasmablasts were less mature but highly

proliferative to replenish the repertoire of plasma cells.
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Since there are few clues of gene associations of autoimmunity in COVID-19, we brought up a
hypothesis-driven, prior knowledge-based approach to discover and prioritize genes for the
specific phenotype (Fig. 5D). First, gene modules of B cells and other cells in severe patients
were collected and subjected to ToppGene for enrichment analysis. Then we queried
autoimmunity-associated terms in the enriched output and identified associated genes. After that,
we retrieved interaction pairs using ToppCluster and CellChat database (57). In the end, we
identified genes that are not only involved in autoimmunity, but have a mediator role in the
immune signaling network. Using this approach, we observed several candidate pairs of genes,
including TNFSF13B-TNSRSF13, IL10-IL10RA, IL21-IL21RA, IL6-IL6R, CXCL13-CXCRS,
CXCL12-CXCR4, CCL21-CCR7, CCL19-CCR7 and CCL20-CCR6 in severe patients, which
were enriched for autoimmune diseases, such as autoimmune thyroid diseases, lupus nephritis,
autoimmune encephalomyelitis (52—56). Candidate cytokine and chemokine ligand genes were
expressed in various cell types in PBMC and BAL, including IL21 and CXCL13 from exhausted
T cells of BAL, CXCL12 from mesenchymal cells, IL6 and CCL21 from endothelial cells,
CCL19 from cDC and CCL20, TNFSF13B, and TNFSF13 from lung macrophages (Fig. SE and
table S5). These interaction pairs have been linked with auto-immunity (57, 58). In addition, we
analyzed single-cell studies (59, 60) of rheumatoid arthritis and lupus nephritis patients and found
that high expression levels of the candidate receptors in B cells and ligands in other cells were
also observed, such as CXCL13 in helper T cells and CXCRS5 in B cells in both studies (fig. S15,
C and D). However, more evidence is still required to infer the association between these
interactions and autoimmunity in COVID-19 patients. Supported by the evidence above, we drew
a network for potential mediator interactions of B cells and their associations with autoimmune
disorders, where linkages with diseases, such as rheumatoid arthritis, systemic lupus
erythematosus, were highlighted, as well as linkages with mouse phenotypes, such as abnormal
immune tolerance and increased susceptibility to autoimmune disorder (Fig. 5F). As a caveat,
although using prior knowledge to prioritize gene and cell-associated functions and interactions
may introduce biases, such approaches also have the potential to highlight key similarities and
differences between different disease causes and clinical responses and improve our

understanding of the molecular and cellular mechanisms at work.

Functional Map and Immune Cell Interplay Landscape in COVID-19
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As above, where highly significant enrichments of unique functions and pathways could be
identified in the subtypes of multiple cell classes, such as neutrophils, platelets and B cells, we
sought to get a more holistic understanding of COVID-19 specific cell class and subclass-level
signatures, including T cell subtypes (fig. S16 and fig. S17), we built an integrative functional
map of all cell types in three compartments across multiple disease conditions using a highly
integrated gene module set (Fig. 6A and table S6). All enriched functional associations in
ToppCluster for gene modules of cell types and sub-clusters were depicted. They were grouped
by disease conditions and compartments to show heterogeneity of cellular functions in different

circumstances.

In the heatmap (Fig. 6A), most enrichments were consistently observed across cells of healthy
donors and COVID-19 patients. However, some unique patterns were also identified. For
example, T cells and NK cells in healthy donors show enrichments of mitochondrial transport and
ATP metabolic process, while activated T cells in mild patients show upregulation of type I
interferon production and cytokine signaling. Enrichments of macrophage differentiation and
neutrophil migration regulation were uniquely found in MoAMI1 in severe patients (Fig. 6A). The
function map provides a high-level approach to investigate functional variations of cells across
disease conditions and compartments. The predicted interplay of immune cells across multiple
compartments and disease conditions is displayed in Fig. 6B. Cell proportion changes, sub-cluster

specific signatures and cell-cell interaction are also depicted.

Similarity and Heterogeneity Between COVID-19 and Other Immune-mediated Diseases

To further analyze COVID-19 specific immune signatures, we compared immune cells from
COVID-19 patients with cells in other immune-mediated diseases, including severe influenza
(12), sepsis (61) and multiple sclerosis (62). 404,125 cells were included after the integration of
PBMC single-cell datasets (Fig. 7A and fig. S18, table S7). Dynamic changes of cell abundance
were compared in diseases versus healthy donors. Similar to COVID-19 patients, severe influenza
patients also exhibited the reduction of non-classical monocytes, pDC, cDC and CD4+ TCM, but
the effect of the former two types was smaller in magnitude (Fig. 7B). However, the reduction of
non-classical monocytes is more significant in severe COVID-19 patients than severe influenza or
mild COVID-19 patients (Fig. 7B). Notably, NK cell reduction is associated with COVID-19
severity, whereas T cell depletion is a more dramatic perturbation in severe influenza. Within

these comparisons, the expansion of plasmablasts is consistently observed, whereas the
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accumulation of platelets is unique to SARS-CoV-2 and in particular, to severe COVID-19
clinical status (Fig. 7B).

In addition to dynamic changes of cell ratios, we also investigated the regulation of immune
mediator genes across various diseases (Fig. 7C and table S7). IL-6 is an important factor of
cytokine storms in COVID-19 (63). As shown in the heatmap, naive B cells are the main sources
of IL-6 in COVID-19 patients while CD14+ monocytes show the highest expression levels in
severe influenza patients (Fig. 7C). Specific ligands, including CXCL2, CXCL3, CCL20 were
upregulated in both severe COVID-19 patients and severe influenza patients. CCR4 and IL2RA is
uniquely high in CD4+ T cells of COVID-19 patients. Interestingly, most PBMC myeloid cell
types displayed upregulated levels of interferon-stimulated genes in both COVID-19 and
influenza, especially in COVID-19, where highest levels of ISGs in CD14+ Monocytes, cDC and

pDC were observed.

