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 2 

Abstract 24 
 25 
Numerous studies have provided single-cell transcriptome profiles of host responses to SARS-26 

CoV-2 infection. Critically lacking however is a reusable datamine to allow users to compare and 27 

explore these data for insight, inference, and hypothesis generation. To accomplish this, we 28 

harmonized datasets from blood, bronchoalveolar lavage and tissue samples from COVID-19 and 29 

other control conditions and derived a compendium of gene signature modules per cell type, 30 

subtype, clinical condition and compartment. We demonstrate approaches for exploring and 31 

evaluating their significance via a new interactive web portal (ToppCell). As examples, we 32 

develop three hypotheses: (1) a multicellular signaling cascade among alternatively differentiated 33 

monocyte-derived macrophages whose tasks include T cell recruitment and activation; (2) novel 34 

platelet subtypes with drastically modulated expression of genes responsible for adhesion, 35 

coagulation and thrombosis; (3) a multilineage cell activator network able to drive extrafollicular 36 

B maturation via an ensemble of genes extensively associated with risk for developing 37 

autoimmunity. 38 

  39 
Teaser 40 
 41 

Implicating COVID-19 Gene and Cell Networks Responsible for Inflammation, 42 

Thromboembolism and Autoimmune Pathobiology. 43 

 44 
Short title 45 
Data mining COVID-19 Gene and Cell Networks 46 
 47 
  48 
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Introduction 49 
  50 
COVID-19 clinical outcomes are variable. The poorer outcomes due to this infection are highly 51 

associated with immunological and inflammatory responses to SARS-Cov-2 infection (1, 2) and 52 

many recent single cell expression profiling studies have characterized patterns of 53 

immunoinflammatory responses among individuals, mostly during acute infection phases. 54 

Different studies have revealed a spectrum of responses that range from lymphopenia (3, 4), 55 

cytokine storms (5, 6), differential interferon responses (7, 8) and emergency myelopoiesis (9, 56 

10).  However, a variety of obstacles limit the ability of the research and medical communities to 57 

explore and compare these studies to pursue additional questions and gain additional insights that 58 

could improve our understanding of cell type specific responses to SARS-CoV-2 infection and 59 

their impact on clinical outcome. 60 

Whereas many studies have focused on the peripheral blood mononuclear cells (PBMC) (9, 11–61 

14) due to ease of procurement, other studies have profiled airway locations via bronchoalveolar 62 

lavage (BAL) (15, 16), nasopharyngeal swabs, and bronchial brushes (17). Additional sampling 63 

sites that could also be infected or affected have also been approached in autopsy-derived 64 

materials from the central nervous system (18, 19), and other sites (20). Moreover, as major 65 

COVID-19 consortiums working on the collection and integration of each of their individual 66 

studies and interpreting important features of these individual datasets as downloadable datasets 67 

or browsable versions, such as single cell portal 68 

(https://singlecell.broadinstitute.org/single_cell/covid19) and COVID-19 Cell Atlas 69 

(https://www.covid19cellatlas.org/), using these data beyond markers, cell types, and individual 70 

signatures is either not possible or not accomplishable across-datasets. Thus, a well-organized and 71 

systematic study of immune cells across tissues for in-depth biological explorations is an unmet 72 

need for a deeper understanding of the underlying basis of the breadth of COVID-19 host defense 73 

and pathobiology. 74 

  75 

Here we harmonized and analyzed eight high quality publicly available single-cell RNA-seq 76 

datasets from COVID-19 and immunologically-related studies that in total covered more than 77 

480,000 cells isolated from peripheral blood, bronchial alveolar lavage and lung parenchyma 78 

samples, and assembled an integrated COVID-19 atlas (https://toppcell.cchmc.org/). We 79 

established a framework for deriving, characterizing, and establishing reference gene expression 80 

signatures from these harmonized datasets using modular and hierarchical approaches based on 81 

signatures per class, subclass, and signaling/activation and clinical status per each sample group. 82 
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Leveraging these gene expression signature modules, we demonstrate datamining approaches that 83 

allow for the identification of a series of fundamental disease processes:  (1) an intercellular 84 

monocytic activation cascade capable of mediating the emergence of hyperinflammatory 85 

monocyte-derived alveolar macrophages in severe COVID-19 patients; (2) the generation of 86 

several alternatively differentiated platelet subtypes with dramatically different expression of sets 87 

of genes associated with critical platelet tasks capable of altering vascular and tissue responses to 88 

infectious agents; and (3) a multilineage and multi cell type cooperative signaling network with 89 

the potential to drive extrafollicular B maturation at a lesion site, but do so with high risk for the 90 

development of B cell-associated immunity. Additionally, immune hallmarks of COVID-19 91 

patients were compared with other immune-mediated diseases using single-cell data from patients 92 

with influenza, sepsis, or multiple sclerosis. Consistent and varied compositional and gene 93 

patterns were identified across these implicating striking COVID-19 effects in some individuals. 94 

  95 
Results 96 
  97 
Creating the First COVID-19 Signature Atlas Using ToppCell Portal 98 

To have a comprehensive coverage of cells, we collated single-cell data of COVID-19 patients 99 

from eight public datasets, which in total contains 231,800 PBMCs, 101,800 BAL cells and 100 

146,361 lung parenchyma cells from donors: 43 healthy; 22 mild; 42 severe; and 2 convalescent 101 

patients (Fig. 1A, table S1). 102 

  103 

To assemble an integrated atlas of human cell responses to COVID-19, we sought to harmonize 104 

metadata encompassing clinical information, sampling compartments, and cell and gene 105 

expression module designations. Doing so provides a rich framework for detecting perturbations 106 

of cell repertoire and differentiative state adaptations. We first integrated single cell RNA-seq 107 

data in Seurat (21) and annotated cell types using canonical markers (table S2). Further 108 

annotations of B cell and T cell subtypes were completed using the reference-based labeling tool 109 

Azimuth (22). Sub-clustering was applied for some cell types, such as neutrophils and platelets, to 110 

interrogate finer resolutions of disease-specific sub-populations (Fig. 1B). Using the ToppCell 111 

toolkit (https://toppcell.cchmc.org/), we created over 3,000 hierarchical gene modules of the most 112 

significant differentially expressed genes (DEGs) for all cell classes and sub-clusters across 113 

compartments and disease severity (table S1). These modules were then used to infer cell-cell 114 

interactions as well as upregulated pathways, which were further combined for functional 115 

comparative analysis in a specific cell manner in ToppCluster (23) (Fig. 1B), such as sub-clusters 116 
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of platelets. Integration of ToppCluster output of cells from multiple compartments and disease 117 

conditions built pathogenic maps, highlighted by the coagulation map of COVID-19 (fig. S12). In 118 

addition, perturbation of cell abundance was evaluated either in one cell population, or in multiple 119 

populations across diseases. Taken together, we investigated cell abundance changes, severity-120 

associated signatures, mechanisms of COVID-19 specific symptoms and unique features of 121 

COVID-19 as an immune-mediated disease (Fig. 1B). 122 

  123 

Dynamic Changes and Balance of COVID-19 Immune Repository in Blood and Lung 124 

After the aforementioned cell annotation procedure, we identified 28 and 24 distinct cell types in 125 

PBMC and BAL respectively (Fig. 2, A and C, table S2). Shifts of Uniform Manifold 126 

Approximation and Projection (UMAP) of cell type distributions were observed in both 127 

compartments of mild and severe patients (Fig. 2, A and C, fig. S1A and fig. S3A). In PBMC, 128 

conventional dendritic cells (cDC), plasmacytoid dendritic cells (pDC) and non-classical 129 

monocytes displayed a prominent reduction in severe patients (Fig. 2B and fig. S1C), consistent 130 

with prior reports (11, 24, 25). In contrast, severe patients demonstrated dramatic expansion of 131 

neutrophils, especially immature stages (fig. S1C and fig. S2). Integration with evoked pathways 132 

in the following analysis implicated that neutrophil expansion was likely the consequence of 133 

emergency myelopoiesis (26). Additionally, a general down-regulation of T cell and NK cell was 134 

observed, consistent with lymphopenia reported in clinical practices (5, 27) (fig. S1C and fig. S2). 135 

However, the trend of T cell subtypes varies across studies and individuals, apart from 136 

proliferative T cells which have a dramatic increase in mild and severe patients (fig. S2). Notably, 137 

plasmablasts substantially increased in COVID-19 patients, and especially so in severe patients, 138 

suggesting upregulated antibody production (28) (Fig. 2B and  fig. S1C). Expansion of platelets is 139 

another significant change observed in severe patients, possibly leading to immunothrombosis in 140 

the lung, which could be closely associated with the severity of the disease (29, 30) (Fig. 2B and 141 

fig. S1C). 142 

  143 

In samples obtained from patients’ lungs, we observed the depletion of FABP4high tissue-resident 144 

alveolar macrophages (TRAM) and dramatic expansion of FCN1high monocyte-derived alveolar 145 

macrophages (MoAM) in severe patients (Fig. 2, C and D and fig. S3D). Mild patients exhibited a 146 

moderate reduction of tissue-resident macrophages, but no evidence of aggregation of monocyte-147 

derived macrophages (Fig. 2, C and D, fig. S3, A and D). Dynamic changes of these two subtypes 148 

suggest increased tissue chemoattraction (31) and potential damage of patients' lungs (32). In 149 
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addition, neutrophils were only identified in severe patients in the integrated BAL data (Fig. 2C 150 

and fig. S3A), which might be related with neutrophil extracellular traps (NETs) in the lung (33). 151 

However, more samples are required to draw a solid conclusion. We also noted conventional 152 

dendritic cells decreased in the severe patients, which is consistent with the trend of the 153 

counterpart in PBMC data. Opposite to the change in PBMC, an expansion of plasmacytoid 154 

dendritic cells is observed in both mild and severe patients (Fig. 2D). Other cell types, including T 155 

cell and NK cell in the BAL, also have converse changes of their counterparts in PBMC, which 156 

could be attracted by lung macrophages or epithelial cells after infection or damages (17) (Fig. 2D 157 

and fig. S3D). These changes were consistently observed in lung parenchyma samples from 158 

severe COVID-19 patients (fig. S4). With cells well-annotated in the integrated COVID-19 atlas, 159 

we drew a global heatmap for cells in both blood and lung using ToppCell gene modules (top 50 160 