Discussion

In this work, we have constructed an innovative immune signature atlas of the blood and lung of
COVID-19 patients using the integrated single cell RNA-sequencing data and Topp-toolkit. By
virtue of systemic analysis of large sample size from multiple sampling sites, consistent
immunopathology-associated changes of cell abundance and transcriptional profiles were
observed in the circulating and lung immune repertoire of COVID-19 patients. The established
single cell atlas and the provided public portal (https://toppcell.cchmc.org/) enables the query of

candidate molecules and pathways in each of these processes.

Leveraging this approach, we identified three major candidate mechanisms capable of driving
COVID-19 severity: (1) a cascade-like network of proinflammatory autocrine and paracrine
ligand receptor interactions among subtypes of differentiating mononuclear, lymphoid, as well as
other cell types; (2) the production of emergency platelets whose gene expression signatures
implicate significantly elevated potential for adhesion, thrombosis, attenuated fibrinolysis, and
potential to enhance the release of heparin-bound cytokines as well as further influence the
activation of neutrophils causing further inflammatory cell recruitment and neutrophil netosis; and
(3) the extrafollicular activation of naive and immature B cells via a multilineage network that

includes monocytic subtypes and exhausted T cells of cytokines and interleukins with the

13


https://doi.org/10.1101/2021.06.07.447287
http://creativecommons.org/licenses/by-nc/4.0/

13
14
15

34

35
36
37
38
39
10
11
12
13
14

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.07.447287; this version posted June 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

potential to generate local antigen specific response to virus infected targets and collateral

autoimmunity. More details will be discussed below.

We identified dramatically expanded macrophages which were marked by the loss of HLA class
IT genes and upregulation of interferon-stimulated genes. It implicates a key role for these
activated macrophages involved in signaling network and less so in activation of adaptive T cell
immunity. Among them, MoAM?2 displayed hyperinflammatory responses and extraordinary high
levels of signaling molecules, which are involved in both autocrine (e.g. IL-6, CCL2, CCL4 and
CCLS8) and paracrine (e.g. CXCL2, CXCL9, CXCL10 and CXCLI11) signaling pathways. The
former pathway contributed to the self-stimulation and development, which amplified the
paracrine pathway for T cell and neutrophil chemoattraction. The latter two cell types in turn
activated MoAMSs with cytokines genes (CCLS5, IL10 of T cells and IL1B of neutrophils,
respectively). Based on the intercellular and multifactor complexity of the signaling cascade we
have outlined, to effectively control a malignant inflammatory cascade, it may be essential to
consider simultaneously targeting multiple nodes of this network of cytokines and interleukins. In
addition, HLA-DR"™ monocytes, likely reflecting dysfunctional cells, were observed in severe
infection. This, along with evidence of emergency myelopoiesis with immature circulating
neutrophils into the circulation was detected in severe COVID-19. These neutrophils had
transcriptional programs suggestive of dysfunction and immunosuppression not seen in patients
with mild COVID-19. As such, we have presented evidence for the contribution of defective

monocyte activation and dysregulated myelopoiesis to severe COVID.

Platelet expansion is uniquely observed in COVID-19 versus other immune-mediated diseases.
Strikingly, these activated platelets were highlighted with abnormal thrombosis and upregulated
heparanase, a procoagulant endoglycosidase that cleaves anti-coagulation heparan sulfate
constituents on endothelial cells and potentially causes thrombotic vascular damages.
Additionally, heparanase-cleaved heparan sulphate (HS) fragments were capable of stimulating
the release of pro-inflammatory cytokines, such as IL1B, IL6, IL8, IL10 and TNF through the
TLR-4 pathway in PBMC (64), further contributing to the hyperinflammatory environment in
COVID-19 patients. Since heparanase is recognized as a hallmark in tumor progression and
metastasis (65), we hypothesize COVID-19 infection could be associated with higher occurrence

of lung tumor metastasis. However, more data is required to support it. Pro-neutrophil secreted
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proteins (e.g. ELANE, DEF4) of neutrophil extracellular trap (NET), which have been reported to
be associated with higher risk of morbid thrombotic events (66). Approaches to combatting NETs

could a potential anticoagulation treatment (67).

We propose a signaling network which potentially shapes the differentiation of B cells towards
the formation of autoantibodies. Proliferation and activation of inflammatory myeloid cells and
the formation of exhausted CD4+ T helper around an area of direct or indirect viral tissue injury
leads to the production of a set of interleukins and cytokines known to have both direct cell
activating and maturing effects on naive and immature B cells. Previous report had revealed the
exaggerated extrafollicular B cell response, which is part of a mechanism that stimulates somatic
mutation and maturation of B cells to produce plasma cells with specificity for antigens present in
the vicinity of tissue damage sites (68). In the absence of macrophages or dendritic cells to restrict
self vs non-self, the presence of IL-10, IL-21, CXCL13 CXC10, IL-6 and others acting on
receptors present in naive and immature B cells leads to the selection and maturation of self-
reactive maturation of B cells clones with formation of autoantibodies. Many of these COVID-19-
activated genes (e.g. CXCL13, CCL19, CCL20, TNFRSF13) are known to be genetically
associated with rheumatoid arthritis, lupus, and risk of developing autoimmune disease in humans
and mouse models. The development of different patterns of autoimmunity may be the main
hallmark of “Long Haul” Covid disease and could explain why some individuals develop
different autoantibodies and suffer different forms of clinical consequences depending on which
antigens drive the B-cell maturation. Thus, an additional prediction that could be made based on
these findings and our network model is that among individuals treated with corticosteroids at the
time these auto-immunogenic processes are activated, there should be a protective effect and

lower likelihood of developing post acute sequela of COVID.