DEG in each module) of all identified cell classes. While there was conservation of gene patterns 161 

involved in healthy donors and severe COVID-19 patients, there were substantial differences 162 

most notably in myeloid cells (Fig. 2E). Such hierarchically ordered ToppCell gene modules were 163 

broadly used in visualization, large-scale comparisons and fine-resolution investigations in the 164 

following analyses. 165 

  166 

Myeloid Cell Atlas: Functionally Distinct Neutrophils at Different Levels of Maturation and 167 

Derailed Macrophages in the Lung 168 

Dysregulated myeloid cells have been reported as an important marker of severe COVID-19 169 

patients (9, 10). In order to gain a deeper and comprehensive understanding of these cells, we 170 

applied the sub-clustering strategy on the integrated data of key cell types, such as neutrophils and 171 

macrophages, and then generated gene modules for comparative functional analysis and 172 

interactome inference. We successfully identified 5 neutrophil sub-clusters after the integration of 173 

PBMC and BAL data, including 3 FCGR3B+ mature sub-clusters and 2 FCGR3B- immature sub-174 

clusters (Fig. 3A and fig. S5B, table S3). They’re mainly from severe patients and their gene 175 

modules were generated and subjected to comparative functional enrichment using ToppCell and 176 

ToppCluster (Fig. 3, C and D, fig. S5A). We identified proliferative neutrophils (referred to as 177 

pro-neutrophils and Neu4) and MMP8high precursor immature neutrophils (referred to as pre-178 

neutrophils and Neu2) (Fig. 3A and fig. S5B) consistent with prior studies (9). While immune 179 

response genes and pathways were barely activated in the immature neutrophils, they displayed 180 

upregulation of granule formation pathways and NETosis-associated proteins, including ELANE, 181 

DEFA4 and MPO, especially in Neu4 (9, 26) (Fig. 3C, fig. S5, B and C). Upregulated myeloid 182 
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leukocyte mediated immunity in Neu2 suggests involvement of this cell type in anti-viral function 183 

(Fig. S5D). Yet, the absence of cytokine and interferon response pathways suggests the lack of 184 

mature immune responses (Fig. 3D). Notably, compared to mature neutrophils (Neu0 and Neu1) 185 

in the blood, the extravasated hyperinflammatory sub-cluster (Neu3) from BAL of severe patients 186 

shows extraordinarily high expression of interferon-stimulated genes, as well as prominent 187 

upregulation of productions and responses to cytokines and interferons (Fig. 3, C and D, fig S5, B 188 

and D). 189 

  190 

MoAM and TRAM were two main macrophage types in the BAL (Fig. 2C); both are known to 191 

have distinct roles in immune responses in the lung (15). As described above, five sub-clusters 192 

among the expanded COVID-19 patient-specific MoAM (Fig. 3B, table S3) were found, where 193 

the loss of HLA class II genes and elevation of interferon-stimulated genes (ISGs) were 194 

consistently observed (Fig. 3F and fig. S6A). Relative to MoAM3,4, MoAM1,2,5 displayed an 195 

upregulation of interferon responses and cytokine production (Fig. 3D, fig. S6B and table S3), 196 

indicating their pro-inflammatory characteristics. Notably, MoAM5 shows dramatic upregulation 197 

of IL-6 secretion and cytokine receptor binding activities (Fig. S7, A to D). However, cells in this 198 

sub-cluster were mainly from one severe patient (fig. S3C). We still need more data to fully 199 

understand such dramatic upregulation of IL-6 secretion in some severe patients. Similar to 200 

MoAM, we also identified two distinct groups of TRAM in BAL (Fig. 3B and fig. S6B), 201 

including quiescent TRAM (TRAM1 and TRAM2) and activated TRAM (TRAM3). The 202 

quiescent group was mainly from healthy donors with enriched pathways of ATP metabolism 203 

(Fig. 3D), while the activated group from mild and severe patients displays upregulation of ISGs 204 

and cytokine signaling pathways (fig. S6B and table S3). However, the magnitude of activation 205 

and inflammatory responses in TRAM3 is smaller than MoAM1,2,5. Not surprisingly, stronger 206 

antigen processing and presentation activities were observed in TRAM3 relative to MoAM1,2,5 207 

(Fig. 3D, fig. S6B and table S3). Collectively, we concluded that tissue-resident macrophages 208 

were greatly depleted in severe patients as the front-line innate immune responders in the lung. 209 

Pro-inflammatory monocyte-derived macrophages infiltrate into the lung, leading to the cytokine 210 

storm and damage of the lung. Large amounts of infiltration of MoAM were not observed in mild 211 

COVID-19 patients, probably due to the controlled infection, which could explain milder lung 212 

damages in those patients. 213 

  214 
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To develop an understanding of the interaction network in the lung microenvironment of severe 215 

COVID-19 patients, we focused on signaling ligands, receptors and pathways using ToppCell and 216 

CellChat (Fig. 3E and fig. S8, A and B). Notably, basal cells, MoAMs, neutrophils and T cells all 217 

contributed to the cytokine, chemokine and interleukin signaling networks. Strikingly, severe 218 

patient specific MoAM2 shows the broadest upregulation of signaling ligands, including CCL2, 219 

CCL3, CCL7, CCL8, CXCL9, CXCL9, CXCL10, CXCL11, IL6, IL15 and IL27, suggesting its 220 

role as a signaling network hub that is distinct from the other major signaling ligand-expressing 221 

cells of BAL such as epithelial and other myeloid cell types such as TRAM3 and proliferating 222 

myeloid cells (fig. S8A). Among the MoAM2 top signaling molecules, attractants CXCL8, 223 

CXCL9 and CXCL10 are known to target CXCR3 on T cells, suggesting their role is to stimulate 224 

migration of T cells to the epithelial interface and into BAL fluid (Fig. 3E) (15). In addition, 225 

many of MoAM2’s ligands have the potential to cause autocrine signaling activation via IL6-226 

IL6R, IL1RN-ILR2, CCL7-CCR1, CCL2-CCR1 and CCL4-CCR1, indicating its active roles in 227 

self-stimulation and development, which further amplify the attraction and migration of T cells 228 

and other immune cells. Notably, CCR1 was also expressed in activated TRAM3, but with a 229 

lower level. Although IL6 expression level is relatively low compared to other ligands in BAL 230 

data, substantial expression of IL6R was observed in MoAMs. The CCL and CXCL signaling 231 

pathways of neutrophils are less strong than MoAMs (fig. S8B), but they displayed high 232 

expression levels of CXCR1 and CXCR2, which binds with a large number of the chemokines 233 

from MoAM and epithelial cells (Fig. 3E). In addition, neutrophils exhibit an extraordinarily high 234 

level of IL1B, which could potentially in turn activate macrophages (fig. S8, A and B). TRAM3 235 

also displayed a unique pattern of signaling molecules, with a substantial level of CCL23 which 236 

could potentially attract MoAM by the interaction with CCR1. Secretion of CXCL3 and CXCL5 237 

in TRAM3 towards CXCR2 could be a potential chemoattraction pathway for neutrophils. In turn, 238 

neutrophils could activate TRAM3 by secreting IL1B, which binds with IL1RAP. Additionally, 239 

CD4+ T cells could also activate TRAM3 by IL10-IL10RB interaction (Fig. 3E and fig. S8, A and 240 

B). 241 

  242 

In addition to neutrophils and macrophages, the upregulation of ISGs was observed in classical 243 

monocytes of both mild and severe patients (cMono3, cMono4), while the reduction of the MHC 244 

class II cell surface receptor HLA-DR genes was only observed in severe patients (cMono4) (fig. 245 

S9). In cDCs, polarization of interleukin secretion was observed in mild-patient and severe-246 

patient specific clusters (fig. S10F). Collectively, dynamic changes of marker genes, 247 
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transcriptional profiles, signaling molecules and biological activities reveal the heterogeneity of 248 

myeloid cell sub-clusters across disease severity (fig. S11C). Pro-inflammatory gene expression 249 

was found in all major myeloid cell types, including cMono4, DC1, DC9 in PBMC and Neu3, 250 

DC10, MoAM1, MoAM2, MoAM5 in BAL of COVID-19 patients. The reduction of MHC class 251 

II (HLA-II) genes is a common feature of classical monocytes and macrophages in COVID-19 252 

patients and implies impaired capacity to activate T cell adaptive immunity. 253 

  254 

COVID-19 Coagulation and Immunothrombosis Map 255 

Individuals severely affected during acute phase COVID-19 infection, and in particular those with 256 

significantly elevated risk of death, frequently demonstrate striking dysregulation of coagulation 257 

and thrombosis characterized by hypercoagulability and microvascular thromboses (endothelial 258 

aggregations of platelets and fibrin) and highly elevated D-dimer levels. Yet, COVID-19 does not 259 

lead to wide scale consumption of fibrinogen and clotting factors (29, 30, 34–36). At present, we 260 

lack a molecular or cellular explanation of the underlying basis of this pathobiology (29, 37). To 261 

evaluate candidate effectors of this pathobiology, we used a list of genes associated with 262 

abnormal thrombosis from mouse and human gene mutation phenotypes and identified 263 

parenchymal lung sample endothelial cells and platelets in PBMC as cell types highly enriched 264 

with respect to genes responsible for the regulation of hemostasis (fig. S12). Because platelet 265 

counts were greatly elevated in severe versus mild individuals, we further examined platelet gene 266 

expression signatures and cell type differentiation and identified six distinct platelet sub-clusters 267 

shared across all datasets after data integration (Fig. 4, A and B). Severe-patient-specific PLT0 is 268 

an interesting sub-cluster with elevated integrin genes, including ITGA2B, ITGB1, ITGB3, 269 

ITGB5, as well as thrombosis-related genes, such as SELP, HPSE, ANO6 and PF4V1. Antibodies 270 

against the latter are associated with thrombosis including adverse reactions to recent COVID-19 271 

vaccine ChAdOx1 nCoV-19 (38). In addition, upregulated pathways of hemostasis, wound 272 

healing and blood coagulation were also observed in PLT0 (Fig. S13A and table S4). Importantly, 273 

PLT2 is an inflammatory sub-cluster with an upregulation of ISGs and interferon signaling 274 

pathways, while PLT4 is highlighted by upregulated post-transcriptional RNA splicing activities 275 

(Fig. S13, A and C). 276 

  277 

Severity-associated gene patterns were also identified by selecting coagulation-associated genes 278 

modules (Fig. 4C and table S4), indicating distinct coagulation activities across platelets. Apart 279 

from pan-platelet genes, we found dramatic upregulation of genes involved in platelet activation, 280 
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fibrinogen binding and blood coagulation in platelets of severe COVID-19, including 281 

procoagulant heparanase (HPSE) (39), Anoctamin-6 (ANO6) (40), and selectin P (SELP) (41) 282 

(Fig. 4, C and D). Heparanase is an endoglycosidase that cleaves heparan sulfate constituents, a 283 

major component of anti-coagulation glycocalyx on the surface of vascular endothelium (42, 43). 284 

Upregulated heparanase was related to upregulation of cell-matrix adhesion and coagulation (Fig. 285 

4D). Thrombotic vascular damages could be caused by the degradation function of heparinase 286 

enriched in platelets of severe patients. Elevation of ANO6 is known to trigger phospholipid 287 

scrambling in platelets, resulting in phosphatidylserine exposure which is essential for activation 288 

of the clotting system (44). In addition, other upregulated genes involved in coagulation-289 

associated activities were also observed, including wound healing, fibrinolysis, platelet 290 

aggregation and activation (Fig. 4D), which likely collectively contribute to the clotting issue of 291 

severe COVID-19 patients. 292 

  293 

Emergence of Developing Plasmablasts and B Cell Association with Autoimmunity 294 

Autoimmune disorders in COVID-19 patients such as immune thrombocytopaenic purpura (ITP) 295 

is now recognized as a known disease complication (45–49). However, little is known about the 296 

molecular and cellular mechanism behind it. To examine this further, we integrated B cells and 297 

plasmablasts from both PBMC and BAL and conducted systematic analysis (Fig. 5, A and B and 298 

fig. S14, A and B). Several COVID-19 specific sub-clusters were identified in B cells, such as 299 

ISGhigh activated B cells (cluster 7) (Fig. 5A). Importantly, activated B cells showed dramatic 300 

upregulation of interferon signaling pathways and cytokine productions (fig. S15A), indicating its 301 

anti-virus characteristics. Notably, plasmablasts were mainly observed in severe COVID-19 302 

patients, where a group of proliferative cells was identified and labeled as developing 303 

plasmablasts (Fig. 5B). In contrast, non-dividing plasmablasts displayed upregulation of 304 

immunoglobulin genes (IGHA1, IGHA2, IGKC), B cell markers (CD79A) (50), interleukin 305 

receptors (IL2RG) and type II HLA complex (HLA-DOB) (Fig. 5C and table S5). In addition, 306 

non-dividing plasmablasts showed unique isotypes of immunoglobulin (Ig) in sub-regions of 307 

UMAP, whereas developing plasmablasts displayed obscure Ig types (fig. S14, E and F). 308 

Antibody production activities were upregulated in non-dividing plasmablasts based on gene 309 

enrichment analysis (Fig. S15A and table S5). Collectively, we inferred that non-dividing 310 

plasmablasts had definite immunoglobulin isotypes and were actively involved in immune 311 

responses towards COVID infection, while developing plasmablasts were less mature but highly 312 

proliferative to replenish the repertoire of plasma cells. 313 
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  314 

Since there are few clues of gene associations of autoimmunity in COVID-19, we brought up a 315 

hypothesis-driven, prior knowledge-based approach to discover and prioritize genes for the 316 

specific phenotype (Fig. 5D). First, gene modules of B cells and other cells in severe patients 317 

were collected and subjected to ToppGene for enrichment analysis. Then we queried 318 

autoimmunity-associated terms in the enriched output and identified associated genes. After that, 319 

we retrieved interaction pairs using ToppCluster and CellChat database (51). In the end, we 320 

identified genes that are not only involved in autoimmunity, but have a mediator role in the 321 

immune signaling network. Using this approach, we observed several candidate pairs of genes, 322 

including TNFSF13B-TNSRSF13, IL10-IL10RA, IL21-IL21RA, IL6-IL6R, CXCL13-CXCR5, 323 

CXCL12-CXCR4, CCL21-CCR7, CCL19-CCR7 and CCL20-CCR6 in severe patients, which 324 

were enriched for autoimmune diseases, such as autoimmune thyroid diseases, lupus nephritis, 325 

autoimmune encephalomyelitis (52–56). Candidate cytokine and chemokine ligand genes were 326 

expressed in various cell types in PBMC and BAL, including IL21 and CXCL13 from exhausted 327 

T cells of BAL, CXCL12 from mesenchymal cells, IL6 and CCL21 from endothelial cells, 328 

CCL19 from cDC and CCL20, TNFSF13B, and TNFSF13 from lung macrophages (Fig. 5E and 329 

table S5). These interaction pairs have been linked with auto-immunity (57, 58). In addition, we 330 

analyzed single-cell studies (59, 60) of rheumatoid arthritis and lupus nephritis patients and found 331 

that high expression levels of the candidate receptors in B cells and ligands in other cells were 332 

also observed, such as CXCL13 in helper T cells and CXCR5 in B cells in both studies (fig. S15, 333 

C and D). However, more evidence is still required to infer the association between these 334 

interactions and autoimmunity in COVID-19 patients. Supported by the evidence above, we drew 335 

a network for potential mediator interactions of B cells and their associations with autoimmune 336 

disorders, where linkages with diseases, such as rheumatoid arthritis, systemic lupus 337 

erythematosus, were highlighted, as well as linkages with mouse phenotypes, such as abnormal 338 

immune tolerance and increased susceptibility to autoimmune disorder (Fig. 5F). As a caveat, 339 

although using prior knowledge to prioritize gene and cell-associated functions and interactions 340 

may introduce biases, such approaches also have the potential to highlight key similarities and 341 

differences between different disease causes and clinical responses and improve our 342 

understanding of the molecular and cellular mechanisms at work. 343 

  344 

Functional Map and Immune Cell Interplay Landscape in COVID-19 345 
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As above, where highly significant enrichments of unique functions and pathways could be 346 

identified in the subtypes of multiple cell classes, such as neutrophils, platelets and B cells, we 347 

sought to get a more holistic understanding of COVID-19 specific cell class and subclass-level 348 

signatures, including T cell subtypes (fig. S16 and fig. S17), we built an integrative functional 349 

map of all cell types in three compartments across multiple disease conditions using a highly 350 

integrated gene module set (Fig. 6A and table S6). All enriched functional associations in 351 

ToppCluster for gene modules of cell types and sub-clusters were depicted. They were grouped 352 

by disease conditions and compartments to show heterogeneity of cellular functions in different 353 

circumstances. 354 

  355 

In the heatmap (Fig. 6A), most enrichments were consistently observed across cells of healthy 356 

donors and COVID-19 patients. However, some unique patterns were also identified. For 357 

example, T cells and NK cells in healthy donors show enrichments of mitochondrial transport and 358 

ATP metabolic process, while activated T cells in mild patients show upregulation of type I 359 

interferon production and cytokine signaling. Enrichments of macrophage differentiation and 360 

neutrophil migration regulation were uniquely found in MoAM1 in severe patients (Fig. 6A). The 361 

function map provides a high-level approach to investigate functional variations of cells across 362 

disease conditions and compartments. The predicted interplay of immune cells across multiple 363 

compartments and disease conditions is displayed in Fig. 6B. Cell proportion changes, sub-cluster 364 

specific signatures and cell-cell interaction are also depicted. 365 

  366 

Similarity and Heterogeneity Between COVID-19 and Other Immune-mediated Diseases 367 

To further analyze COVID-19 specific immune signatures, we compared immune cells from 368 

COVID-19 patients with cells in other immune-mediated diseases, including severe influenza 369 

(12), sepsis (61) and multiple sclerosis (62). 404,125 cells were included after the integration of 370 

PBMC single-cell datasets (Fig. 7A and fig. S18, table S7). Dynamic changes of cell abundance 371 

were compared in diseases versus healthy donors. Similar to COVID-19 patients, severe influenza 372 

patients also exhibited the reduction of non-classical monocytes, pDC, cDC and CD4+ TCM, but 373 

the effect of the former two types was smaller in magnitude (Fig. 7B). However, the reduction of 374 

non-classical monocytes is more significant in severe COVID-19 patients than severe influenza or 375 

mild COVID-19 patients (Fig. 7B). Notably, NK cell reduction is associated with COVID-19 376 

severity, whereas T cell depletion is a more dramatic perturbation in severe influenza. Within 377 

these comparisons, the expansion of plasmablasts is consistently observed, whereas the 378 
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accumulation of platelets is unique to SARS-CoV-2 and in particular, to severe COVID-19 379 

clinical status (Fig. 7B). 380 

  381 

In addition to dynamic changes of cell ratios, we also investigated the regulation of immune 382 

mediator genes across various diseases (Fig. 7C and table S7). IL-6 is an important factor of 383 

cytokine storms in COVID-19 (63). As shown in the heatmap, naive B cells are the main sources 384 

of IL-6 in COVID-19 patients while CD14+ monocytes show the highest expression levels in 385 

severe influenza patients (Fig. 7C). Specific ligands, including CXCL2, CXCL3, CCL20 were 386 

upregulated in both severe COVID-19 patients and severe influenza patients. CCR4 and IL2RA is 387 

uniquely high in CD4+ T cells of COVID-19 patients. Interestingly, most PBMC myeloid cell 388 

types displayed upregulated levels of interferon-stimulated genes in both COVID-19 and 389 

influenza, especially in COVID-19, where highest levels of ISGs in CD14+ Monocytes, cDC and 390 

pDC were observed. 391 

  392 
  393 
Discussion 394 
  395 
In this work, we have constructed an innovative immune signature atlas of the blood and lung of 396 

COVID-19 patients using the integrated single cell RNA-sequencing data and Topp-toolkit. By 397 

virtue of systemic analysis of large sample size from multiple sampling sites, consistent 398 

immunopathology-associated changes of cell abundance and transcriptional profiles were 399 

observed in the circulating and lung immune repertoire of COVID-19 patients. The established 400 

single cell atlas and the provided public portal (https://toppcell.cchmc.org/) enables the query of 401 

candidate molecules and pathways in each of these processes. 402 

  403 

Leveraging this approach, we identified three major candidate mechanisms capable of driving 404 

COVID-19 severity: (1) a cascade-like network of proinflammatory autocrine and paracrine 405 

ligand receptor interactions among subtypes of differentiating mononuclear, lymphoid, as well as 406 

other cell types; (2) the production of emergency platelets whose gene expression signatures 407 

implicate significantly elevated potential for adhesion, thrombosis, attenuated fibrinolysis, and 408 

potential to enhance the release of heparin-bound cytokines as well as further influence the 409 

activation of neutrophils causing further inflammatory cell recruitment and neutrophil netosis; and 410 