Consistent and varied compositional changes and gene patterns of immune cells were identified in
COVID-19, influenza and sepsis. Expansion of plasmablasts, as well as the reduction of non-
classical monocytes, are more significant changes in severe COVID-19 patients, while the
depletion of T cells is more dramatic in severe influenza patients. The accumulation is a unique
immune hallmark of COVID-19 within the selected diseases, which contributes to the coagulation
abnormalities and thrombosis, a key cause of fatality in COVID-19 patients. Different signaling
gene patterns were identified across immune-mediated diseases, with CCR4 only highly

expressed in CD4+ T cells of COVID-19 patients, which might be related with extravasation of
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these cells (69). Upregulated interferon-stimulated genes of myeloid cells in PBMC revealed the

inflammatory environment of COVID-19.

Collectively, using the COVID-19 single cell atlas data exploration environment, we have
illustrated is that researchers are now enabled to systematically explore, learn, and formulate new
hypotheses within and between compartments, cell types, and biological processes, and provided
access to these reprocessed datasets through a suite of explorative and evaluative tools. Moreover,
we have shown different hypotheses can be developed and explored using the approaches that we
have outlined and the database that we have provided. Certainly additional critical information
will also be obtained using approaches that include in situ spatial, temporal data as well as those
of viral products and viral and inflammatory-process affected complexes. Next steps for
improving its ability to be mined more deeply will be based on additional statistical methods that
extend the current ToppCell / ToppGene Suite based on fuzzy measure similarity, Page-Rank, and

cell-cell signaling approaches.

There are several limitations in our study. Different studies used various standards of COVID-19
severity definition. To generalize conclusions, we simplified disease conditions into several
universal groups. Prospectively, a standardized definition of disease stages will assist to the
accuracy of future studies. Additionally, the timing of sample collection was not considered as a
variable in this study, rather disease stages were used to consolidate data across samples. We lack
follow-up data of patients with sequela, which will be helpful for understanding the long-haul

effects of the disease.

Materials and Methods

Experimental design and single-cell RNA-seq data source

To have a comprehensive understanding of immune cells in different repertoires, we collected 8
public COVID-19 single-cell RNA-seq datasets of multiple compartments, including peripheral
blood mononuclear cells, bronchoalveolar lavage and lung biopsy, which in total covered over 43
healthy donors, 22 mild/moderate, 42 severe and 2 convalescent COVID-19 patients. More details
can be found in Fig. 1A and table S1. Lung biopsy samples were taken from the explanted lung or
post-mortem lungs of COVID-19 patients (70). Various criteria were used in these publications to

describe COVID-19 severity. For example, we found asymptomatic, mild, moderate and floor
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COVID-19 patients under the definition of non-severe COVID-19 patients in our data sources. A
recent paper used the WHO score of COVID-19 severity to categorize disease conditions of
patients (26), which is a more standardized and robust approach for the description of disease
stages. However, in order to address the issue of missing information for disease stratification and
to simplify the comparison, we grouped disease conditions into three groups, including healthy
donors, mild COVID-19 patients and severe COVID-19 patients. Convalescent patients were
excluded in some of our analysis for simplification. Sequencing data of healthy donors in Guo et
al. was excluded since it was not from the same institute (/4).
We also collected PBMC single-cell RNA-seq data from 29 sepsis patients (6/) and 4 multiple
sclerosis (62) patients for comparative analysis of immune-mediated diseases (Fig. 1A and table

S1). Data sources can be found in Data Availability.

Data preprocessing and normalization

For datasets with raw UMI counts, we first removed cells with less than 300 detected genes or
less than 600 UMI counts. Then cells with more than 15% counts of mitochondrial genes were
filtered out. Genes expressed in less than 5 cells were removed. After quality control, we finally
harvested 483,765 high-quality cells from 8 studies (table S1). We normalized the total UMI
counts per gene to 1 million (CPM) and applied logz(CPM+1) transformation for heatmap
visualization and downstream differential gene expression analysis. Steps above were done in
Scanpy (71).

For some datasets that only provide processed and normalized 45ad or rds files, we checked their
preprocessing procedures in the original publications and confirmed that stringent quality control
procedures were used. Most of them used the default normalization approach in the Seurat or
Scanpy pipeline. We transferred them to logo(CPM+1) to make data consistently normalized. We

also prepared corresponding raw count files for data integration.

Integration of PBMC datasets and BAL datasets using Reciprocal PCA in Seurat
We input raw count files of 5 preprocessed PBMC datasets into Seurat and created a list of Seurat

objects. Reciprocal PCA procedure (https://satijalab.org/seurat/v3.2/integration.html#reciprocal-

pca) was used for data integration. First, normalization and variable feature detection were
applied for each dataset in the list. Then we used SelectIntegrationFeatures to select features for
downstream integration. Next, we scaled data and ran the principal component analysis with

selected features using ScaleData and RunPCA. Then we found integration anchors and integrated
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data using FindIntegrationAchnors and IntegrateData. RPCA was used as the reduction method.
After integration, we scaled data and ran PCA on integrated expression values. UMAP was
generated using the top 30 reduced dimensions with RunUMAP. The same approach was also
used in BAL data integration and multi-disease integration. We also used it for the integration of
specific cell types across multiple datasets, for example, the integration of neutrophils from

PBMC and BAL datasets. Compared with standard workflow and SCTransform

(https://satijalab.org/seurat/v3.2/integration.html) in Seurat, we found Reciprocal PCA is much
less computation-intensive and time-consuming, making the integration of multiple large single-

cell datasets feasible.

Cell Annotations using canonical markers after unsupervised clustering

Cell annotations were assigned in each dataset and then mapped to the integrated data. For some
datasets without available cell annotations, we first used unsupervised clustering in Scanpy.
Detailed steps include (1) detecting top 3,000 highly variable genes using

pp-highly variable genes; (2) scaling each gene to unit variance on highly variable genes using
pp.scale; (3) running PCA using arpack approach in #/.pca; (4) finding neighbors using
pp-neighbors; (5) running leiden clustering with resolution of 1 using #/./eiden (resolutions were
determined swiftly based on the size and complexity of data). More details can be found in the
code. For datasets with available annotations, we checked their validity and corrected wrong
annotations. For example, hematopoietic stem and progenitor cells (HSPC) were mistakenly

annotated as “SC&Eosinophil” in the original paper (//) and were corrected in our annotation.