(3) the extrafollicular activation of naive and immature B cells via a multilineage network that 411 

includes monocytic subtypes and exhausted T cells of cytokines and interleukins with the 412 
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potential to generate local antigen specific response to virus infected targets and collateral 413 

autoimmunity. More details will be discussed below. 414 

  415 

We identified dramatically expanded macrophages which were marked by the loss of HLA class 416 

II genes and upregulation of interferon-stimulated genes. It implicates a key role for these 417 

activated macrophages involved in signaling network and less so in activation of adaptive T cell 418 

immunity. Among them, MoAM2 displayed hyperinflammatory responses and extraordinary high 419 

levels of signaling molecules, which are involved in both autocrine (e.g. IL-6, CCL2, CCL4 and 420 

CCL8) and paracrine (e.g. CXCL2, CXCL9, CXCL10 and CXCL11) signaling pathways. The 421 

former pathway contributed to the self-stimulation and development, which amplified the 422 

paracrine pathway for T cell and neutrophil chemoattraction. The latter two cell types in turn 423 

activated MoAMs with cytokines genes (CCL5, IL10 of T cells and IL1B of neutrophils, 424 

respectively). Based on the intercellular and multifactor complexity of the signaling cascade we 425 

have outlined, to effectively control a malignant inflammatory cascade, it may be essential to 426 

consider simultaneously targeting multiple nodes of this network of cytokines and interleukins. In 427 

addition, HLA-DRlow monocytes, likely reflecting dysfunctional cells, were observed in severe 428 

infection. This, along with evidence of emergency myelopoiesis with immature circulating 429 

neutrophils into the circulation was detected in severe COVID-19. These neutrophils had 430 

transcriptional programs suggestive of dysfunction and immunosuppression not seen in patients 431 

with mild COVID-19. As such, we have presented evidence for the contribution of defective 432 

monocyte activation and dysregulated myelopoiesis to severe COVID. 433 

  434 

Platelet expansion is uniquely observed in COVID-19 versus other immune-mediated diseases. 435 

Strikingly, these activated platelets were highlighted with abnormal thrombosis and upregulated 436 

heparanase, a procoagulant endoglycosidase that cleaves anti-coagulation heparan sulfate 437 

constituents on endothelial cells and potentially causes thrombotic vascular damages. 438 

Additionally, heparanase-cleaved heparan sulphate (HS) fragments were capable of stimulating 439 

the release of pro-inflammatory cytokines, such as IL1B, IL6, IL8, IL10 and TNF through the 440 

TLR-4 pathway in PBMC (64), further contributing to the hyperinflammatory environment in 441 

COVID-19 patients. Since heparanase is recognized as a hallmark in tumor progression and 442 

metastasis (65), we hypothesize COVID-19 infection could be associated with higher occurrence 443 

of lung tumor metastasis. However, more data is required to support it. Pro-neutrophil secreted 444 
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proteins (e.g. ELANE, DEF4) of neutrophil extracellular trap (NET), which have been reported to 445 

be associated with higher risk of morbid thrombotic events (66). Approaches to combatting NETs 446 

could a potential anticoagulation treatment (67). 447 

  448 

We propose a signaling network which potentially shapes the differentiation of B cells towards 449 

the formation of autoantibodies. Proliferation and activation of inflammatory myeloid cells and 450 

the formation of exhausted CD4+ T helper around an area of direct or indirect viral tissue injury 451 

leads to the production of a set of interleukins and cytokines known to have both direct cell 452 

activating and maturing effects on naïve and immature B cells. Previous report had revealed the 453 

exaggerated extrafollicular B cell response, which is part of a mechanism that stimulates somatic 454 

mutation and maturation of B cells to produce plasma cells with specificity for antigens present in 455 

the vicinity of tissue damage sites (68). In the absence of macrophages or dendritic cells to restrict 456 

self vs non-self, the presence of IL-10, IL-21, CXCL13 CXC10, IL-6 and others acting on 457 

receptors present in naïve and immature B cells leads to the selection and maturation of self-458 

reactive maturation of B cells clones with formation of autoantibodies. Many of these COVID-19-459 

activated genes (e.g. CXCL13, CCL19, CCL20, TNFRSF13) are known to be genetically 460 

associated with rheumatoid arthritis, lupus, and risk of developing autoimmune disease in humans 461 

and mouse models. The development of different patterns of autoimmunity may be the main 462 

hallmark of “Long Haul” Covid disease and could explain why some individuals develop 463 

different autoantibodies and suffer different forms of clinical consequences depending on which 464 

antigens drive the B-cell maturation. Thus, an additional prediction that could be made based on 465 

these findings and our network model is that among individuals treated with corticosteroids at the 466 

time these auto-immunogenic processes are activated, there should be a protective effect and 467 

lower likelihood of developing post acute sequela of COVID. 468 

  469 

Consistent and varied compositional changes and gene patterns of immune cells were identified in 470 

COVID-19, influenza and sepsis. Expansion of plasmablasts, as well as the reduction of non-471 

classical monocytes, are more significant changes in severe COVID-19 patients, while the 472 

depletion of T cells is more dramatic in severe influenza patients. The accumulation is a unique 473 

immune hallmark of COVID-19 within the selected diseases, which contributes to the coagulation 474 

abnormalities and thrombosis, a key cause of fatality in COVID-19 patients. Different signaling 475 

gene patterns were identified across immune-mediated diseases, with CCR4 only highly 476 

expressed in CD4+ T cells of COVID-19 patients, which might be related with extravasation of 477 
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these cells (69). Upregulated interferon-stimulated genes of myeloid cells in PBMC revealed the 478 

inflammatory environment of COVID-19. 479 

  480 

Collectively, using the COVID-19 single cell atlas data exploration environment, we have 481 

illustrated is that researchers are now enabled to systematically explore, learn, and formulate new 482 

hypotheses within and between compartments, cell types, and biological processes, and provided 483 

access to these reprocessed datasets through a suite of explorative and evaluative tools. Moreover, 484 

we have shown different hypotheses can be developed and explored using the approaches that we 485 

have outlined and the database that we have provided. Certainly additional critical information 486 

will also be obtained using approaches that include in situ spatial, temporal data as well as those 487 

of viral products and viral and inflammatory-process affected complexes. Next steps for 488 

improving its ability to be mined more deeply will be based on additional statistical methods that 489 

extend the current ToppCell / ToppGene Suite based on fuzzy measure similarity, Page-Rank, and 490 

cell-cell signaling approaches. 491 

  492 

There are several limitations in our study. Different studies used various standards of COVID-19 493 

severity definition. To generalize conclusions, we simplified disease conditions into several 494 

universal groups. Prospectively, a standardized definition of disease stages will assist to the 495 

accuracy of future studies. Additionally, the timing of sample collection was not considered as a 496 

variable in this study, rather disease stages were used to consolidate data across samples. We lack 497 

follow-up data of patients with sequela, which will be helpful for understanding the long-haul 498 

effects of the disease. 499 

  500 
 501 
Materials and Methods 502 

 503 
Experimental design and single-cell RNA-seq data source 504 

To have a comprehensive understanding of immune cells in different repertoires, we collected 8 505 

public COVID-19 single-cell RNA-seq datasets of multiple compartments, including peripheral 506 

blood mononuclear cells, bronchoalveolar lavage and lung biopsy, which in total covered over 43 507 

healthy donors, 22 mild/moderate, 42 severe and 2 convalescent COVID-19 patients. More details 508 

can be found in Fig. 1A and table S1. Lung biopsy samples were taken from the explanted lung or 509 

post-mortem lungs of COVID-19 patients (70). Various criteria were used in these publications to 510 

describe COVID-19 severity. For example, we found asymptomatic, mild, moderate and floor 511 
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COVID-19 patients under the definition of non-severe COVID-19 patients in our data sources. A 512 

recent paper used the WHO score of COVID-19 severity to categorize disease conditions of 513 

patients (26), which is a more standardized and robust approach for the description of disease 514 

stages. However, in order to address the issue of missing information for disease stratification and 515 

to simplify the comparison, we grouped disease conditions into three groups, including healthy 516 

donors, mild COVID-19 patients and severe COVID-19 patients. Convalescent patients were 517 

excluded in some of our analysis for simplification. Sequencing data of healthy donors in Guo et 518 

al. was excluded since it was not from the same institute (14). 519 

We also collected PBMC single-cell RNA-seq data from 29 sepsis patients (61) and 4 multiple 520 

sclerosis (62) patients for comparative analysis of immune-mediated diseases (Fig. 1A and table 521 

S1). Data sources can be found in Data Availability. 522 

  523 

Data preprocessing and normalization 524 

For datasets with raw UMI counts, we first removed cells with less than 300 detected genes or 525 

less than 600 UMI counts. Then cells with more than 15% counts of mitochondrial genes were 526 

filtered out. Genes expressed in less than 5 cells were removed. After quality control, we finally 527 

harvested 483,765 high-quality cells from 8 studies (table S1). We normalized the total UMI 528 

counts per gene to 1 million (CPM) and applied log2(CPM+1) transformation for heatmap 529 

visualization and downstream differential gene expression analysis. Steps above were done in 530 

Scanpy (71). 531 

For some datasets that only provide processed and normalized h5ad or rds files, we checked their 532 

preprocessing procedures in the original publications and confirmed that stringent quality control 533 

procedures were used. Most of them used the default normalization approach in the Seurat or 534 

Scanpy pipeline. We transferred them to log2(CPM+1) to make data consistently normalized. We 535 

also prepared corresponding raw count files for data integration. 536 

  537 

Integration of PBMC datasets and BAL datasets using Reciprocal PCA in Seurat 538 

We input raw count files of 5 preprocessed PBMC datasets into Seurat and created a list of Seurat 539 

objects. Reciprocal PCA procedure (https://satijalab.org/seurat/v3.2/integration.html#reciprocal-540 

pca) was used for data integration. First, normalization and variable feature detection were 541 

applied for each dataset in the list. Then we used SelectIntegrationFeatures to select features for 542 

downstream integration. Next, we scaled data and ran the principal component analysis with 543 

selected features using ScaleData and RunPCA. Then we found integration anchors and integrated 544 
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data using FindIntegrationAchnors and IntegrateData. RPCA was used as the reduction method. 545 

After integration, we scaled data and ran PCA on integrated expression values. UMAP was 546 

generated using the top 30 reduced dimensions with RunUMAP. The same approach was also 547 

used in BAL data integration and multi-disease integration. We also used it for the integration of 548 

specific cell types across multiple datasets, for example, the integration of neutrophils from 549 

PBMC and BAL datasets. Compared with standard workflow and SCTransform 550 

(https://satijalab.org/seurat/v3.2/integration.html) in Seurat, we found Reciprocal PCA is much 551 

less computation-intensive and time-consuming, making the integration of multiple large single-552 

cell datasets feasible. 553 

  554 

Cell Annotations using canonical markers after unsupervised clustering 555 

Cell annotations were assigned in each dataset and then mapped to the integrated data. For some 556 

datasets without available cell annotations, we first used unsupervised clustering in Scanpy. 557 

Detailed steps include (1) detecting top 3,000 highly variable genes using 558 

pp.highly_variable_genes; (2) scaling each gene to unit variance on highly variable genes using 559 

pp.scale; (3) running PCA using arpack approach in tl.pca; (4) finding neighbors using 560 

pp.neighbors; (5) running leiden clustering with resolution of 1 using tl.leiden (resolutions were 561 

determined swiftly based on the size and complexity of data). More details can be found in the 562 

code. For datasets with available annotations, we checked their validity and corrected wrong 563 

annotations. For example, hematopoietic stem and progenitor cells (HSPC) were mistakenly 564 

annotated as “SC&Eosinophil” in the original paper (11) and were corrected in our annotation. 565 

  566 

After unsupervised clustering, well recognized immune cell markers were used to annotate 567 

clusters, including CD4+ T cell markers such as TRAC, CD3D, CD3E, CD3G, CD4; CD8+ T cell 568 

markers such as CD8A, CD8B, NKG7;  NK cell markers such as NKG7, GNLY, KLRD1; B cell 569 

markers such as CD19, MS4A1, CD79A; plasmablast markers such as MZB1, XBP1; monocyte 570 

markers such as S100A8, S100A9, CST3, CD14; conventional dendritic cell markers such as 571 

XCR1, plasmacytoid dendritic cell markers such as TCF4; megakaryocyte/platelet marker PPBP; 572 

red blood cell markers HBA1, HBA2;  HSPC marker CD34. Exhaustion-associated markers, 573 

including PDCD1, HAVCR2, CTLA4 and LAG3 were used to identify exhausted T cells. 574 

  575 

Additionally, other markers were used for annotations of lung-specific cells, including AGER, 576 

MSLN for AT1 cells; SFTPC, SFTPB for AT2 cells; SCGB3A2, SCGB1A1 for Club cells; 577 
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TPPP3, FOXJ1 for Ciliated cells; KRT5 for Basal cells; CFTR for Ionocytes; FABP4, CD68 for 578 

tissue-resident macrophages; FCN1 for monocyte-derived macrophages, TPSB2 for Mast cells. 579 

More details can be found in Table S2. 580 

  581 

Cell Annotations using Azimuth 582 

To better annotate T cells in our study, we applied Azimuth (https://satijalab.org/azimuth/), a tool 583 

for reference-based single-cell analysis developed in Seurat version 4.0 (22). High-quality PBMC 584 

single-cell data in Azimuth was used as the reference for label projection. After removing 585 

annotations with low prediction scores or low mapping scores, we got a collection of well-586 

annotated T cell subtypes, including CD4+ Cytotoxic T cell, CD4+ Naive T cell, CD4+ Central 587 

Memory T cell, CD8+ Naive T cell, CD8+ Effector Memory cell, gamma-delta T cell, double-588 

negative T cell. CD4+ Effector Memory T cell and CD8+ Central Memory T cell were found by 589 

Azimuth but removed later because of low scores. Apart from annotations of T cell subtypes, we 590 

also found CD56-bright NK cell, intermediate B cell and Memory B cell using Azimuth. 591 

  592 

Sub-clustering for specific cell types 593 

Sub-clustering was used for the discovery of subtypes or distinct stages of a specific cell type. In 594 

our work, we applied sub-cluster for various immune cell types, including classical monocytes, 595 

neutrophils, conventional dendritic, B cells and platelets. First, all cells in the specific cell type 596 

were integrated using the same procedure as PBMC data integration. Then Louvain clustering 597 

(resolution = 0.5, except for sub-clustering of classical monocytes where resolution = 0.3) was 598 

applied to detect sub-clusters of those cells. Importantly, neutrophils, cDCs and B cells were 599 

retrieved from both PBMC and BAL, whereas classical monocytes and platelets were only 600 

retrieved from PBMC. 601 

  602 

Generation of ToppCell gene modules 603 

ToppCell (https://toppcell.cchmc.org/) was designed to parallelly analyze transcriptional profiles 604 

of single-cell datasets by organizing differential expressed gene modules in a customized 605 

hierarchical order. In our study, we hierarchically annotated cells with multiple layers, including 606 

compartments, disease conditions, lineages, cell classes and sub-clusters. All the cells were 607 

grouped into specific hierarchical categories. For example, “PBMC_severe COVID-19_myeloid 608 

cells_classical-monocytes_cMono1” represents cells belonging to cMono1 (a sub-cluster of 609 

classical monocytes) in PBMC of severe COVID-19 patients. With hierarchically ordered cell 610 
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annotations, we calculated their DEGs in a hierarchical way as well. We defined customized 611 

ranges for comparisons and applied t-test based on normalized expression values. More details 612 

can be seen on ToppCell website. Usually, the top 200 most differentially genes in each 613 

comparison were picked up as the gene modules for the selected cell group, which are the starting 614 

point of downstream analysis, including gene enrichment in ToppGene and interaction inference 615 

in ToppCluster. All gene modules in our study were curated in COVID-19 Atlas 616 

(https://toppcell.cchmc.org/biosystems/go/index3/COVID-19 Atlas) and ImmuneMap 617 

(https://toppcell.cchmc.org/biosystems/go/index3/ImmuneMap) on the ToppCell website. 618 

  619 

Gene Enrichment Analysis using ToppGene 620 

Abundant gene modules were generated with ToppCell. After that, we used ToppGene 621 

(https://toppgene.cchmc.org/) for gene enrichment analysis. Genes in each gene module were sent 622 

to ToppGene platform as input for enrichment in different domains. GO-Molecular Function, GO-623 

Biological Process and GO-Cellular Component and Mouse Phenotype were usually used for 624 

enrichment. P values of enrichment results were adjusted using the Benjamini-Hochberg 625 

procedure. 626 

  627 

Generation of Functional Association Heatmap using ToppCluster 628 

Genes in gene modules of selected cell types or sub-clusters were sent to ToppCluster 629 

(https://toppcluster.cchmc.org/). Then multi-group functional enrichment was drawn for input 630 

gene modules and -log10(adjusted p-value) was used as the gene enrichment score to represent the 631 

strength of association between gene modules and pathways. Scores greater than 10 were trimmed 632 

to 10. Pathways from Gene Ontologies, including Molecular Functions, Biological Process and 633 

Cellular Component in the option list were used for the enrichment of gene modules in myeloid 634 

cells, B cells and platelets. In order to gain a broader knowledge of immunothrombosis-related 635 

pathways, “Pathway” and “Mouse Phenotype'' in the option list were also selected for enrichment. 636 

Morpheus was used for visualization of the heatmap 637 

(https://software.broadinstitute.org/morpheus/). 638 

 639 

Cell Interaction Inference in immunothrombosis activities and cytokine signaling pathways 640 

CellChat was used to infer the signaling network in the BAL of severe patients (fig. S8B). All 3 641 

categories of interactions were used in the database CellChatDB.human. Over-expressed ligands 642 

or receptors in each cell type were first identified for further identification of over-expressed 643 
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interaction pairs. Then cytokine, chemokine and IL signaling probability between multiple cell 644 

types was inferred using computeCommunProb and computeCommunProbPathway. 645 

  646 

ToppCell was used to infer interactions in immunothrombosis. We first selected genes related to 647 

coagulation or immunothrombosis pathways from subtypes of endothelial cells, platelets, 648 

neutrophils, classical monocytes and monocyte-derived macrophages by filtering the output of 649 

ToppCluster (fig. S12A). Then we used CellChatDB as the knowledge base to find the subset of 650 

genes participating in cell-cell interaction, including genes involved in signaling via secretion, 651 

cell-cell contact and extracellular matrix interaction. These genes in each cluster were sent to 652 

ToppCluster to infer the interaction network using protein-protein interactions (PPI) between 653 

those genes. 654 

  655 

Generation of Volcano Plots 656 

We first calculated differential expressed genes using tl.rank_genes_groups in Scanpy. Adjusted 657 

p values and log fold changes in the output were used as the input of volcano plots. R package 658 

EnhancedVolcano (72) was used to draw figures. 659 

  660 

Construction of COVID-19 Functional Enrichment Map 661 

In order to characterize functional properties of cell types and subtypes observed in BAL, PBMC, 662 

and lung parenchymal samples from control, mild, and severe COVID-19 patient samples, we 663 

used the library of gene expression signatures (“Gene Module Report” from ToppCell) as an input 664 

to the ToppCluster enrichment analyzer web server (Kaimal et al 2010). Using categories of Gene 665 

Ontology, Human Phenotype, Mouse Phenotype, Pathway and Protein Interaction, a matrix was 666 

constructed using minus log P enrichment values for each celltype gene list and then all cells and 667 

enriched features could be clustered and ordered based on their shared or distinct properties that 668 

could then be associated with lineage, cell subclass, tissue compartment, and disease state.  669 

 670 

Statistics Analysis of Cell Proportion Changes in Different Disease Stages 671 

Cell proportion differences between disease groups for specific types and subtypes (Fig. 2 and fig. 672 

S2 to S4) shown on box plots were measured by Mann-Whitney test (Wilcoxon, paired=False). 673 

Significance between two disease conditions were shown on the top. 674 

To investigate the dynamic changes of cell proportions across various immune-mediated diseases, 675 

we followed the approach in recent literature (12) (Fig. 7B). For each disease condition, we 676 
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computed the relative ratio of each cell type in individual disease samples divided by individual 677 

healthy samples. Log2 transformed values were shown in the box plot. Then we calculated 678 

relative ratios of each cell type between all sample pairs of healthy donors as a control. To 679 

compute the significance, we used a two-sided Kolmogorov-Smirnov (KS) test using relative 680 

ratios in diseases and those values in healthy donors. 681 

 682 
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Figures and Tables 998 
 999 
Fig. 1. Creating a COVID-19 Signature Atlas. (A) Representative aggregation of multiple 1000 

single-cell RNA-sequencing datasets from COVID-19 and related studies. The present study is 1001 

derived from a total of 231,800 peripheral blood mononuclear cells (PBMCs), 101,800 1002 

bronchoalveolar lavage (BAL) cells and 146,361 lung parenchyma cells from 43 healthy; 22 mild, 1003 