After unsupervised clustering, well recognized immune cell markers were used to annotate
clusters, including CD4+ T cell markers such as TRAC, CD3D, CD3E, CD3G, CD4; CD8+ T cell
markers such as CD8A, CD8B, NKG7; NK cell markers such as NKG7, GNLY, KLRDI; B cell
markers such as CD19, MS4A1, CD79A; plasmablast markers such as MZB1, XBP1; monocyte
markers such as SI00A8, SI00A9, CST3, CD14; conventional dendritic cell markers such as
XCRI1, plasmacytoid dendritic cell markers such as TCF4; megakaryocyte/platelet marker PPBP;
red blood cell markers HBA1, HBA2; HSPC marker CD34. Exhaustion-associated markers,
including PDCD1, HAVCR2, CTLA4 and LAG3 were used to identify exhausted T cells.

Additionally, other markers were used for annotations of lung-specific cells, including AGER,

MSLN for AT1 cells; SEFTPC, SFTPB for AT2 cells; SCGB3A2, SCGB1A1 for Club cells;
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TPPP3, FOXIJ1 for Ciliated cells; KRTS5 for Basal cells; CFTR for lonocytes; FABP4, CD68 for
tissue-resident macrophages; FCN1 for monocyte-derived macrophages, TPSB2 for Mast cells.

More details can be found in Table S2.

Cell Annotations using Azimuth

To better annotate T cells in our study, we applied Azimuth (https://satijalab.org/azimuth/), a tool
for reference-based single-cell analysis developed in Seurat version 4.0 (22). High-quality PBMC
single-cell data in Azimuth was used as the reference for label projection. After removing
annotations with low prediction scores or low mapping scores, we got a collection of well-
annotated T cell subtypes, including CD4+ Cytotoxic T cell, CD4+ Naive T cell, CD4+ Central
Memory T cell, CD8+ Naive T cell, CD8+ Effector Memory cell, gamma-delta T cell, double-
negative T cell. CD4+ Effector Memory T cell and CD8+ Central Memory T cell were found by
Azimuth but removed later because of low scores. Apart from annotations of T cell subtypes, we

also found CD56-bright NK cell, intermediate B cell and Memory B cell using Azimuth.

Sub-clustering for specific cell types

Sub-clustering was used for the discovery of subtypes or distinct stages of a specific cell type. In
our work, we applied sub-cluster for various immune cell types, including classical monocytes,
neutrophils, conventional dendritic, B cells and platelets. First, all cells in the specific cell type
were integrated using the same procedure as PBMC data integration. Then Louvain clustering
(resolution = 0.5, except for sub-clustering of classical monocytes where resolution = 0.3) was
applied to detect sub-clusters of those cells. Importantly, neutrophils, cDCs and B cells were
retrieved from both PBMC and BAL, whereas classical monocytes and platelets were only

retrieved from PBMC.

Generation of ToppCell gene modules

ToppCell (https://toppcell.cchmc.org/) was designed to parallelly analyze transcriptional profiles

of single-cell datasets by organizing differential expressed gene modules in a customized
hierarchical order. In our study, we hierarchically annotated cells with multiple layers, including
compartments, disease conditions, lineages, cell classes and sub-clusters. All the cells were
grouped into specific hierarchical categories. For example, “PBMC_severe COVID-19 myeloid
cells_classical-monocytes cMonol” represents cells belonging to cMonol (a sub-cluster of

classical monocytes) in PBMC of severe COVID-19 patients. With hierarchically ordered cell
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annotations, we calculated their DEGs in a hierarchical way as well. We defined customized
ranges for comparisons and applied t-test based on normalized expression values. More details
can be seen on ToppCell website. Usually, the top 200 most differentially genes in each
comparison were picked up as the gene modules for the selected cell group, which are the starting
point of downstream analysis, including gene enrichment in ToppGene and interaction inference

in ToppCluster. All gene modules in our study were curated in COVID-19 Atlas

(https://toppcell.cchmc.org/biosystems/go/index3/COVID-19 Atlas) and ImmuneMap

(https://toppcell.cchmc.org/biosystems/go/index3/ImmuneMap) on the ToppCell website.

Gene Enrichment Analysis using ToppGene
Abundant gene modules were generated with ToppCell. After that, we used ToppGene

(https://toppgene.cchmc.org/) for gene enrichment analysis. Genes in each gene module were sent

to ToppGene platform as input for enrichment in different domains. GO-Molecular Function, GO-
Biological Process and GO-Cellular Component and Mouse Phenotype were usually used for
enrichment. P values of enrichment results were adjusted using the Benjamini-Hochberg

procedure.

Generation of Functional Association Heatmap using ToppCluster
Genes in gene modules of selected cell types or sub-clusters were sent to ToppCluster

(https://toppcluster.cchmc.org/). Then multi-group functional enrichment was drawn for input

gene modules and -logio(adjusted p-value) was used as the gene enrichment score to represent the
strength of association between gene modules and pathways. Scores greater than 10 were trimmed
to 10. Pathways from Gene Ontologies, including Molecular Functions, Biological Process and
Cellular Component in the option list were used for the enrichment of gene modules in myeloid
cells, B cells and platelets. In order to gain a broader knowledge of immunothrombosis-related
pathways, “Pathway” and “Mouse Phenotype" in the option list were also selected for enrichment.
Morpheus was used for visualization of the heatmap

(https://software.broadinstitute.org/morpheus/).

Cell Interaction Inference in immunothrombosis activities and cytokine signaling pathways
CellChat was used to infer the signaling network in the BAL of severe patients (fig. S§B). All 3
categories of interactions were used in the database Cel/l/ChatDB.human. Over-expressed ligands

or receptors in each cell type were first identified for further identification of over-expressed
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interaction pairs. Then cytokine, chemokine and IL signaling probability between multiple cell

types was inferred using computeCommunProb and computeCommunProbPathway.

ToppCell was used to infer interactions in immunothrombosis. We first selected genes related to
coagulation or immunothrombosis pathways from subtypes of endothelial cells, platelets,
neutrophils, classical monocytes and monocyte-derived macrophages by filtering the output of
ToppCluster (fig. S12A). Then we used CellChatDB as the knowledge base to find the subset of
genes participating in cell-cell interaction, including genes involved in signaling via secretion,
cell-cell contact and extracellular matrix interaction. These genes in each cluster were sent to
ToppCluster to infer the interaction network using protein-protein interactions (PPI) between

those genes.

Generation of Volcano Plots
We first calculated differential expressed genes using tl.rank genes groups in Scanpy. Adjusted
p values and log fold changes in the output were used as the input of volcano plots. R package

EnhancedVolcano (72) was used to draw figures.

Construction of COVID-19 Functional Enrichment Map

In order to characterize functional properties of cell types and subtypes observed in BAL, PBMC,
and lung parenchymal samples from control, mild, and severe COVID-19 patient samples, we
used the library of gene expression signatures (“Gene Module Report” from ToppCell) as an input
to the ToppCluster enrichment analyzer web server (Kaimal et al 2010). Using categories of Gene
Ontology, Human Phenotype, Mouse Phenotype, Pathway and Protein Interaction, a matrix was
constructed using minus log P enrichment values for each celltype gene list and then all cells and
enriched features could be clustered and ordered based on their shared or distinct properties that

could then be associated with lineage, cell subclass, tissue compartment, and disease state.

Statistics Analysis of Cell Proportion Changes in Different Disease Stages

Cell proportion differences between disease groups for specific types and subtypes (Fig. 2 and fig.
S2 to S4) shown on box plots were measured by Mann-Whitney test (Wilcoxon, paired=False).
Significance between two disease conditions were shown on the top.

To investigate the dynamic changes of cell proportions across various immune-mediated diseases,

we followed the approach in recent literature (/2) (Fig. 7B). For each disease condition, we
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computed the relative ratio of each cell type in individual disease samples divided by individual
healthy samples. Log> transformed values were shown in the box plot. Then we calculated
relative ratios of each cell type between all sample pairs of healthy donors as a control. To

compute the significance, we used a two-sided Kolmogorov-Smirnov (KS) test using relative

ratios in diseases and those values in healthy donors.
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Figures and Tables

Fig. 1. Creating a COVID-19 Signature Atlas. (A) Representative aggregation of multiple
single-cell RNA-sequencing datasets from COVID-19 and related studies. The present study is
derived from a total of 231,800 peripheral blood mononuclear cells (PBMCs), 101,800
bronchoalveolar lavage (BAL) cells and 146,361 lung parenchyma cells from 43 healthy; 22 mild,
42 severe, and 2 convalescent patients. Data was collated from eight public datasets (right). (B)
Data analysis pipeline of the study using Topp-toolkit. It includes three phases: (1) clustering and
annotation; (2) downstream analysis using Topp-toolkit; (3) biological exploration. Output
includes the evaluation of abundance of cell populations, cell type (cluster) specific gene
modules, functional associations of disease-associated cell classes and clusters, inference of cell-
cell interactions, as well as comparative analysis across diseases, including influenza, sepsis and
multiple sclerosis. Additional newer datasets not included in this manuscript are present and will

continue to be added to ToppCell (http://toppcell.cchmc.org).

Fig. 2. Modularized representation of cell type specific gene signatures and dynamic
changes of cell abundance. (A) Uniform Manifold Approximation and Projection (UMAP) of 28
distinct cell types identified in the integrated peripheral blood mononuclear cell (PBMC) data. (B)
Comparative analysis of cell abundance effects of COVID-19. Reproducible multi-study data
present high impact effects on 5 cell types in PBMC. Percentages of selected cell types in each
sample are shown (where Vent: Ventilated patients; Non Vent: Non-ventilated patients).
Significance between two conditions was measured by the Mann-Whitney rank sum test
(Wilcoxon, paired=False), which was also used in following significance tests of cell abundance
changes in this study. *: p <= 0.05; **: p <= 0.01; ***: p <= 0.001; ****: p <= 0.0001. (C)
UMAP of 24 distinct cell types identified in the integrated BAL data. (D) Dynamic changes of
cell abundances for cell types in two bronchoalveolar lavage (BAL) single-cell datasets. (E)
ToppCell allows for gene signatures to be hierarchically organized by lineage, cell type, subtype,
and disease condition. The global heatmap shows gene modules with top 50 upregulated genes
(student t test) for each cell type in a specific disease condition and compartment. Gene modules

from control donors and severe COVID-19 patients were included in the figure.

Fig. 3. Functional analysis of compartment-specific immature and subtype-differentiated
neutrophils and monocytic macrophages in COVID-19 patients. (A) Five sub-clusters and

three cell groups were identified after the integration of neutrophils in peripheral blood
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mononuclear cells (PBMC) and bronchoalveolar lavage (BAL) (Left). The distribution of
compartments is shown on the right. (B) Sub-clusters (Left) and COVID-19 conditions (Right) of
monocyte-derived macrophages and tissue-resident macrophages were identified after integration
of BAL datasets. (C) Heatmap of gene modules from ToppCell with top 200 upregulated genes
for each neutrophil sub-cluster. Important neutrophil-associated genes and inferred roles of sub-
clusters were shown on two sides. (D) Heatmap of associations between subclusters of
neutrophils and macrophages and myeloid-cell-associated pathways (Gene Ontology). Gene
modules with 200 upregulated genes for sub-clusters were used for enrichment in ToppCluster.
Additionally, enrichment of top 200 differentially expressed genes (DEGs) for comparisons in fig.
S5D and fig. S6B were appended on the right. Gene enrichment scores, defined as -logio(adjusted
p-value), were calculated as the strength of associations. Pie charts showed the proportions of
COVID-19 conditions in each cluster. (E) Gene interaction network in the BAL of severe
patients. Highly expressed ligands and receptors of each cell type were drawn based on fig. S8.
Interaction was inferred using both CellChat database and embedded cell interaction database in

ToppCell.