42 severe, and 2 convalescent patients. Data was collated from eight public datasets (right). (B) 1004 

Data analysis pipeline of the study using Topp-toolkit. It includes three phases: (1) clustering and 1005 

annotation; (2) downstream analysis using Topp-toolkit; (3) biological exploration. Output 1006 

includes the evaluation of abundance of cell populations, cell type (cluster) specific gene 1007 

modules, functional associations of disease-associated cell classes and clusters, inference of cell-1008 

cell interactions, as well as comparative analysis across diseases, including influenza, sepsis and 1009 

multiple sclerosis. Additional newer datasets not included in this manuscript are present and will 1010 

continue to be added to ToppCell (http://toppcell.cchmc.org). 1011 

 1012 

Fig. 2. Modularized representation of cell type specific gene signatures and dynamic 1013 

changes of cell abundance. (A) Uniform Manifold Approximation and Projection (UMAP) of 28 1014 

distinct cell types identified in the integrated peripheral blood mononuclear cell (PBMC) data. (B) 1015 

Comparative analysis of cell abundance effects of COVID-19. Reproducible multi-study data 1016 

present high impact effects on 5 cell types in PBMC. Percentages of selected cell types in each 1017 

sample are shown (where Vent: Ventilated patients; Non Vent: Non-ventilated patients). 1018 

Significance between two conditions was measured by the Mann-Whitney rank sum test 1019 

(Wilcoxon, paired=False), which was also used in following significance tests of cell abundance 1020 

changes in this study. *: p <= 0.05; **: p <= 0.01; ***: p <= 0.001; ****: p <= 0.0001. (C) 1021 

UMAP of 24 distinct cell types identified in the integrated BAL data. (D) Dynamic changes of 1022 

cell abundances for cell types in two bronchoalveolar lavage (BAL) single-cell datasets. (E) 1023 

ToppCell allows for gene signatures to be hierarchically organized by lineage, cell type, subtype, 1024 

and disease condition. The global heatmap shows gene modules with top 50 upregulated genes 1025 

(student t test) for each cell type in a specific disease condition and compartment. Gene modules 1026 

from control donors and severe COVID-19 patients were included in the figure. 1027 

 1028 

Fig. 3. Functional analysis of compartment-specific immature and subtype-differentiated 1029 

neutrophils and monocytic macrophages in COVID-19 patients. (A) Five sub-clusters and 1030 

three cell groups were identified after the integration of neutrophils in peripheral blood 1031 
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mononuclear cells (PBMC) and bronchoalveolar lavage (BAL) (Left). The distribution of 1032 

compartments is shown on the right. (B) Sub-clusters (Left) and COVID-19 conditions (Right) of 1033 

monocyte-derived macrophages and tissue-resident macrophages were identified after integration 1034 

of BAL datasets. (C) Heatmap of gene modules from ToppCell with top 200 upregulated genes 1035 

for each neutrophil sub-cluster. Important neutrophil-associated genes and inferred roles of sub-1036 

clusters were shown on two sides. (D) Heatmap of associations between subclusters of 1037 

neutrophils and macrophages and myeloid-cell-associated pathways (Gene Ontology). Gene 1038 

modules with 200 upregulated genes for sub-clusters were used for enrichment in ToppCluster. 1039 

Additionally, enrichment of top 200 differentially expressed genes (DEGs) for comparisons in fig. 1040 

S5D and fig. S6B were appended on the right. Gene enrichment scores, defined as -log10(adjusted 1041 

p-value), were calculated as the strength of associations. Pie charts showed the proportions of 1042 

COVID-19 conditions in each cluster. (E) Gene interaction network in the BAL of severe 1043 

patients. Highly expressed ligands and receptors of each cell type were drawn based on fig. S8. 1044 

Interaction was inferred using both CellChat database and embedded cell interaction database in 1045 

ToppCell. 1046 

 1047 

Fig. 4. COVID-19 driven reprogramming of platelets leads to drastically altered expression 1048 

of genes associated with platelet adhesion, activation, coagulation and thrombosis. (A-B) 1049 

Uniform Manifold Approximation and Projections (UMAPs) show distributions of sub-clusters 1050 

(A) and COVID-19 conditions (B) of platelets after the integration of PBMC datasets. (C) 1051 

Severity-associated coagulation genes were selected and shown on the heatmap, with disease and 1052 

sub-cluster specific gene patterns identified and labeled. Their functional associations with 1053 

coagulation pathways were retrieved from ToppGene and shown on the right. (D) Functional and 1054 

phenotypical associations of coagulation-association genes in each gene pattern from (B). 1055 

Associations were retrieved from ToppGene enrichment. Fibrinolysis is highlighted. 1056 

 1057 

 Fig. 5. Implicating a multi-lineage cell network capable of driving extrafollicular B cell 1058 

maturation and the emergence of humoral autoimmunity in COVID-19 patients. (A) 1059 

Uniform Manifold Approximation and Projections (UMAPs) of sub-clusters (Left) and COVID-1060 

19 conditions (Right) of B cells after integration of peripheral blood mononuclear cells (PBMC) 1061 

and bronchoalveolar lavage (BAL) datasets. (B) UMAPs of subtypes (Left) and COVID-19 1062 

conditions (Right) of plasmablasts after integration of PBMC and BAL datasets. (C) Volcano plot 1063 

depicts differentially expressed genes between plasmablasts and developing plasmablasts. Student 1064 
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t-tests were applied and p values were adjusted by the Benjamini-Hochberg procedure. (D) 1065 

Workflow of discovering and prioritizing candidate genes related to a disease-specific phenotype 1066 

with limited understanding. (E) The heatmap shows the normalized expression levels of candidate 1067 

ligands and receptors for COVID-19 autoimmunity in multiple compartments in healthy donors 1068 

and COVID-19 patients. Binding ligands of receptor genes were shown in parentheses on the 1069 

right. Hot spots of expression are highlighted. (F) Network analysis of autoimmunity-associated 1070 

gene expression by COVID-19 cell types. Prior knowledge associated gene associations include 1071 

GWAS, OMIM, mouse knockout phenotype, and additional recent manuscripts were selected 1072 

from ToppGene enrichment results of differentially expressed ligands and receptors and shown on 1073 

the network. Orange arrows present the interaction directions from ligands (green) to receptors 1074 

(pink) on B cells. Annotations for these genes, including single-cell co-expression (blue), mouse 1075 

phenotype (light blue), transcription factor binding site (purple) and signaling pathways (green) 1076 

are shown. 1077 

 1078 

Fig. 6. Comparative analysis of cell type specific gene signatures associated with lineage, 1079 

class, subclass, compartment, and disease state in the COVID-19 atlas. (A) Enrichment scores 1080 

of gene modules for all cell types across different compartments and COVID-19 conditions were 1081 

generated by ToppCluster and shown on the heatmap. ToppCluster enriched functions from Gene 1082 

Ontology, Human Phenotype, Mouse Phenotype, Pathway and Interaction databases were used to 1083 

generate a feature matrix (cell types by features) and hierarchically clustered. Hot spots of the 1084 

disease-specific enrichments were highlighted and details were shown on the left. More details 1085 

can be found in Methods. (B) Summarizing predicted functions and interplay of immune cells in 1086 

COVID-19 blood and lung. Aforementioned key observations in this study were shown in 1087 

peripheral blood mononuclear cells (PBMC) and bronchoalveolar lavage (BAL) in healthy 1088 

donors, mild and severe COVID-19 patients, including changes of cell abundance, specific 1089 

marker genes, upregulated secretion, cell development and cell-cell interactions.  1090 

  1091 

Fig. 7.  Comparative analysis of differentially-expressed immunoregulatory genes between 1092 

COVID-19 and other immune-mediated diseases. (A) Uniform Manifold Approximation and 1093 

Projection (UMAP) shows the distributions of cell types (Left) and diseases (Top right) after the 1094 

integration of datasets in multiple studies. MS: multiple sclerosis; IIH: idiopathic intracranial 1095 

hypertension. IIH patients were recruited as controls in the multiple sclerosis study. (B) Dynamic 1096 

changes of immune cell types in different immune-mediated diseases compared to healthy 1097 
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controls. Log2(ratio) was calculated to show the levels of changes. *, p<0.05, **, p<0.01, ***, 1098 

p<0.001. Statistical models can be found in the Methods. Leuk-UTI: sepsis patients that enrolled 1099 

into UTI with leukocytosis (blood WBC ≥ 12,000 per mm3) but no organ dysfunction. (C) 1100 

Normalized expression values of key genes involved in immune signaling and responses are 1101 

shown for cell types across multiple diseases. Lowly expressed genes (maximal average 1102 

expression level across all cell types in the heatmap is less than 0.5 after Log2CPM normalization) 1103 

were removed. 1104 

 1105 

Figure S1. Cell distribution and abundance in the integrated COVID-19 PBMC data. (A) 1106 

Distributions of COVID-19 conditions (Left) and data sources (Right) for the integrated PBMC 1107 

data are shown on the same UMAP of Figure 2A. (B) Bar plot depicts distributions of disease 1108 

conditions in 5 individual PBMC single-cell datasets. Percentages of 3 disease conditions in each 1109 

dataset is shown on y axis. (C) The integrated bar plot shows percentages of 3 disease conditions 1110 

in each cell type per dataset. Dataset abbreviations and cell types were concatenated to show 1111 

disease distributions of specific cell types in the selected datasets. These labels are colored by 1112 

their cell type designations and ordered by the ascending percentages of COVID-19 conditions. 1113 

 1114 

Figure S2. Dynamic changes of cell type abundances in five COVID-19 PBMC datasets. 1115 

Relative abundances and differences of major cell types in each single cell dataset are shown and 1116 

compared to controls per each disease condition, per each single-cell dataset. Box plots of all cell 1117 

types in PBMC are shown except for the 5 highlighted cell types shown in Figure 2B. Statistical 1118 

methods are the same with Figure 2B. 1119 

 1120 

Figure S3. Cell distributions and dynamic changes in the integrated COVID-19 BAL data. 1121 

(A-C) Distributions of disease conditions (A), data sources (B) and samples (C) are shown on the 1122 

same UMAP of Figure 2C. (D) Box plots depict dynamic changes of cell types across COVID-19 1123 

conditions in BAL that are not covered in Figure 2D. Statistical methods are the same with Figure 1124 