Fig. 4. COVID-19 driven reprogramming of platelets leads to drastically altered expression
of genes associated with platelet adhesion, activation, coagulation and thrombosis. (A-B)
Uniform Manifold Approximation and Projections (UMAPs) show distributions of sub-clusters
(A) and COVID-19 conditions (B) of platelets after the integration of PBMC datasets. (C)
Severity-associated coagulation genes were selected and shown on the heatmap, with disease and
sub-cluster specific gene patterns identified and labeled. Their functional associations with
coagulation pathways were retrieved from ToppGene and shown on the right. (D) Functional and
phenotypical associations of coagulation-association genes in each gene pattern from (B).

Associations were retrieved from ToppGene enrichment. Fibrinolysis is highlighted.

Fig. 5. Implicating a multi-lineage cell network capable of driving extrafollicular B cell
maturation and the emergence of humoral autoimmunity in COVID-19 patients. (A)
Uniform Manifold Approximation and Projections (UMAPs) of sub-clusters (Left) and COVID-
19 conditions (Right) of B cells after integration of peripheral blood mononuclear cells (PBMC)
and bronchoalveolar lavage (BAL) datasets. (B) UMAPs of subtypes (Left) and COVID-19
conditions (Right) of plasmablasts after integration of PBMC and BAL datasets. (C) Volcano plot

depicts differentially expressed genes between plasmablasts and developing plasmablasts. Student
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t-tests were applied and p values were adjusted by the Benjamini-Hochberg procedure. (D)
Workflow of discovering and prioritizing candidate genes related to a disease-specific phenotype
with limited understanding. (E) The heatmap shows the normalized expression levels of candidate
ligands and receptors for COVID-19 autoimmunity in multiple compartments in healthy donors
and COVID-19 patients. Binding ligands of receptor genes were shown in parentheses on the
right. Hot spots of expression are highlighted. (F) Network analysis of autoimmunity-associated
gene expression by COVID-19 cell types. Prior knowledge associated gene associations include
GWAS, OMIM, mouse knockout phenotype, and additional recent manuscripts were selected
from ToppGene enrichment results of differentially expressed ligands and receptors and shown on
the network. Orange arrows present the interaction directions from ligands (green) to receptors
(pink) on B cells. Annotations for these genes, including single-cell co-expression (blue), mouse
phenotype (light blue), transcription factor binding site (purple) and signaling pathways (green)

are shown.

Fig. 6. Comparative analysis of cell type specific gene signatures associated with lineage,
class, subclass, compartment, and disease state in the COVID-19 atlas. (A) Enrichment scores
of gene modules for all cell types across different compartments and COVID-19 conditions were
generated by ToppCluster and shown on the heatmap. ToppCluster enriched functions from Gene
Ontology, Human Phenotype, Mouse Phenotype, Pathway and Interaction databases were used to
generate a feature matrix (cell types by features) and hierarchically clustered. Hot spots of the
disease-specific enrichments were highlighted and details were shown on the left. More details
can be found in Methods. (B) Summarizing predicted functions and interplay of immune cells in
COVID-19 blood and lung. Aforementioned key observations in this study were shown in
peripheral blood mononuclear cells (PBMC) and bronchoalveolar lavage (BAL) in healthy
donors, mild and severe COVID-19 patients, including changes of cell abundance, specific

marker genes, upregulated secretion, cell development and cell-cell interactions.

Fig. 7. Comparative analysis of differentially-expressed immunoregulatory genes between
COVID-19 and other immune-mediated diseases. (A) Uniform Manifold Approximation and
Projection (UMAP) shows the distributions of cell types (Left) and diseases (Top right) after the
integration of datasets in multiple studies. MS: multiple sclerosis; IIH: idiopathic intracranial
hypertension. ITH patients were recruited as controls in the multiple sclerosis study. (B) Dynamic

changes of immune cell types in different immune-mediated diseases compared to healthy
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controls. Log2(ratio) was calculated to show the levels of changes. *, p<0.05, **, p<0.01, ***,
p<0.001. Statistical models can be found in the Methods. Leuk-UTI: sepsis patients that enrolled
into UTI with leukocytosis (blood WBC > 12,000 per mm3) but no organ dysfunction. (C)
Normalized expression values of key genes involved in immune signaling and responses are
shown for cell types across multiple diseases. Lowly expressed genes (maximal average

expression level across all cell types in the heatmap is less than 0.5 after LogoCPM normalization)

were removed.

Figure S1. Cell distribution and abundance in the integrated COVID-19 PBMC data. (A)
Distributions of COVID-19 conditions (Left) and data sources (Right) for the integrated PBMC
data are shown on the same UMAP of Figure 2A. (B) Bar plot depicts distributions of disease
conditions in 5 individual PBMC single-cell datasets. Percentages of 3 disease conditions in each
dataset is shown on y axis. (C) The integrated bar plot shows percentages of 3 disease conditions
in each cell type per dataset. Dataset abbreviations and cell types were concatenated to show
disease distributions of specific cell types in the selected datasets. These labels are colored by

their cell type designations and ordered by the ascending percentages of COVID-19 conditions.

Figure S2. Dynamic changes of cell type abundances in five COVID-19 PBMC datasets.
Relative abundances and differences of major cell types in each single cell dataset are shown and
compared to controls per each disease condition, per each single-cell dataset. Box plots of all cell
types in PBMC are shown except for the 5 highlighted cell types shown in Figure 2B. Statistical

methods are the same with Figure 2B.

Figure S3. Cell distributions and dynamic changes in the integrated COVID-19 BAL data.

(A-C) Distributions of disease conditions (A), data sources (B) and samples (C) are shown on the
same UMAP of Figure 2C. (D) Box plots depict dynamic changes of cell types across COVID-19
conditions in BAL that are not covered in Figure 2D. Statistical methods are the same with Figure

2B.