2B. 1125 

 1126 

Figure S4. Cell type abundance changes in COVID-19 lung parenchyma dataset. Box plots 1127 

depict percentages of cell types in control samples and severe COVID-19 samples. We used cell 1128 

type clusters identified in the original publication but modified cell naming of macrophage 1129 
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subtypes to distinguish monocyte derived macrophage subtypes present in BAL fluid samples. 1130 

Statistical methods are the same with Figure 2B. 1131 

 1132 

Figure S5. Sub-cluster-specific genes of neutrophils of COVID-19 patients. (A) Distribution 1133 

of disease conditions (Left) and data sources (Right) for the integrated neutrophil data on the 1134 

same UMAP of Figure 3A. (B) UMAPs of neutrophil sub-cluster-associated genes from Figure 1135 

3C. Normalized expression values for each gene were used. (C) Normalized expression values of 1136 

neutrophil-associated genes and other important immune signatures are shown for 5 neutrophil 1137 

sub-clusters. Lowly expressed genes (genes with maximal average expression level across all 1138 

neutrophil sub-clusters less than 0.5 after Log2CPM normalization) were removed from the gene 1139 

pool of cytokines, chemokines, ISGs, interleukins, interferons, corresponding receptors and 1140 

MHC-II. (D) The volcano plot depicts differentially expressed genes between circulating mature 1141 

neutrophils (Neu0,1) and extravasated neutrophils (Neu3) (Left); as well as DEGs between pro-1142 

neutrophils (Neu4) and pre-neutrophils (Neu2) (Right). Statistical methods are the same with 1143 

Figure 5C. Representative enriched biological processes (Gene Ontology) are shown in the 1144 

bottom. 1145 

 1146 

Figure S6. Macrophage-related signatures in the integrated BAL data. (A) Normalized 1147 

expression values of myeloid-cell-associated genes and other important immune signatures are 1148 

shown for 9 macrophage sub-clusters. Lowly expressed genes (genes with maximal average 1149 

expression level across all macrophage sub-clusters less than 0.5 after Log2CPM normalization) 1150 

were removed from the gene pool of MHC-II, cytokines, chemokines, ISGs, interleukins, 1151 

interferons and their receptors. (B) Volcano plots were drawn for DEGs of MoAM3,4 versus 1152 

MoAM1,2,5 (Left) and TRAM 1,2 versus TRAM3 (Middle) and TRAM3 versus MoAM1,2,5 1153 

(Right). Statistical methods are the same with Figure 5C. (C) Normalized expression values were 1154 

shown on the same UMAP of Figure 3B for important genes including macrophage signatures, 1155 

ISGs, interferons, receptors and MHC-II. 1156 

 1157 

Figure S7. A uniquely-activated monocyte-derived cell type (MoAM5) exhibits a broad 1158 

signature of cytokines, chemokines, and interleukins including IL6. (A) Normalized 1159 

expression values of IL6 on the same reference UMAP of integrated BAL data as Figure 3B. (B) 1160 

Scale expression levels of IL6 for each macrophage sub-cluster on the violin plot. (C) Heatmap of 1161 

expression levels of pan-MoAM signatures and MoAM5-specifc signatures in all myeloid cells in 1162 
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both PBMC and BAL. (D) Network of functional and phenotypic associated pan-MoAM 1163 

signatures and MoAM5-specific signatures from (C). Associations were retrieved from ToppGene 1164 

enrichment results. IL6 is highlighted in the network. As a caveat, the MoAM5 subtype 1165 

represented a small fraction among the BAL MoAM subtypes and the majority of these cells were 1166 

observed in a single severely-affected individual.  1167 

 1168 

Figure S8. Cell type and cell subtype-specific divisions of cytokine, chemokine, and 1169 

interleukin signaling pathways in BAL of severe COVID-19 patients. (A) Heatmap of 1170 

expression patterns of ligands and receptors in cytokine, chemokine, interleukin, CSF and TNFSF 1171 

signaling pathways across cell types of BAL in severe patients. Average normalized expression 1172 

values were shown and lowly expressed ligands or receptors (maximal normalized expression 1173 

value for a row in the heatmap < 0.5) were removed. To reduce bias, MoAM5 was removed 1174 

because cells in the cluster were mainly from one patient. Cell types that have less than 5% cells 1175 

from severe patients were removed, including TRAM1 and TRAM2. Neutrophils are highlighted 1176 

in the heatmap. (B) Interaction network of BAL cells in severe patients using CellChat. CCL, 1177 

CXCL and IL1 signaling pathways were shown. The width of edges represents the strength of 1178 

interactions and the size of nodes represents the abundance of cell types. 1179 

 1180 

Figure S9. Characteristics of sub-clusters of classical monocytes in the integrated COVID-1181 

19 PBMC data. (A) UMAPs of 4 sub-clusters (Left) and COVID-19 conditions (Right) of 1182 

classical monocytes are shown. Grey dots are other myeloid cells in the UMAP of integrated 1183 

PBMC myeloid data. (B) UMAPs of normalized expression values of specific signatures for 1184 

classical monocyte sub-clusters. (C) Normalized expression values of monocyte-associated genes 1185 

and other important immune signatures are shown for 4 classical monocyte sub-clusters. (D) Gene 1186 

modules of classical monocyte sub-clusters, as well as other myeloid cell types in the integrated 1187 

PBMC myeloid data. Representative genes in each module are shown on the left. ToppGene 1188 

enrichment results for classical monocyte sub-clusters are shown on the right. Columns are 1189 

clustered using hierarchical clustering. (E) Similarity matrix of myeloid cell types using genes in 1190 

(D). Pearson correlation was used to evaluate similarity. (F) Dot plot of MHC-II, ISGs, 1191 

interleukin genes and cell cycle genes for each myeloid cell type. Scale values were used. 1192 

 1193 

Figure S10. Features of conventional dendritic cell sub-clusters and polarized signaling 1194 

genes. (A) UMAPs of 13 sub-clusters (Left) and sources (Right) of conventional dendritic cells 1195 
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after data integration. (B) Normalized expression values of sub-cluster-specific genes on the 1196 

UMAP. (C) Normalized expression values of cDC-associated genes and other important immune 1197 

signatures are shown for 13 cDC sub-clusters. (D) Gene modules of cDC sub-clusters with 200 1198 

most significantly upregulated genes in each module. Representative genes are shown on the left. 1199 

Gene enrichment results of some modules from ToppGene are shown on the right. (E) Similarity 1200 

matrix of sub-clusters using genes in (D). Pearson correlation was used for similarity scores and 1201 

hierarchical clustering was applied for rows and columns. (F) The heatmap shows the clustering 1202 

of signaling genes, including cytokines, chemokines, interleukins and their receptors. Red boxes 1203 

highlight severe patients associated sub-clusters and their upregulated genes. Green boxes 1204 

highlight mild patients-associated sub-clusters and their upregulated genes. 1205 

 1206 

Figure S11. Landscape of myeloid cells in the integrated PBMC and BAL data. (A-B) 1207 

UMAPs of myeloid cells in integrated PBMC (A) and BAL (B) data. Cell types which were 1208 

further clustered are highlighted in different colors. (C) The heatmap shows associations between 1209 

subclusters of myeloid cells and myeloid-cell-associated pathways, such as antigen presenting, T 1210 

cell activation, phagocytosis etc. Gene enrichment scores, defined as -log10(adjusted p value), 1211 

were calculated as the strength of associations. Pie charts showed the proportions of COVID-19 1212 

conditions in each sub-cluster. 1213 

 1214 

Figure S12.  Gene expression signatures of cell types and subtypes activated by COVID-19 1215 

are extensively associated with coagulation, hemostasis, and thrombosis-associated 1216 

pathways, functions, and knockout phenotypes. (A) Functional association heatmap of gene 1217 

signatures from COVID-19 cell types demonstrates differential enrichment for pathways 1218 

associated with coagulation, vascular permeability, complement, extravasation, platelet activation 1219 

and aggregation, response to wounding, as shown. Gene modules of cell types and sub-clusters 1220 

that participate in these pathways were used to calculate enrichment scores. (B) Network of 1221 

upregulated genes in coagulation/thrombosis-associated pathways (A) shows the potential gene-1222 

gene interactions in immunothrombosis of COVID-19 patients. CellChat and ToppCell/ToppGene 1223 

protein-protein ligand receptor and cell adhesion interaction databases were used to find 1224 

interaction pairs among upregulated genes. (C) A new network derived from (B) shows integrin-1225 

associated interactions between platelets and other cells. 1226 

 1227 
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Figure S13. Emergence of platelet subtypes suggestive of functionally significant alternative 1228 

roles in in hemostasis, coagulation, wound response, and neutrophil recruitment and 1229 

activation. (A) The heatmap shows ToppCell gene modules of 6 platelet sub-clusters in COVID-1230 

19 PBMC. Each gene module contains 200 most significant genes for each sub-cluster and 1231 

important genes are shown on the left. Gene enrichment analysis was conducted using ToppGene 1232 

and top enrichment results from biological processes (Gene Ontology) are shown on the right. (B) 1233 

Dot plot of integrin and other platelet-associated genes. Scale values are shown on the figure. (C) 1234 

Heatmap of associations between subclusters of platelets and platelet-associated pathways (Gene 1235 

Ontology). Gene enrichment scores, defined as -log10(adjusted p value), were calculated and 1236 

shown. 1237 

 1238 

Figure S14.  Consistent emergence of a series of early and maturing B cells and 1239 

plasmablasts in BAL fluid and PBMC across multiple datasets. (A-B) UMAPs of B cells (A) 1240 

and plasmablasts (B) from multiple datasets. (C-D) UMAP of normalized expression values of 1241 

immunoglobulin genes (C) and ISGs (D) for B cells. (E-F) UMAP of normalized expression 1242 

values of immunoglobulin genes (E) and sub-cluster associated genes, such as cell cycle genes 1243 

and B cell markers (F) for plasmablasts. (G) Gene modules of B cell sub-clusters and plasmablast 1244 

subtypes with 200 most significant genes in each module. Hierarchical clustering was applied for 1245 

columns. (H) Three representative enriched biological processes (Gene Ontology) are shown for 1246 

these two subtypes using DEGs of plasmablasts in Figure 5C. 1247 

 1248 

Figure S15. Gene Enrichment analysis of B cell subtypes and autoimmune-associated 1249 

signatures. (A) Heatmap shows gene enrichment scores of B-cell-associated pathways for each B 1250 

cell sub-cluster and plasmablast subtype. (B) Pathway and function association network of 1251 

upregulated genes in B cells of BAL in mild COVID-19 patients. (C-D) Heatmaps show 1252 

normalized expression levels of autoimmune-associated ligands and receptors (Figure 5E) in 1253 

lupus nephritis (C) and rheumatoid arthritis (D). 1254 

 1255 

Figure S16. Distinct subtypes of T cells and NK cells in COVID-19 BAL data. (A-C) UMAPs 1256 

of subtypes (A), COVID-19 conditions (B) and data sources (C) of T cells and NK cells in the 1257 

integrated BAL data. (D-E) UMAPs of normalized expression values of exhausted T cell markers 1258 

(D) and ISGs (E). 1259 

 1260 
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Figure S17. Various T cell and NK cell subtypes in the integrated PBMC data. (A-B) 1261 

UMAPs of T cell and NK cell subtypes (A) and COVID-19 conditions (B) after integration of T 1262 

cells in 5 PBMC single-cell datasets. (C) Dot plot shows T cell and NK cell subtype associated 1263 

genes for each subtype per disease condition. Labels of cell types of healthy donors, mild patients 1264 

and severe patients are colored by blue, yellow and red. Scaled expression values are shown using 1265 

a color scheme. 1266 

 1267 

Figure S18. Various cell types in immune-mediated diseases. (A, C, E) Distributions of cell 1268 

types identified in influenza (A), sepsis (C) and multiple sclerosis (E) patients were shown on 1269 

UMAPs. (B, D, F) Distributions of disease conditions in influenza (B), sepsis (D) and multiple 1270 

sclerosis (F) patients were shown on UMAPs. 1271 

 1272 
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and monocytic macrophages in COVID-19 patients
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Fig. 4. COVID-19 driven reprogramming of platelets leads to drastically altered expression of genes associated with 
platelet adhesion, activation, coagulation and thrombosis
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 Fig. 5. Implicating a multi-lineage cell network capable of driving extrafollicular B cell maturation and the emergence of humoral 
autoimmunity in COVID-19 patients. 
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Fig. 6. Comparative analysis of cell type specific gene signatures associated with lineage, class, subclass, 
compartment, and disease state in the COVID-19 atlas
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Fig. 7.  Comparative analysis of differentially-expressed immunoregulatory genes between COVID-19 and other immune-mediated diseases.
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Figure S1. Cell distribution and abundance in the integrated COVID-19 PBMC data, relative to Figure 2. 
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Figure S2. Dynamic changes of cell type abundance in the integrated PBMC data, relative to Figure 2. 
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Figure S3. Cell distributions and dynamic changes in the integrated COVID-19 BAL data, relative to Figure 2. 
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Figure S4. Dynamic changes of cell types in the COVID-19 lung parenchyma dataset, relative to Figure 2. 
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Figure S5. Sub-cluster-specific genes of neutrophils of COVID-19 patients, relative to Figure 3. 
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Figure S6. Macrophage-related signatures in the integrated BAL data, relative to Figure 3.
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Figure S7. A uniquely-activated monocyte-derived cell type (MoAM5) exhibits a broad signature of cytokines, 
chemokines, and interleukins including IL6, relative to Figure 3. 
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Figure S8. Cell type and cell subtype-specific divisions of cytokine, chemokine, and interleukin signaling pathways in 
BAL of severe COVID-19 patients, relative to Figure 3.
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Figure S9. Characteristics of sub-clusters of classical monocytes in the integrated COVID-19 PBMC data, 
relative to Figure 3. 
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Figure S10. Features of conventional dendritic cell sub-clusters and polarized signaling genes, relative to Figure 3. 
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Figure S11. Landscape of myeloid cells in the integrated PBMC and BAL data, relative to Figure 3. 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2021. ; https://doi.org/10.1101/2021.06.07.447287doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.07.447287
http://creativecommons.org/licenses/by-nc/4.0/


0.00 10.005.00

Lineage
Endothelial
Macrophage
Monocyte
Neutrophil
Platelet

Category
Angiogenesis & Development
Coagulation & Congestion
Collagen Binding
Complement Pathway
Extravasation
Platelet Activation & Aggregration
Response to Wound
Vascular Binding
Vascular Inflammation & ApoptosisAr

te
ry

C
ap

illa
ry

En
do

th
el

ia
l

Br
on

ch
ia

l v
es

se
l

En
do

th
el

ia
l-1

En
do

th
el

ia
l-2

Ly
m

ph
at

ic
pl

t_
0

pl
t_

1
pl

t_
2

pl
t_

3
pl

t_
5

pl
t_

4
im

m
at

ur
e 

N
eu

tro
ph

il
N

eu
_4

N
eu

_3
N

eu
tro

ph
il

N
eu

_1
N

eu
_2

M
oA

M
5

M
oA

M
4

M
oA

M
1

M
oA

M
3

M
oA

M
2

cM
on

o_
3

C
la

ss
ic

al
 M

on
oc

yt
e

cM
on

o_
1

cM
on

o_
2

cM
on

o_
4

Cell Type
Lineage

Integrins in angiogenesis
Platelet activation, signaling and aggregation
Blood coagulation
abnormal thrombosis
Formation of Fibrin Clot (Clotting Cascade)
Common Pathway of Fibrin Clot Formation
fibrinogen binding
abnormal blood coagulation
platelet activation
abnormal platelet aggregation
increased platelet aggregation
platelet aggregation
brain vascular congestion
regulation of platelet aggregation
Platelet Adhesion to exposed collagen
negative regulation of blood coagulation
negative regulation of coagulation
negative regulation of wound healing
negative regulation of response to wounding
activation of blood coagulation via clotting cascade
enhanced wound healing
blood coagulation, fibrin clot formation
blood coagulation, intrinsic pathway
Intrinsic Pathway of Fibrin Clot Formation
diapedesis
collagen receptor activity
positive regulation of coagulation
positive regulation of wound healing
wound healing involved in inflammatory response
inflammatory response to wounding
negative regulation of vascular wound healing
angiogenesis involved in wound healing
Angiogenesis
cell adhesion involved in sprouting angiogenesis
lymph vessel development
VEGF, Hypoxia, and Angiogenesis
regulation of sprouting angiogenesis
abnormal vascular endothelial cell physiology
decreased angiogenesis
negative regulation of vasculature development
negative regulation of angiogenesis
abnormal vascular endothelial cell apoptosis
abnormal angiogenesis
decreased vascular endothelial cell apoptosis
increased vascular permeability
abnormal vascular permeability
regulation of vascular permeability
Adhesion and Diapedesis of Lymphocytes
decreased vascular permeability
vasculature congestion
collagen-activated signaling pathway
Cell surface interactions at the vascular wall
vascular wound healing
collagen binding
positive regulation of vascular permeability
regulation of vascular wound healing
positive regulation of vascular wound healing
collagen fibril binding
abnormal wound healing
abnormal vascular wound healing
delayed wound healing
vascular inflammation
cellular extravasation
monocyte extravasation
abnormal cellular extravasation
regulation of cellular extravasation
complement component C1q complex binding
platelet activating factor receptor activity
abnormal diapedesis
impaired complement alternative pathway
abnormal complement pathway
Complement and coagulation cascades
complement binding
complement component C3b binding
complement activation
Complement cascade
complement component C5a receptor activity
complement component C5a binding
complement receptor activity
complement component C3a binding
complement component C3b receptor activity
complement component C4b binding
negative regulation of inflammatory response to wounding
positive regulation of inflammatory response to wounding
regulation of inflammatory response to wounding
Proepithelin Conversion to Epithelin and Wound Repair Control

Gene Enrichment Term Category

Gene Enrichment Score (-log10P)

ITGA5
Endothe l ia l  

PECAM1ANGPT2

PDGFBKDR

VWF

ITGA6 ITGA9

ITGA5ANGPTL4

MERTK
FN1

M o A M

CD44

SPP1
CD36THBS1

ITGB5

P la te le t

THBS1
ITGB3

THBS1

CD36

ITGB1

c M o n o

ITGA2B

ITGA9

Neut roph i l  

VCAM1

HSPG2
APP

COL4A1

CCL2 ITGAX
CXCL8

LRP1
CD36 THBS1

ITGAM

TLR4

GRN

MDK

CCR2

IL10

c M o n o

HBEGF

ANXA1
IL1B

VEGFA

NOTCH2

PSAP

ITGB2
PPBP

ICAM1

CD44

ITGAM

SDC2
NRP2

CD36

CSF2RB

ITGA5

ICAM1

CCL2

PSAP

ANGPTL4

NRP1
LRP1

GRN

M o A M

FN1

THBS1 SELE
IL3RA

Endothe l ia l  

VCAM1

PODXL
EDN1

BMPR2
ITGA9

ITGA6

ITGB4
SEMA6A

EPHB4

ANGPT2

EDNRB
TNXB

EFNB2

COL4A2

KDR
CXCL12

HSPG2

APP

PDGFB

JAG2

NOTCH4

ICAM2
TGFBR2

ACVRL1
PECAM1
VWF

SELP

ITGA5

JAM2

COL4A1

BMP2
ITGA2B

GP1BA

SELP

JAM3

GP9

PDGFA

PPBP

ITGB3
CCL5 ITGB5

PF4

P la te le t

PDGFB

TGFB1

THBS1

SPP1

ITGAXMERTKSDC3

IL3RA
ADM

CD74

IL1B
ITGB2

CXCL8

SPN

CXCL8

VEGFA
CXCR2

ITGAX

Neut roph i l  

ANXA1

ITGA9

CSF2RB
ADM

SELL
IL1B GRN

CXCR4

A B

C

Figure S12. Gene expression signatures of cell types and subtypes activated by COVID-19 are extensively associated 
with coagulation, hemostasis, and thrombosis-associated pathways, functions, and knockout phenotypes, relative to 
Figure 4. 
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Figure S13. Emergence of platelet subtypes suggestive of functionally significant alternative roles in in 
hemostasis, coagulation, wound response, and neutrophil recruitment and activation, relative to Figure 4.
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Figure S14. Consistent emergence of a series of early and maturing B cells and plasmablasts in BAL fluid and PBMC 
across multiple datasets, relative to Figure 5. 
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Figure S15. Gene Enrichment analysis of B cell subtypes and autoimmune-associated signatures, relative to 
Figure 5. 
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Figure S16. Distinct subtypes of T cells and NK cells in COVID-19 BAL data.
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Figure S17. Various T cell and NK cell subtypes in the integrated PBMC data.
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Figure S18. Various cell types in immune-mediated diseases, relative to Figure 7.
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