Figure S4. Cell type abundance changes in COVID-19 lung parenchyma dataset. Box plots
depict percentages of cell types in control samples and severe COVID-19 samples. We used cell

type clusters identified in the original publication but modified cell naming of macrophage
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subtypes to distinguish monocyte derived macrophage subtypes present in BAL fluid samples.

Statistical methods are the same with Figure 2B.

Figure S5. Sub-cluster-specific genes of neutrophils of COVID-19 patients. (A) Distribution
of disease conditions (Left) and data sources (Right) for the integrated neutrophil data on the
same UMAP of Figure 3A. (B) UMAPs of neutrophil sub-cluster-associated genes from Figure
3C. Normalized expression values for each gene were used. (C) Normalized expression values of
neutrophil-associated genes and other important immune signatures are shown for 5 neutrophil
sub-clusters. Lowly expressed genes (genes with maximal average expression level across all
neutrophil sub-clusters less than 0.5 after LogoCPM normalization) were removed from the gene
pool of cytokines, chemokines, ISGs, interleukins, interferons, corresponding receptors and
MHC-II. (D) The volcano plot depicts differentially expressed genes between circulating mature
neutrophils (Neu0,1) and extravasated neutrophils (Neu3) (Left); as well as DEGs between pro-
neutrophils (Neu4) and pre-neutrophils (Neu2) (Right). Statistical methods are the same with
Figure 5C. Representative enriched biological processes (Gene Ontology) are shown in the

bottom.

Figure S6. Macrophage-related signatures in the integrated BAL data. (A) Normalized
expression values of myeloid-cell-associated genes and other important immune signatures are
shown for 9 macrophage sub-clusters. Lowly expressed genes (genes with maximal average
expression level across all macrophage sub-clusters less than 0.5 after Log2CPM normalization)
were removed from the gene pool of MHC-II, cytokines, chemokines, ISGs, interleukins,
interferons and their receptors. (B) Volcano plots were drawn for DEGs of MoAM3,4 versus
MoAM1,2,5 (Left) and TRAM 1,2 versus TRAM3 (Middle) and TRAM3 versus MoAM1,2,5
(Right). Statistical methods are the same with Figure 5C. (C) Normalized expression values were
shown on the same UMAP of Figure 3B for important genes including macrophage signatures,

ISGs, interferons, receptors and MHC-II.

Figure S7. A uniquely-activated monocyte-derived cell type (MoAMS) exhibits a broad
signature of cytokines, chemokines, and interleukins including IL6. (A) Normalized
expression values of IL6 on the same reference UMAP of integrated BAL data as Figure 3B. (B)
Scale expression levels of IL6 for each macrophage sub-cluster on the violin plot. (C) Heatmap of

expression levels of pan-MoAM signatures and MoAMS-specifc signatures in all myeloid cells in
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both PBMC and BAL. (D) Network of functional and phenotypic associated pan-MoAM
signatures and MoAMS5-specific signatures from (C). Associations were retrieved from ToppGene
enrichment results. IL6 is highlighted in the network. As a caveat, the MoAMS subtype
represented a small fraction among the BAL MoAM subtypes and the majority of these cells were

observed in a single severely-affected individual.

Figure S8. Cell type and cell subtype-specific divisions of cytokine, chemokine, and
interleukin signaling pathways in BAL of severe COVID-19 patients. (A) Heatmap of
expression patterns of ligands and receptors in cytokine, chemokine, interleukin, CSF and TNFSF
signaling pathways across cell types of BAL in severe patients. Average normalized expression
values were shown and lowly expressed ligands or receptors (maximal normalized expression
value for a row in the heatmap < 0.5) were removed. To reduce bias, MoAMS5 was removed
because cells in the cluster were mainly from one patient. Cell types that have less than 5% cells
from severe patients were removed, including TRAM1 and TRAM2. Neutrophils are highlighted
in the heatmap. (B) Interaction network of BAL cells in severe patients using CellChat. CCL,
CXCL and IL1 signaling pathways were shown. The width of edges represents the strength of

interactions and the size of nodes represents the abundance of cell types.

Figure S9. Characteristics of sub-clusters of classical monocytes in the integrated COVID-
19 PBMC data. (A) UMAPs of 4 sub-clusters (Left) and COVID-19 conditions (Right) of
classical monocytes are shown. Grey dots are other myeloid cells in the UMAP of integrated
PBMC myeloid data. (B) UMAPs of normalized expression values of specific signatures for
classical monocyte sub-clusters. (C) Normalized expression values of monocyte-associated genes
and other important immune signatures are shown for 4 classical monocyte sub-clusters. (D) Gene
modules of classical monocyte sub-clusters, as well as other myeloid cell types in the integrated
PBMC myeloid data. Representative genes in each module are shown on the left. ToppGene
enrichment results for classical monocyte sub-clusters are shown on the right. Columns are
clustered using hierarchical clustering. (E) Similarity matrix of myeloid cell types using genes in
(D). Pearson correlation was used to evaluate similarity. (F) Dot plot of MHC-II, ISGs,

interleukin genes and cell cycle genes for each myeloid cell type. Scale values were used.

Figure S10. Features of conventional dendritic cell sub-clusters and polarized signaling

genes. (A) UMAPs of 13 sub-clusters (Left) and sources (Right) of conventional dendritic cells
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after data integration. (B) Normalized expression values of sub-cluster-specific genes on the
UMAP. (C) Normalized expression values of cDC-associated genes and other important immune
signatures are shown for 13 ¢cDC sub-clusters. (D) Gene modules of cDC sub-clusters with 200
most significantly upregulated genes in each module. Representative genes are shown on the left.
Gene enrichment results of some modules from ToppGene are shown on the right. (E) Similarity
matrix of sub-clusters using genes in (D). Pearson correlation was used for similarity scores and
hierarchical clustering was applied for rows and columns. (F) The heatmap shows the clustering
of signaling genes, including cytokines, chemokines, interleukins and their receptors. Red boxes
highlight severe patients associated sub-clusters and their upregulated genes. Green boxes

highlight mild patients-associated sub-clusters and their upregulated genes.

Figure S11. Landscape of myeloid cells in the integrated PBMC and BAL data. (A-B)
UMAPs of myeloid cells in integrated PBMC (A) and BAL (B) data. Cell types which were
further clustered are highlighted in different colors. (C) The heatmap shows associations between
subclusters of myeloid cells and myeloid-cell-associated pathways, such as antigen presenting, T
cell activation, phagocytosis etc. Gene enrichment scores, defined as -logio(adjusted p value),
were calculated as the strength of associations. Pie charts showed the proportions of COVID-19

conditions in each sub-cluster.

Figure S12. Gene expression signatures of cell types and subtypes activated by COVID-19
are extensively associated with coagulation, hemostasis, and thrombosis-associated
pathways, functions, and knockout phenotypes. (A) Functional association heatmap of gene
signatures from COVID-19 cell types demonstrates differential enrichment for pathways
associated with coagulation, vascular permeability, complement, extravasation, platelet activation
and aggregation, response to wounding, as shown. Gene modules of cell types and sub-clusters
that participate in these pathways were used to calculate enrichment scores. (B) Network of
upregulated genes in coagulation/thrombosis-associated pathways (A) shows the potential gene-
gene interactions in immunothrombosis of COVID-19 patients. CellChat and ToppCell/ToppGene
protein-protein ligand receptor and cell adhesion interaction databases were used to find
interaction pairs among upregulated genes. (C) A new network derived from (B) shows integrin-

associated interactions between platelets and other cells.
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Figure S13. Emergence of platelet subtypes suggestive of functionally significant alternative
roles in in hemostasis, coagulation, wound response, and neutrophil recruitment and
activation. (A) The heatmap shows ToppCell gene modules of 6 platelet sub-clusters in COVID-
19 PBMC. Each gene module contains 200 most significant genes for each sub-cluster and
important genes are shown on the left. Gene enrichment analysis was conducted using ToppGene
and top enrichment results from biological processes (Gene Ontology) are shown on the right. (B)
Dot plot of integrin and other platelet-associated genes. Scale values are shown on the figure. (C)
Heatmap of associations between subclusters of platelets and platelet-associated pathways (Gene
Ontology). Gene enrichment scores, defined as -logio(adjusted p value), were calculated and

shown.

Figure S14. Consistent emergence of a series of early and maturing B cells and
plasmablasts in BAL fluid and PBMC across multiple datasets. (A-B) UMAPs of B cells (A)
and plasmablasts (B) from multiple datasets. (C-D) UMAP of normalized expression values of
immunoglobulin genes (C) and ISGs (D) for B cells. (E-F) UMAP of normalized expression
values of immunoglobulin genes (E) and sub-cluster associated genes, such as cell cycle genes
and B cell markers (F) for plasmablasts. (G) Gene modules of B cell sub-clusters and plasmablast
subtypes with 200 most significant genes in each module. Hierarchical clustering was applied for
columns. (H) Three representative enriched biological processes (Gene Ontology) are shown for

these two subtypes using DEGs of plasmablasts in Figure 5C.

Figure S15. Gene Enrichment analysis of B cell subtypes and autoimmune-associated
signatures. (A) Heatmap shows gene enrichment scores of B-cell-associated pathways for each B
cell sub-cluster and plasmablast subtype. (B) Pathway and function association network of
upregulated genes in B cells of BAL in mild COVID-19 patients. (C-D) Heatmaps show
normalized expression levels of autoimmune-associated ligands and receptors (Figure SE) in

lupus nephritis (C) and rheumatoid arthritis (D).

Figure S16. Distinct subtypes of T cells and NK cells in COVID-19 BAL data. (A-C) UMAPs
of subtypes (A), COVID-19 conditions (B) and data sources (C) of T cells and NK cells in the
integrated BAL data. (D-E) UMAPs of normalized expression values of exhausted T cell markers
(D) and ISGs (E).
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Figure S17. Various T cell and NK cell subtypes in the integrated PBMC data. (A-B)
UMAPs of T cell and NK cell subtypes (A) and COVID-19 conditions (B) after integration of T
cells in 5 PBMC single-cell datasets. (C) Dot plot shows T cell and NK cell subtype associated
genes for each subtype per disease condition. Labels of cell types of healthy donors, mild patients
and severe patients are colored by blue, yellow and red. Scaled expression values are shown using

a color scheme.

Figure S18. Various cell types in immune-mediated diseases. (A, C, E) Distributions of cell
types identified in influenza (A), sepsis (C) and multiple sclerosis (E) patients were shown on
UMAPs. (B, D, F) Distributions of disease conditions in influenza (B), sepsis (D) and multiple

sclerosis (F) patients were shown on UMAPs.
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Figure S4. Dynamic changes of cell types in the COVID-19 lung parenchyma dataset, relative to Figure 2.
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Figure S5. Sub-cluster-specific genes of neutrophils of COVID-19 patients, relative to Figure 3.
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Figure S6. Macrophage-related signatures in the integrated BAL data, relative to Figure 3.
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Figure S9. Characteristics of sub-clusters of classical monocytes in the integrated COVID-19 PBMC data,

relative to Figure 3.
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Figure S10. Features of conventional dendritic cell sub-clusters and polarized signaling genes, relative to Figure 3.
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Figure S13. Emergence of platelet subtypes suggestive of functionally significant alternative roles in in
hemostasis, coagulation, wound response, and neutrophil recruitment and activation, relative to Figure 4.
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across multiple datasets, relative to Figure 5.
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Figure S15. Gene Enrichment analysis of B cell subtypes and autoimmune-associated signatures, relative to
Figure 5.
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Figure S16. Distinct subtypes of T cells and NK cells in COVID-19 BAL data.
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Figure S17. Various T cell and NK cell subtypes in the integrated PBMC data.
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Figure S18. Various cell types in immune-mediated diseases, relative to Figure 7.
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